

Optimal Attack and Defense for Reinforcement Learning

Jeremy McMahan, Young Wu, Xiaojin Zhu, Qiaomin Xie

RL Basics

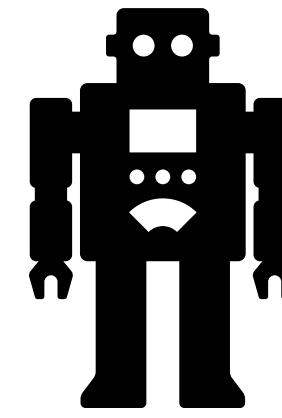
RL Interaction Protocol

RL Interaction Protocol

Models sequential decision making in **uncertain** environments

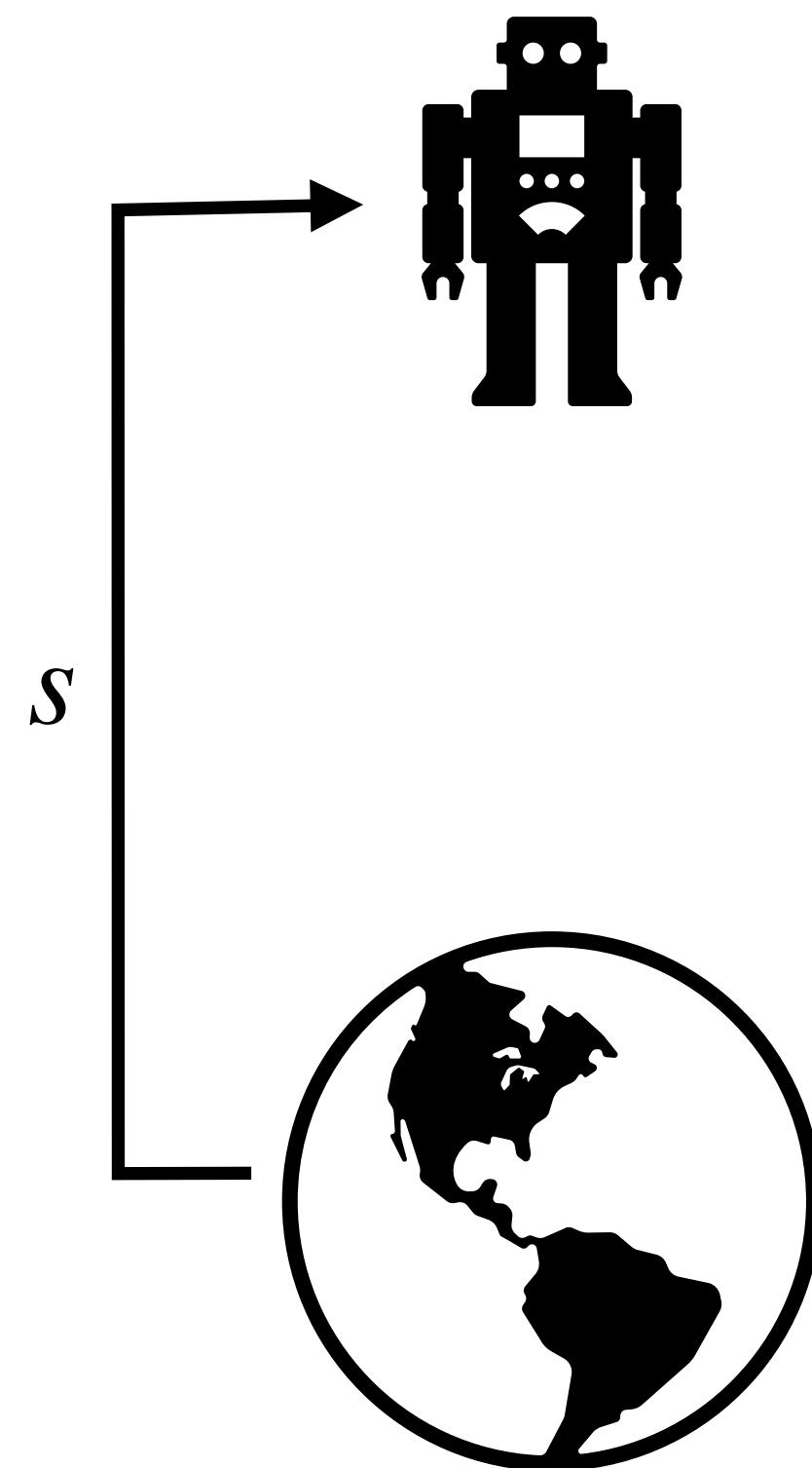
RL Interaction Protocol

Models sequential decision making in **uncertain** environments



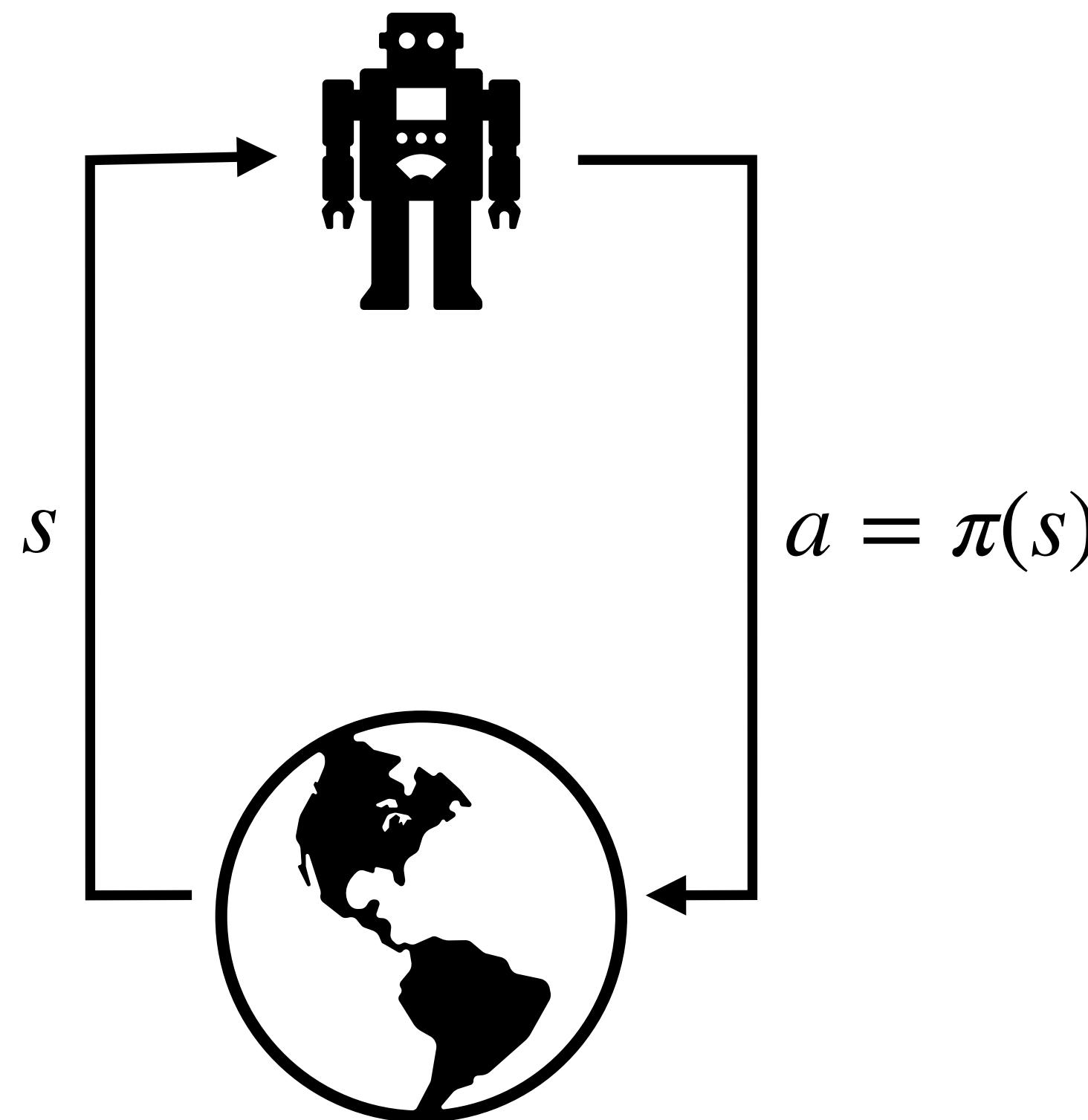
RL Interaction Protocol

Models sequential decision making in **uncertain** environments



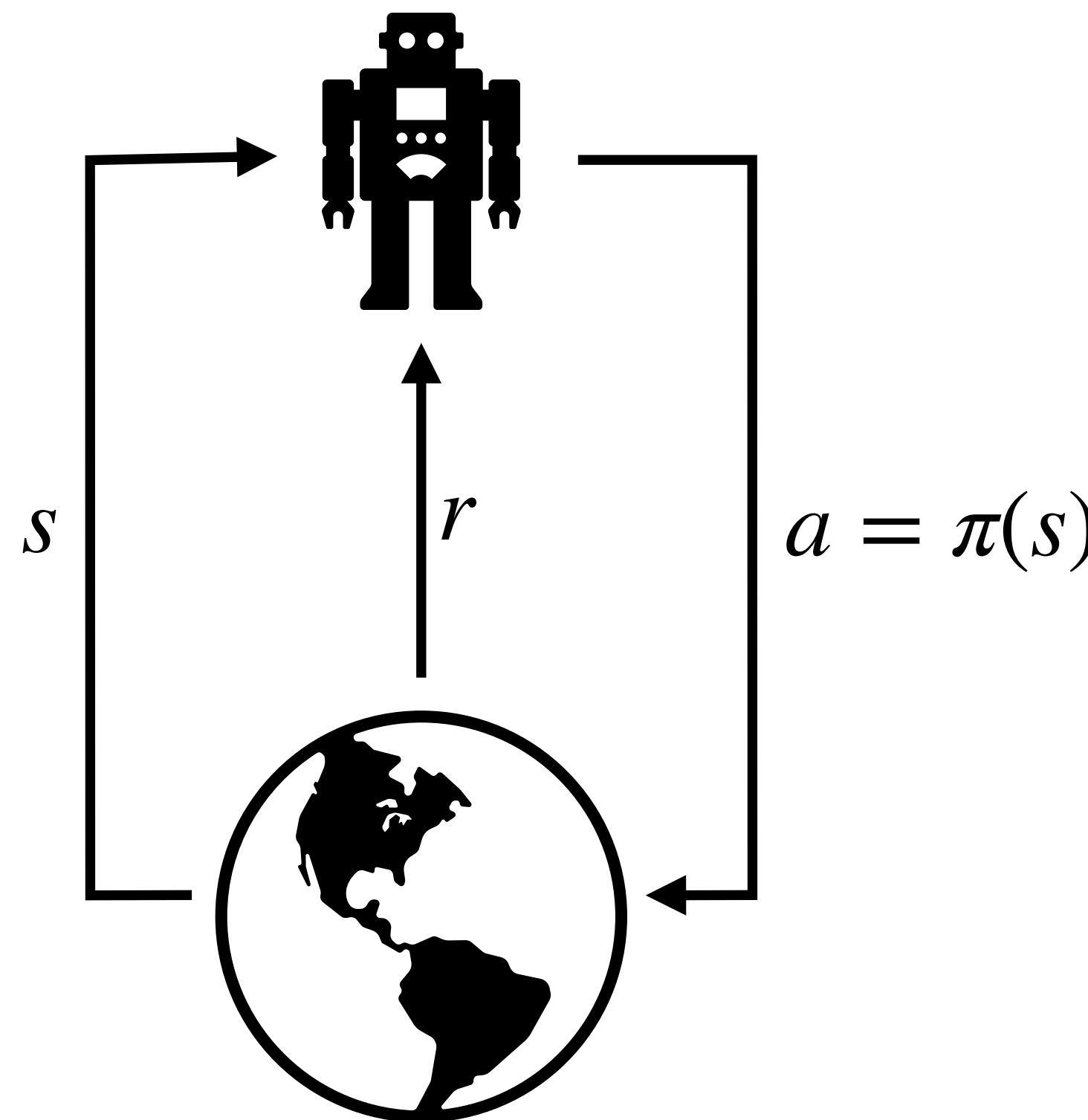
RL Interaction Protocol

Models sequential decision making in **uncertain** environments



RL Interaction Protocol

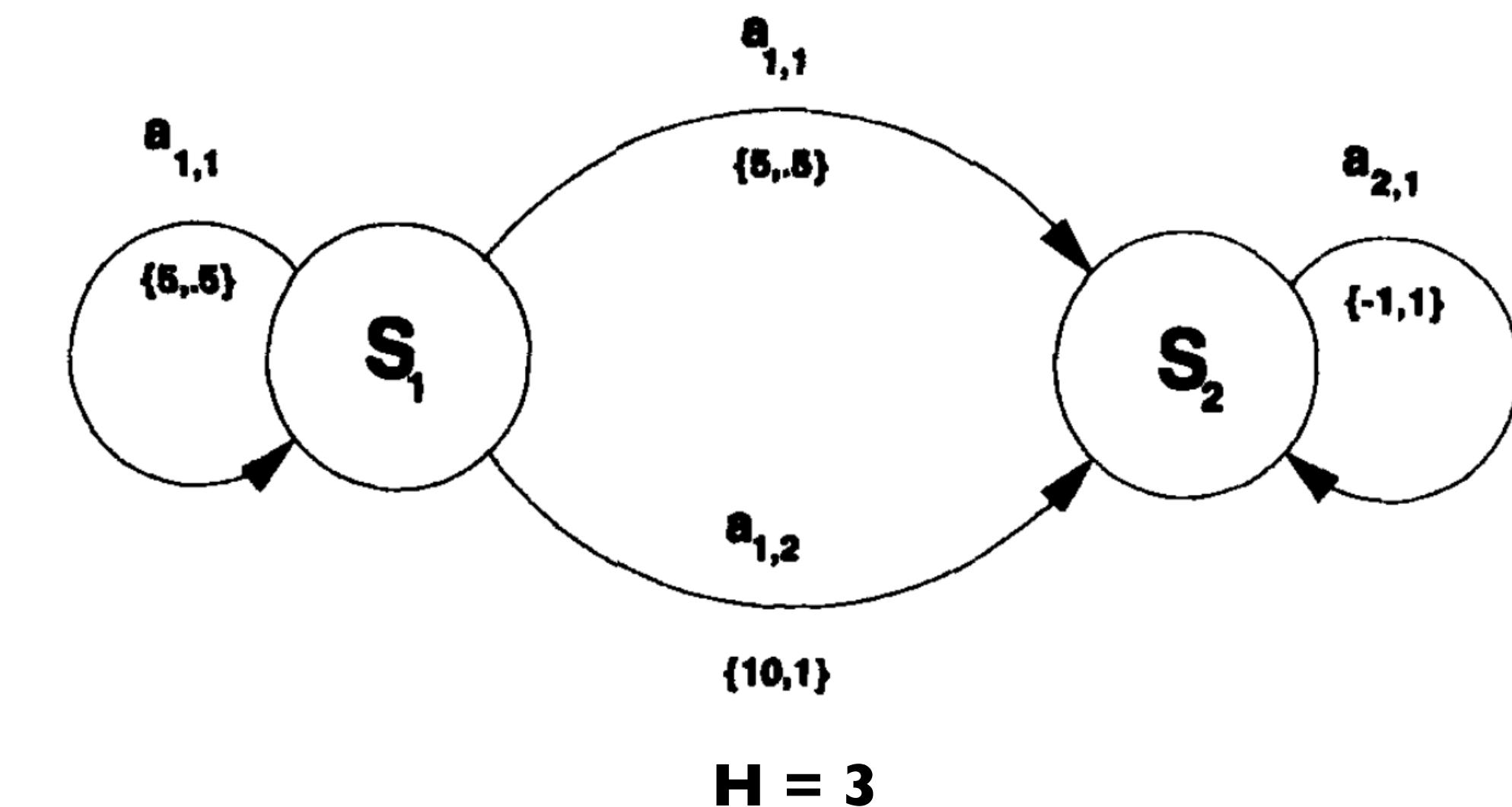
Models sequential decision making in **uncertain** environments



Model: MDPs

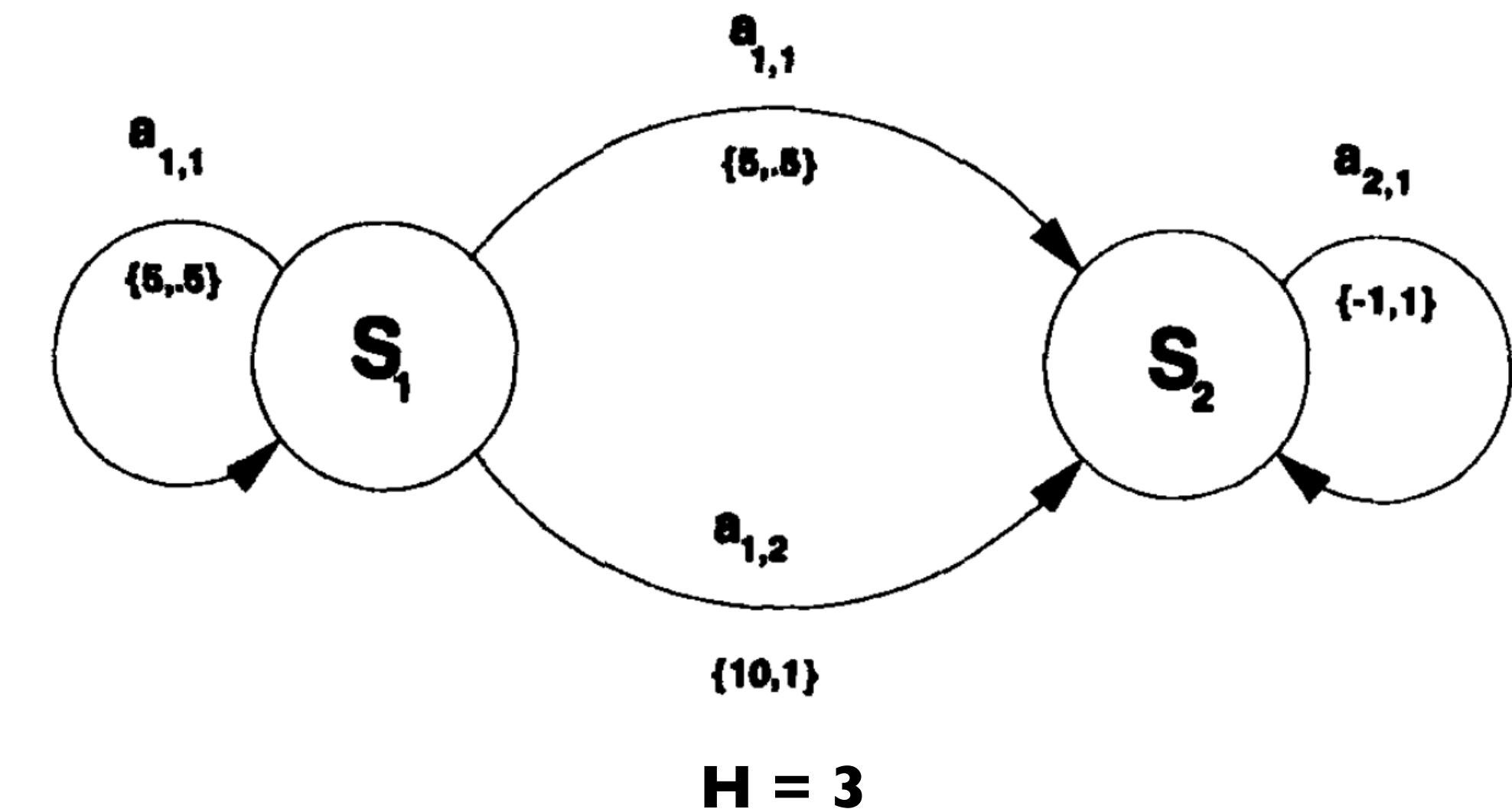
H = 3

Model: MDPs



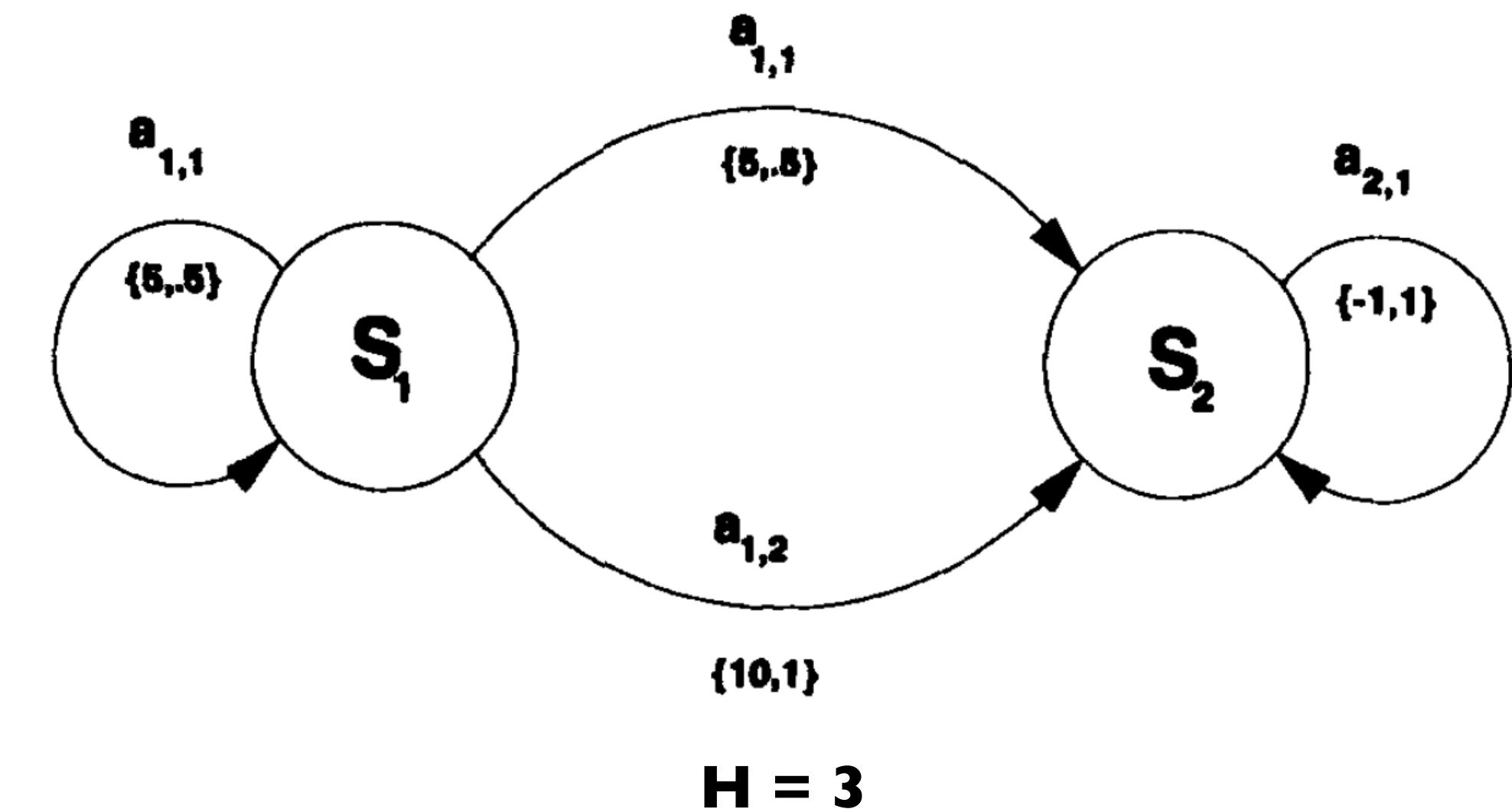
Model: MDPs

- States, S



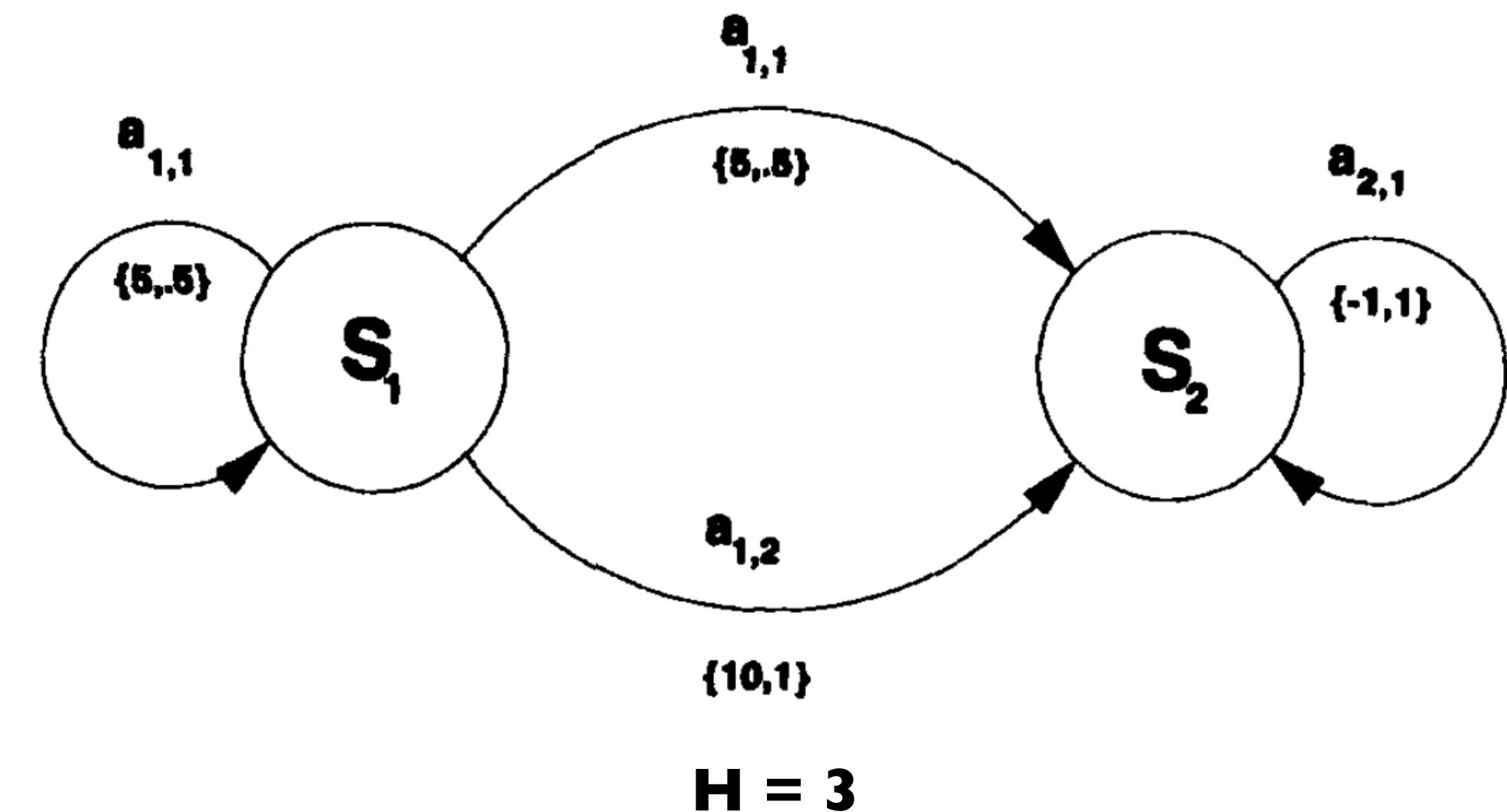
Model: MDPs

- States, S
- Actions, A



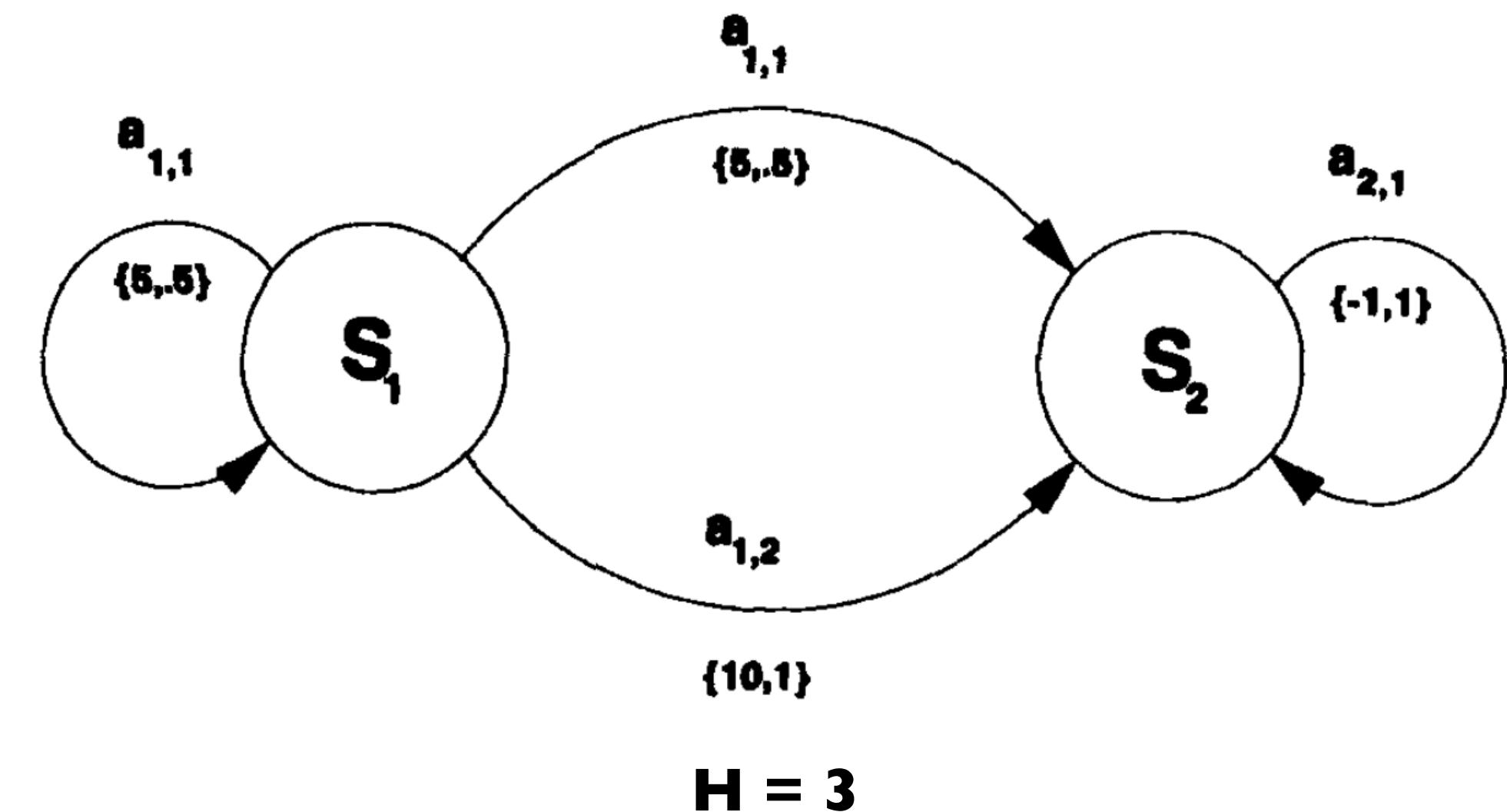
Model: MDPs

- States, S
- Actions, A
- Rewards, $r(s, a)$



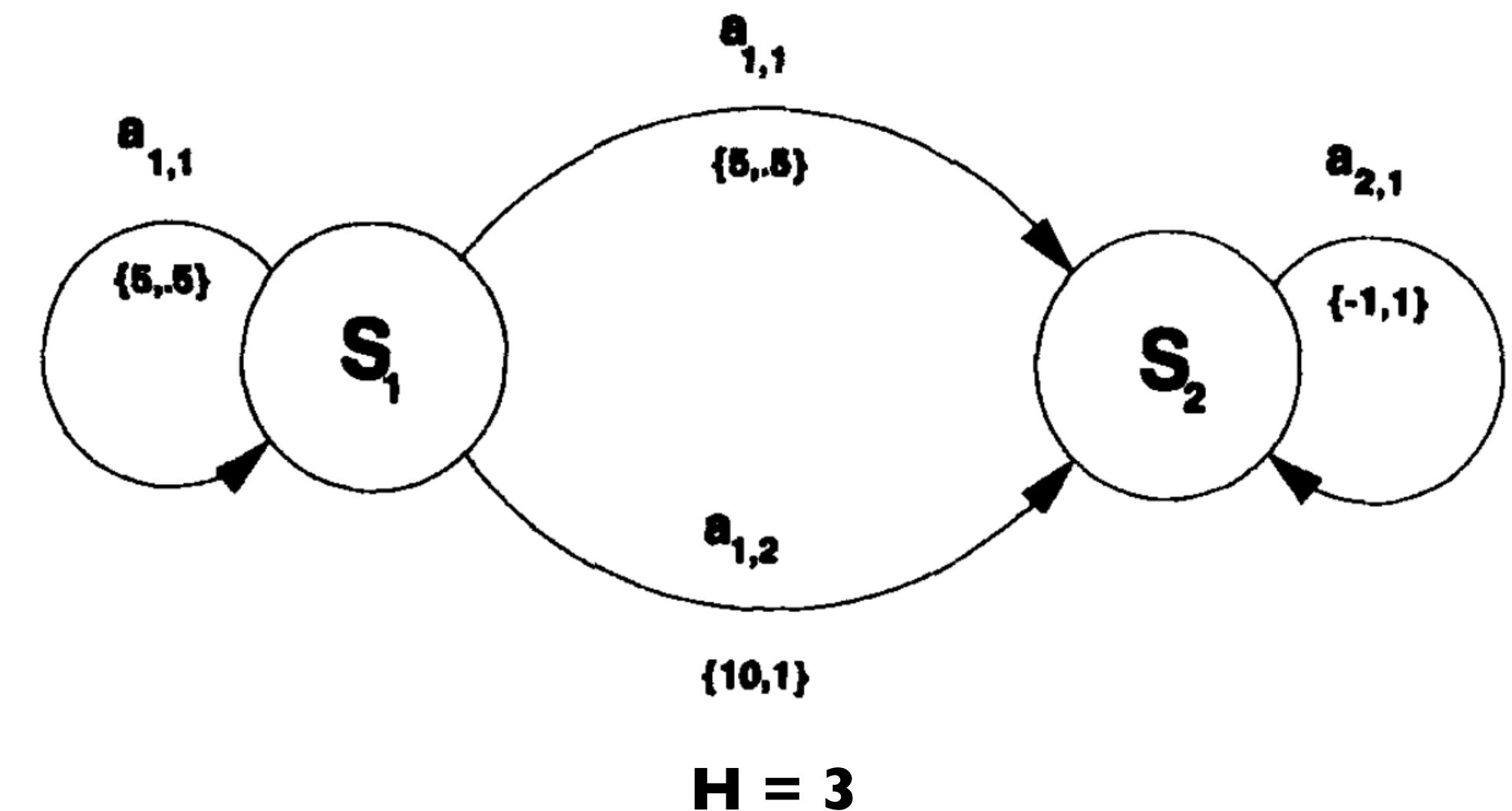
Model: MDPs

- States, S
- Actions, A
- Rewards, $r(s, a)$
- Transition Probabilities, $P(s' | s, a)$



Model: MDPs

- States, S
- Actions, A
- Rewards, $r(s, a)$
- Transition Probabilities, $P(s' | s, a)$
- Time Horizon, H



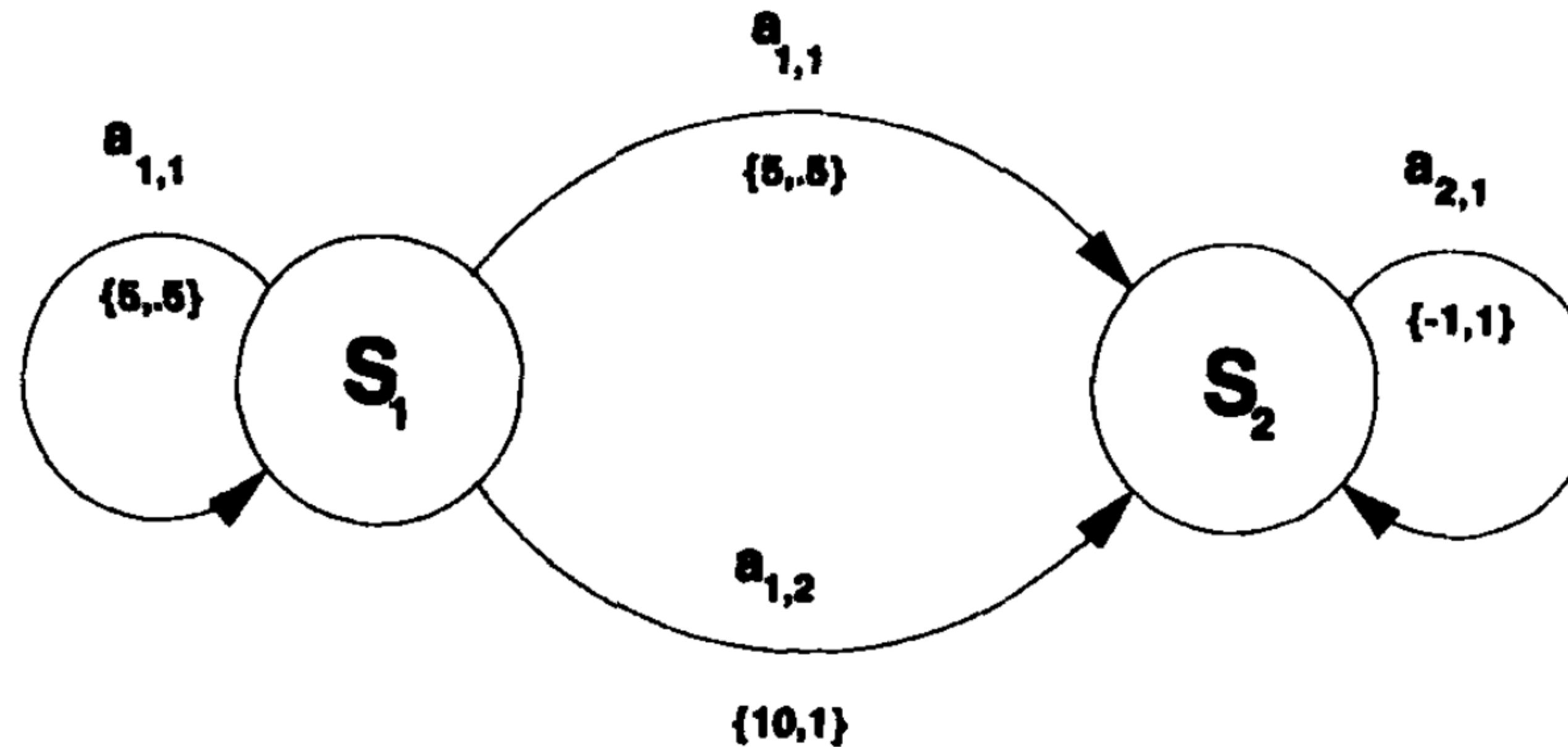
Policies

Policies

A *policy* is a plan of what action to take in each state.

Policies

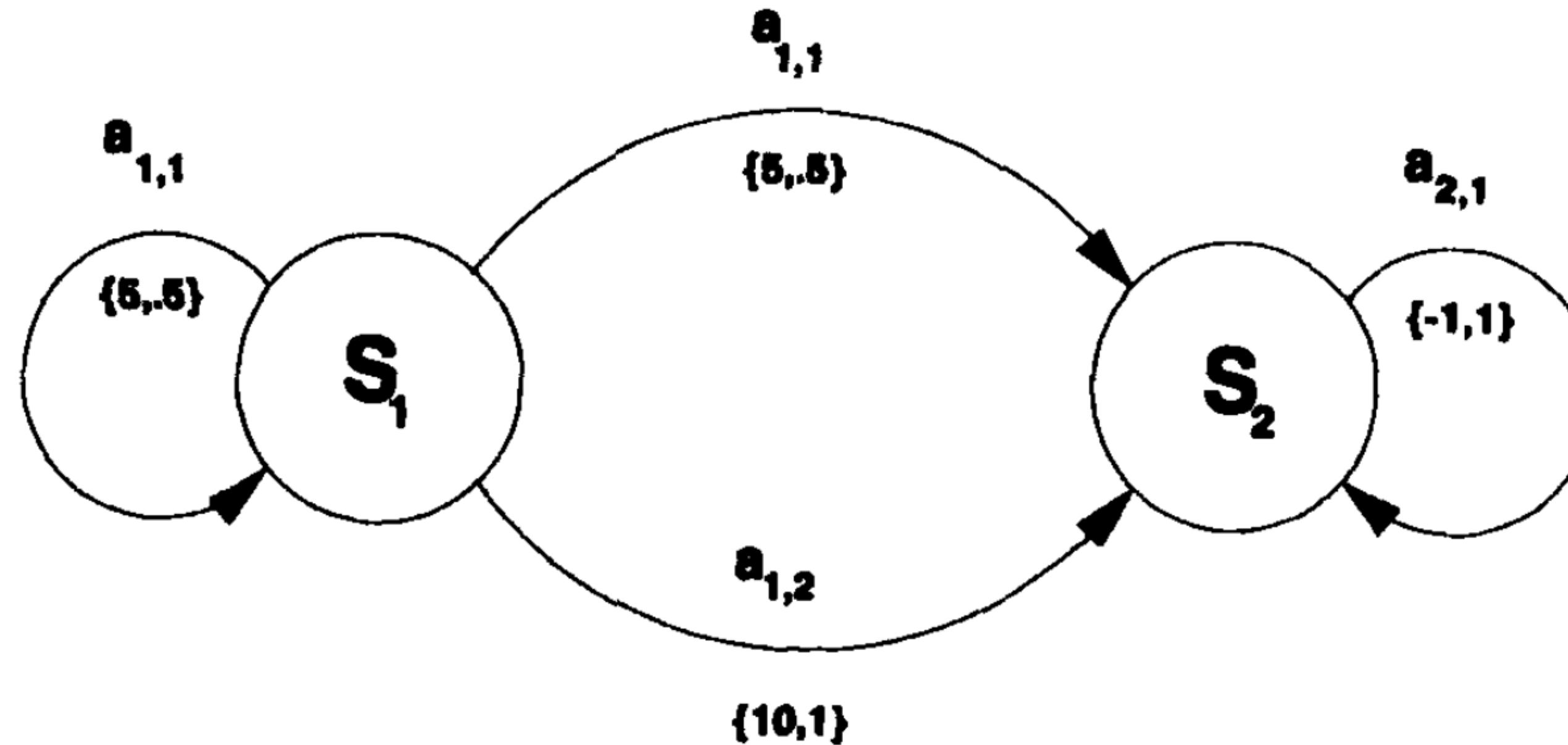
A *policy* is a plan of what action to take in each state.



Policies

A *policy* is a plan of what action to take in each state.

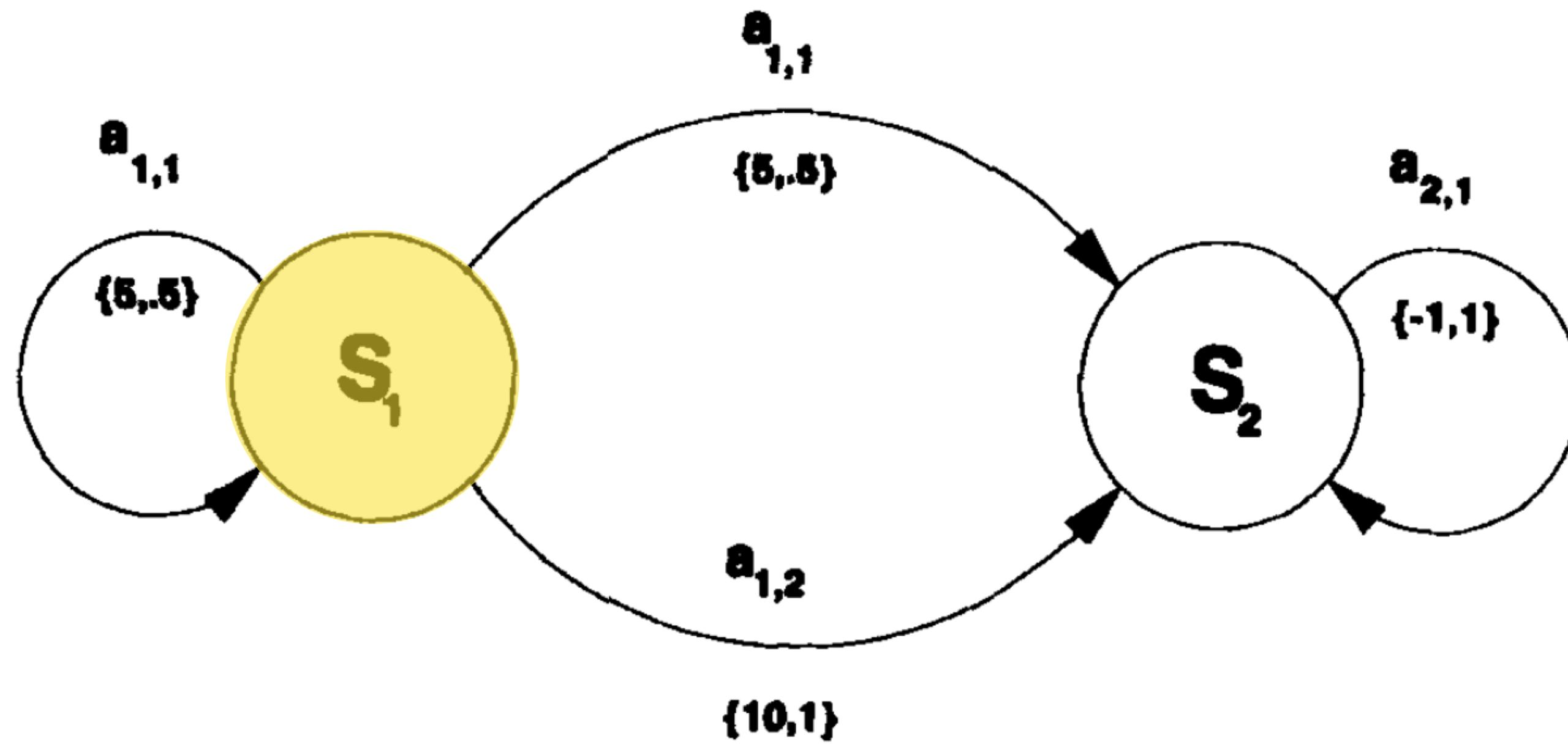
$$\pi(s_1) = a_{1,2} \quad \pi(s_2) = a_{2,1}$$



Value

The *value* of M under π is: $V^\pi(s) = E_\pi \left[\sum_{h=1}^H r_h(s, a) \mid s_0 = s \right]$.

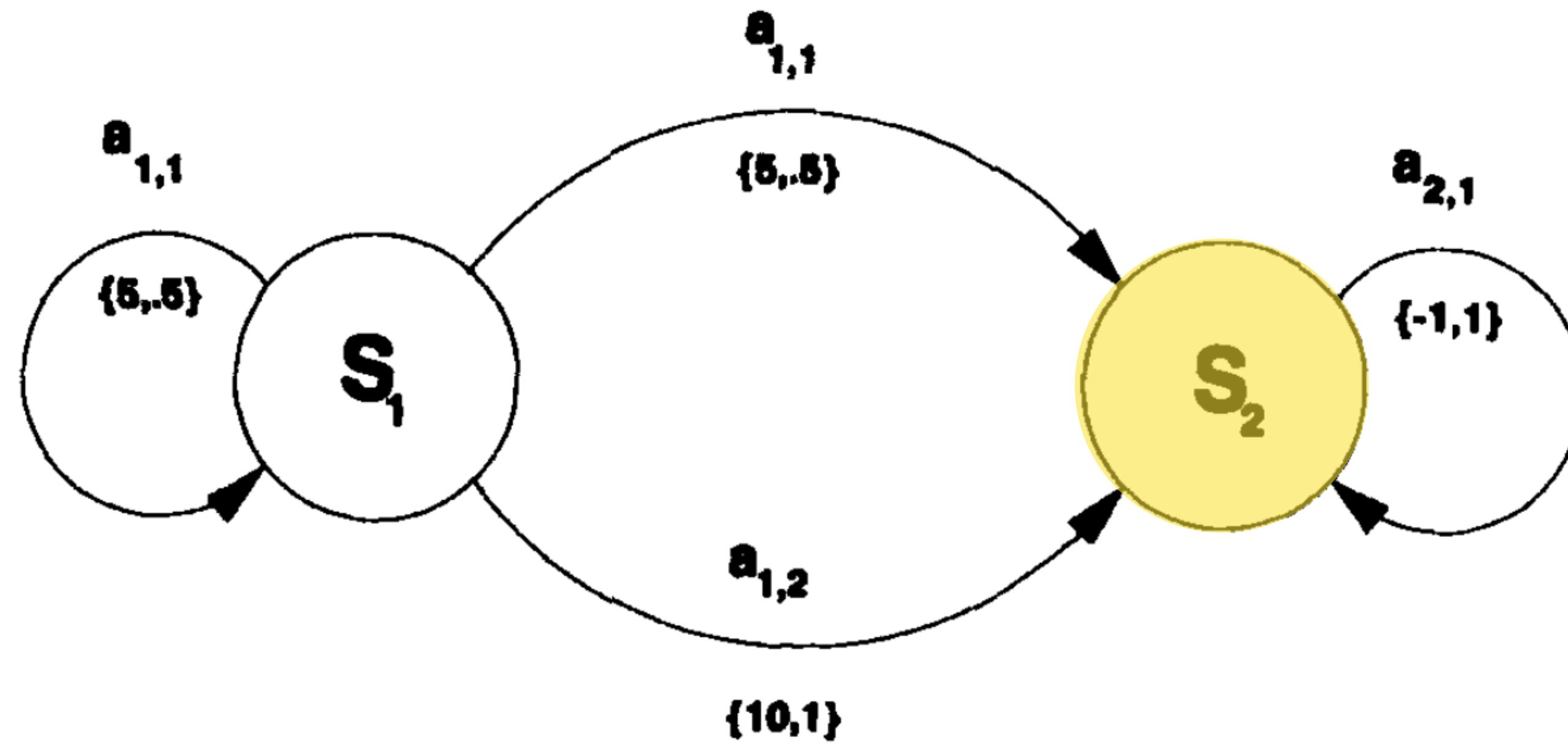
Value



$$\pi(S_1) = a_{1,2}$$

Reward = 10

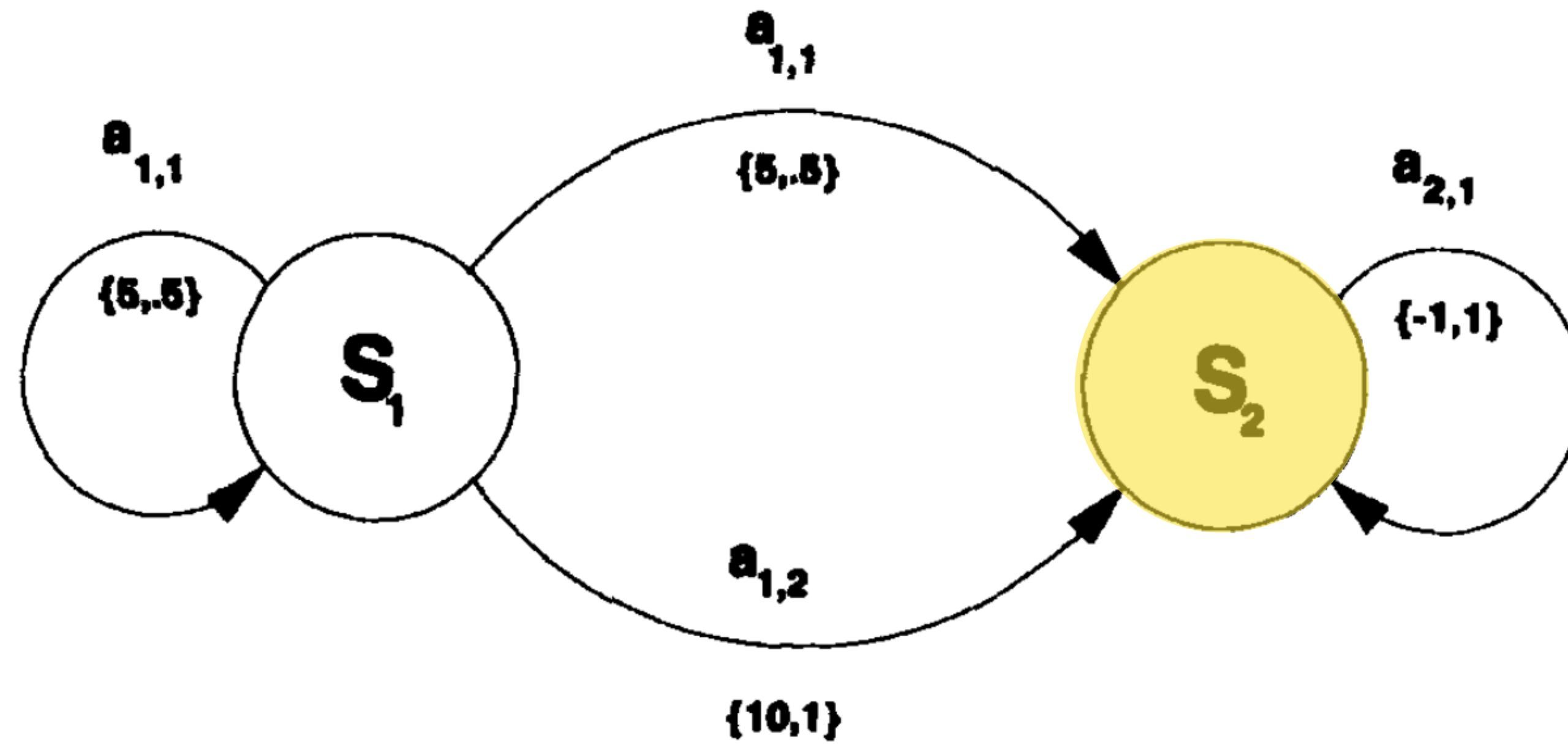
Value



$$\pi(S_2) = a_{2,1}$$

Reward = -1

Value



$$\pi(S_2) = a_{2,1}$$

Reward = -1

Value

$$V^\pi(s_1) = 10 - 1 - 1 = 8$$

Optimal Policies

Optimal Policies

$$\pi^* = \sup_{\pi} V^\pi(s_0)$$

Example MDP

Example MDP



Example MDP

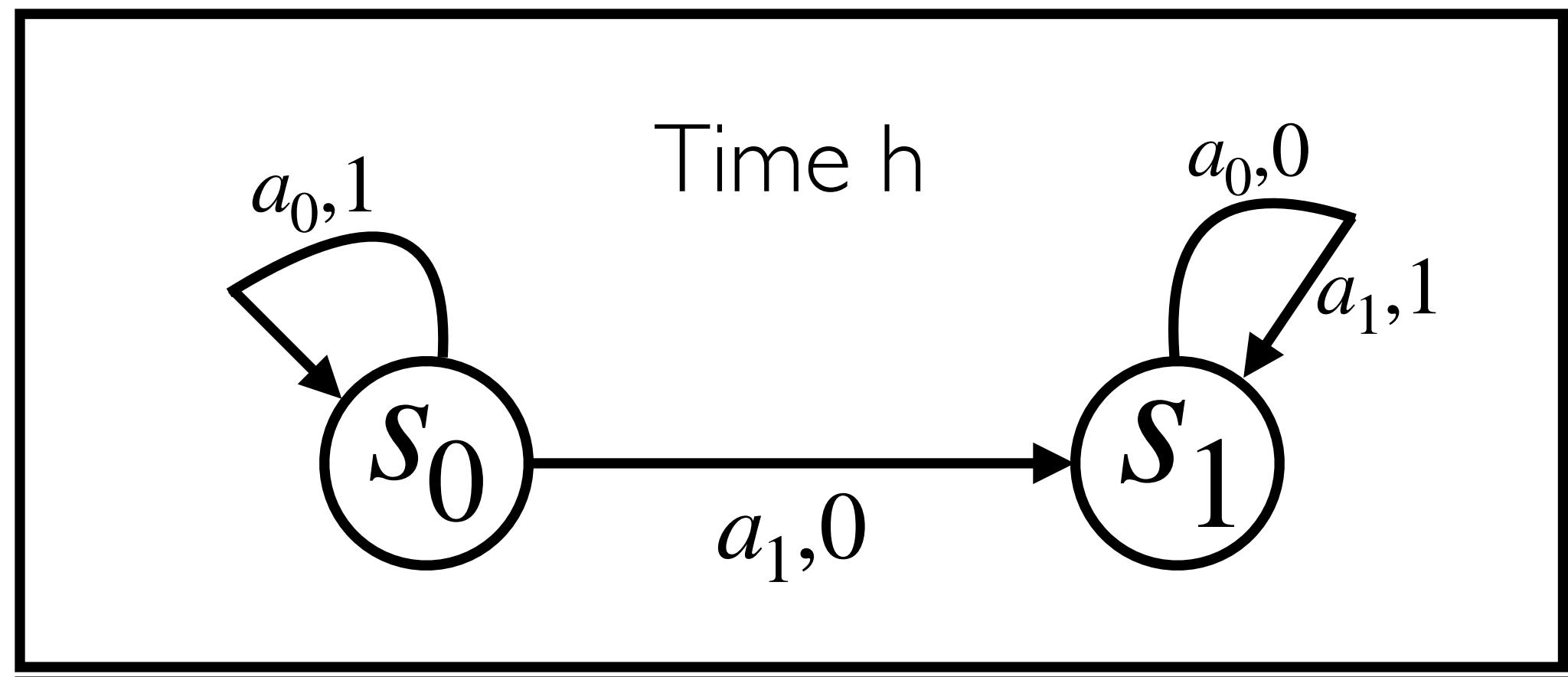
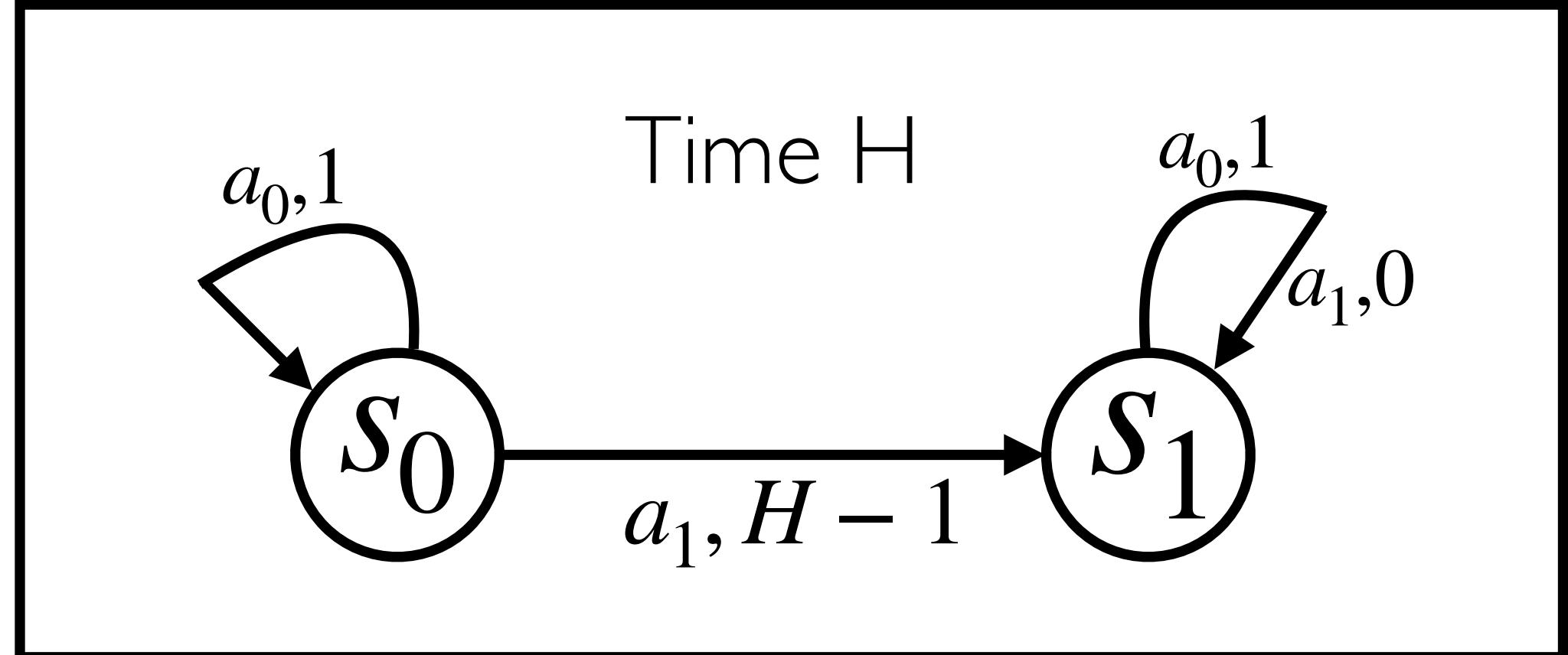
Disaster Relief with Autonomous Vehicles

- State Space is \mathbb{R}^2
- Action Space is $[-1,1]^2$
- New location is $s + a$
- Reward for finding people in need.

Performance of Optimal Policies

Performance of Optimal Policies

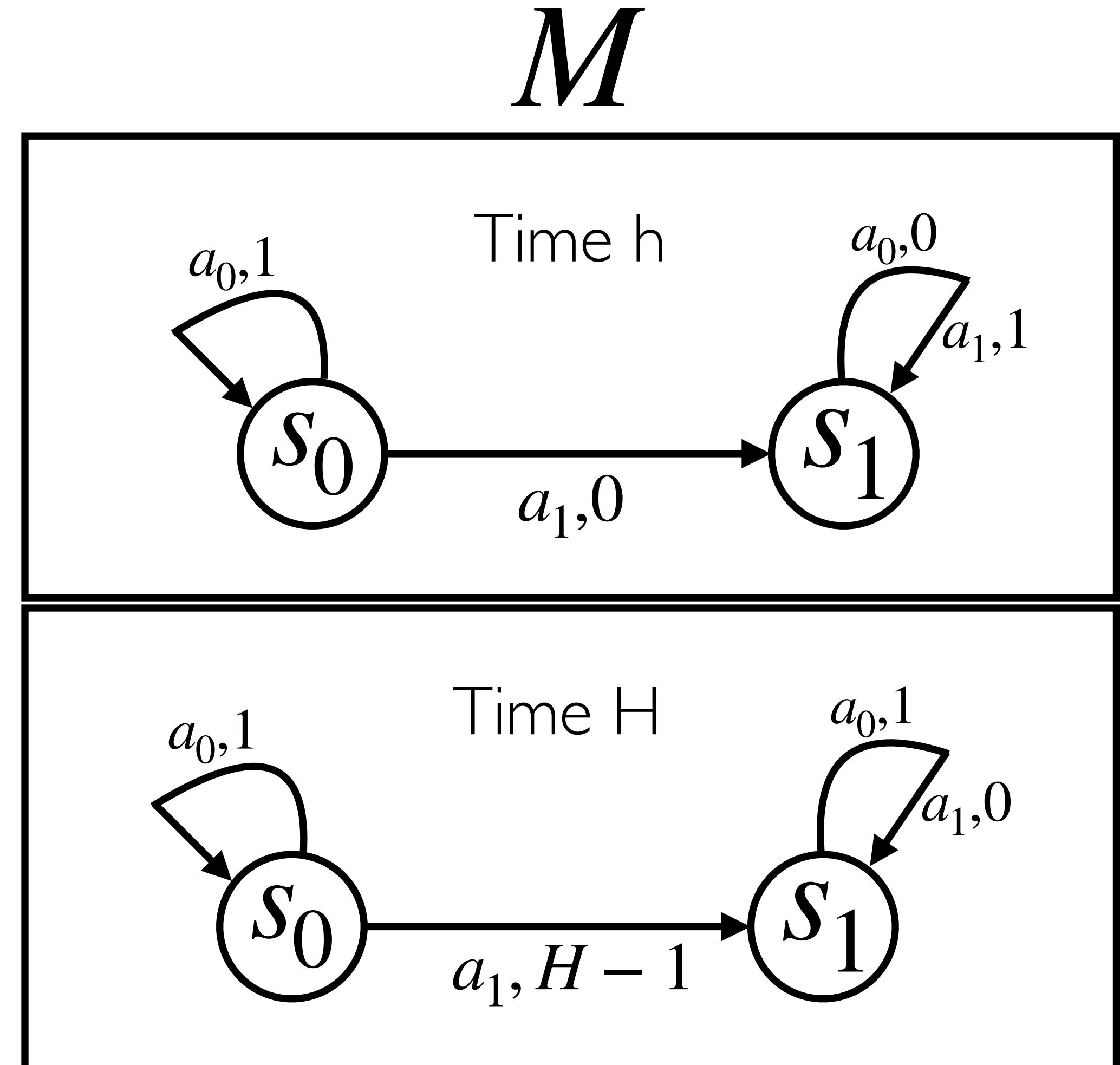
M



Performance of Optimal Policies

Unique optimal policy π^* is:

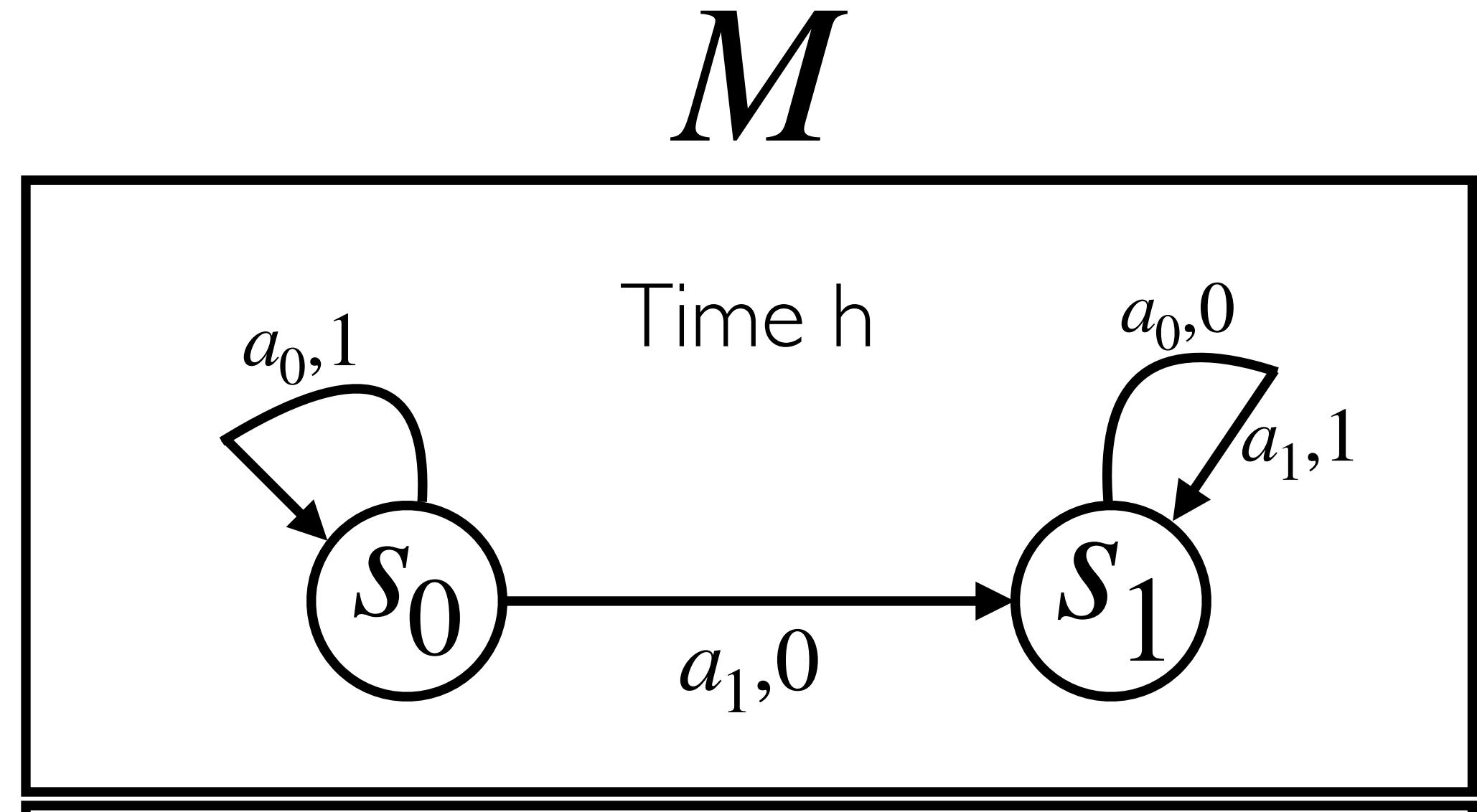
π^*		
t/S	s_0	s_1
h	a_0	a_1
H	a_1	a_0



Performance of Optimal Policies

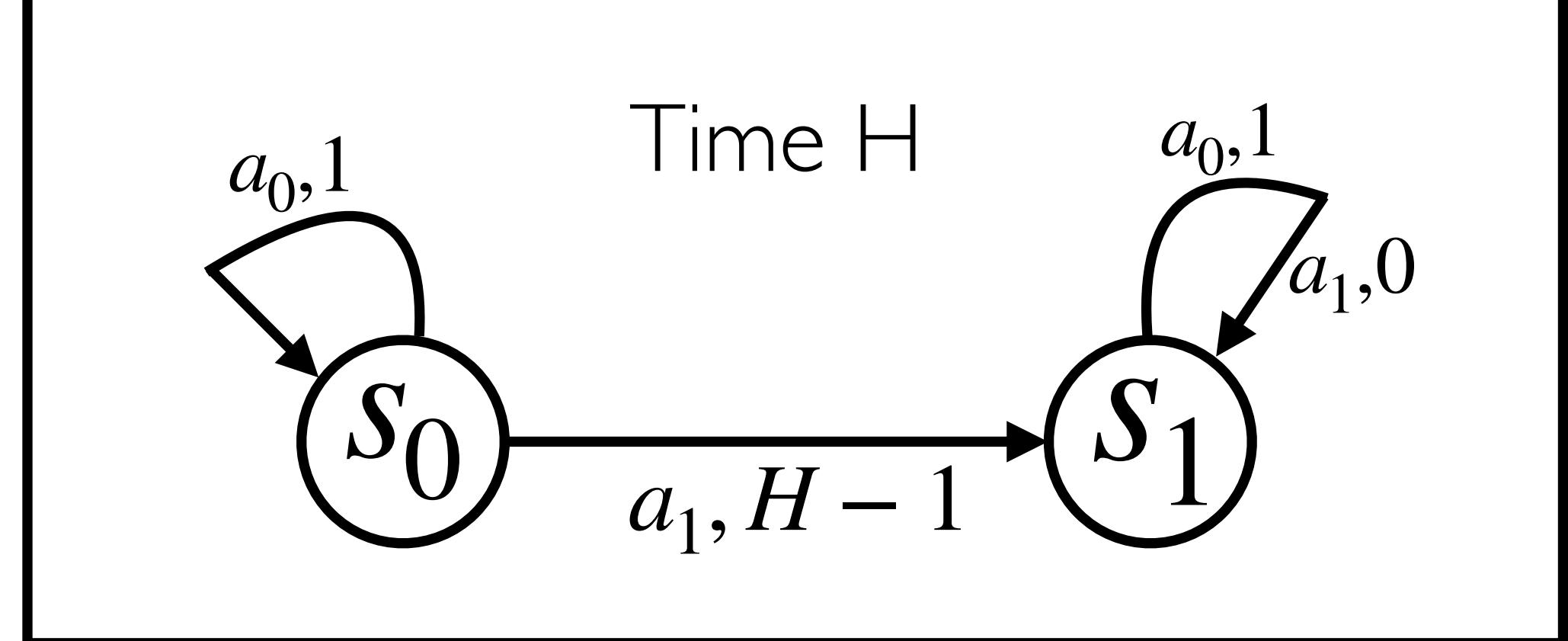
Unique optimal policy π^* is:

π^*		
t/S	s_0	s_1
h	a_0	a_1
H	a_1	a_0



The optimal policy achieves value:

$$V_M^{\pi^*} = 2(H - 1)$$



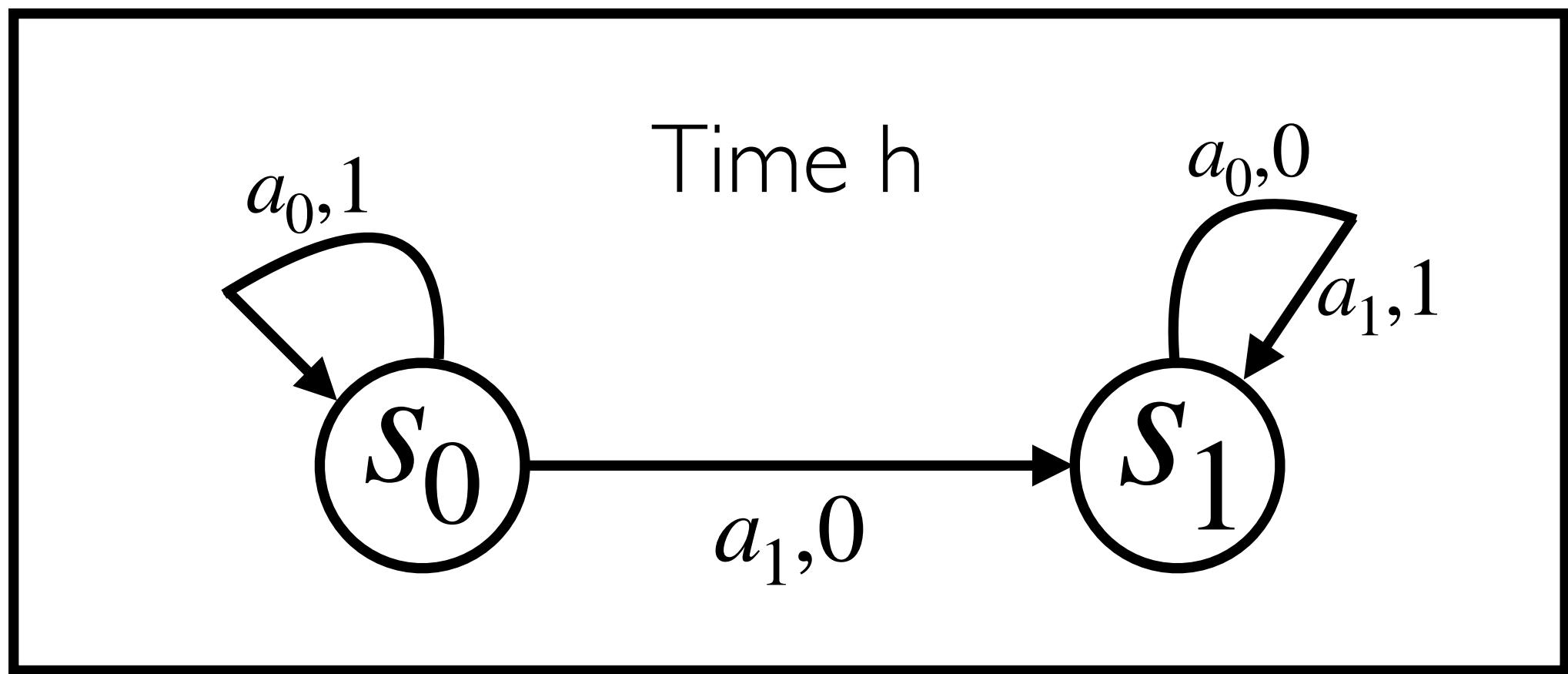
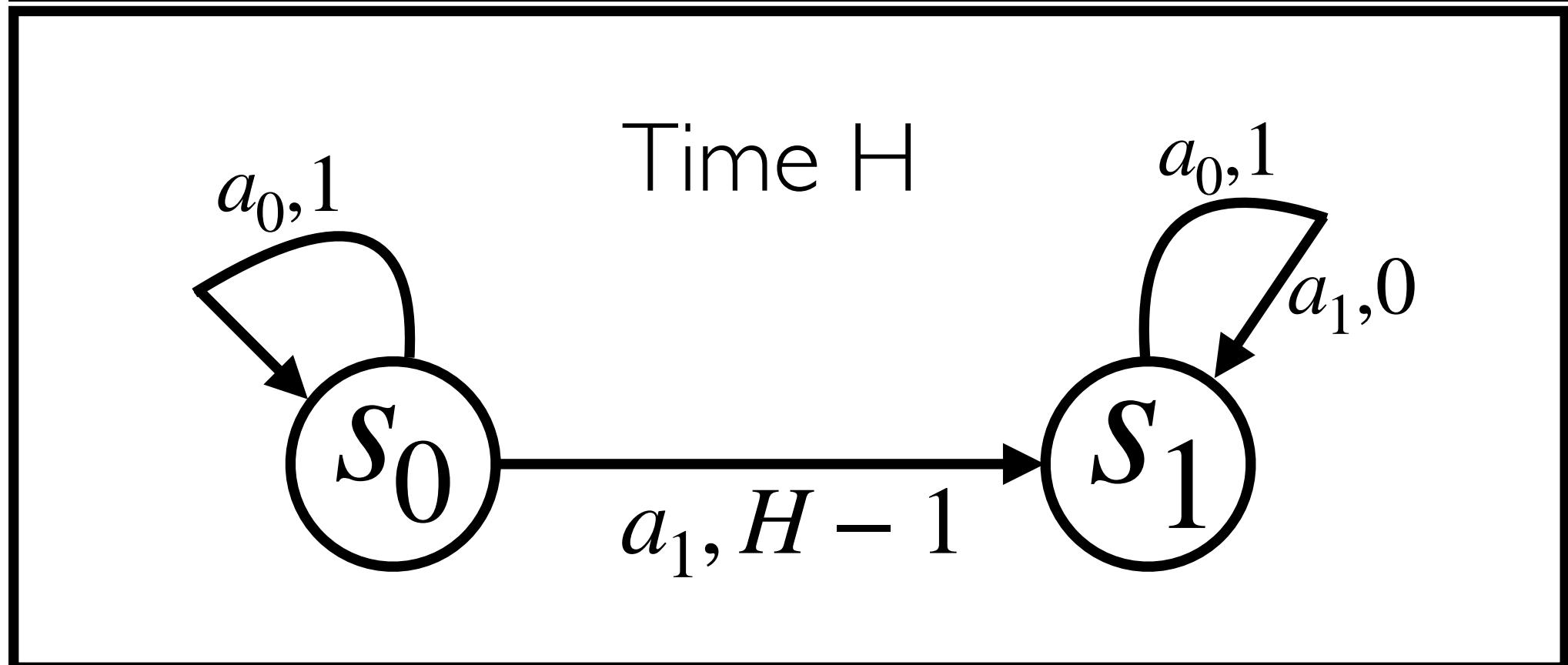
Optimal Policies are NOT Robust

Optimal Policies are NOT Robust

Optimal Policies may behave poorly under measurement noise or adversarial manipulations!

Optimal Policies are NOT Robust

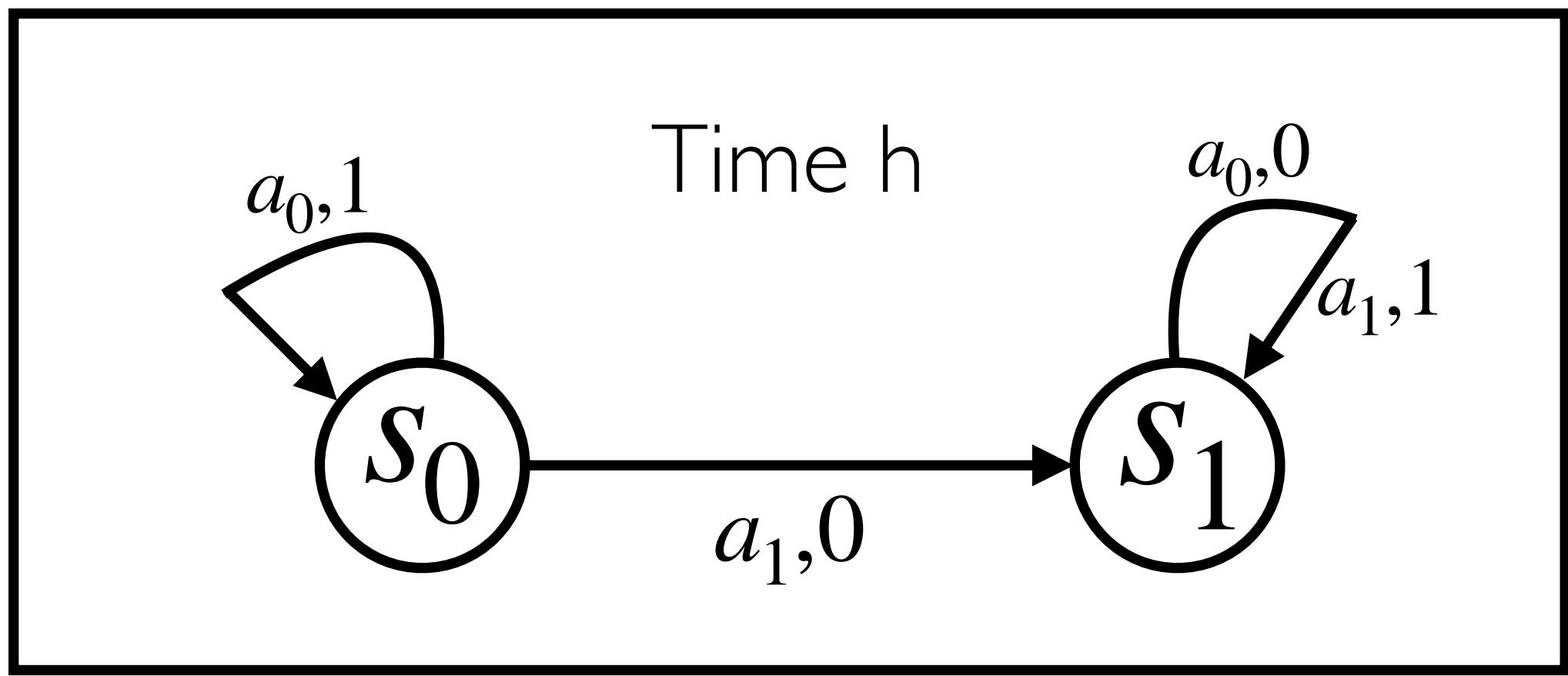
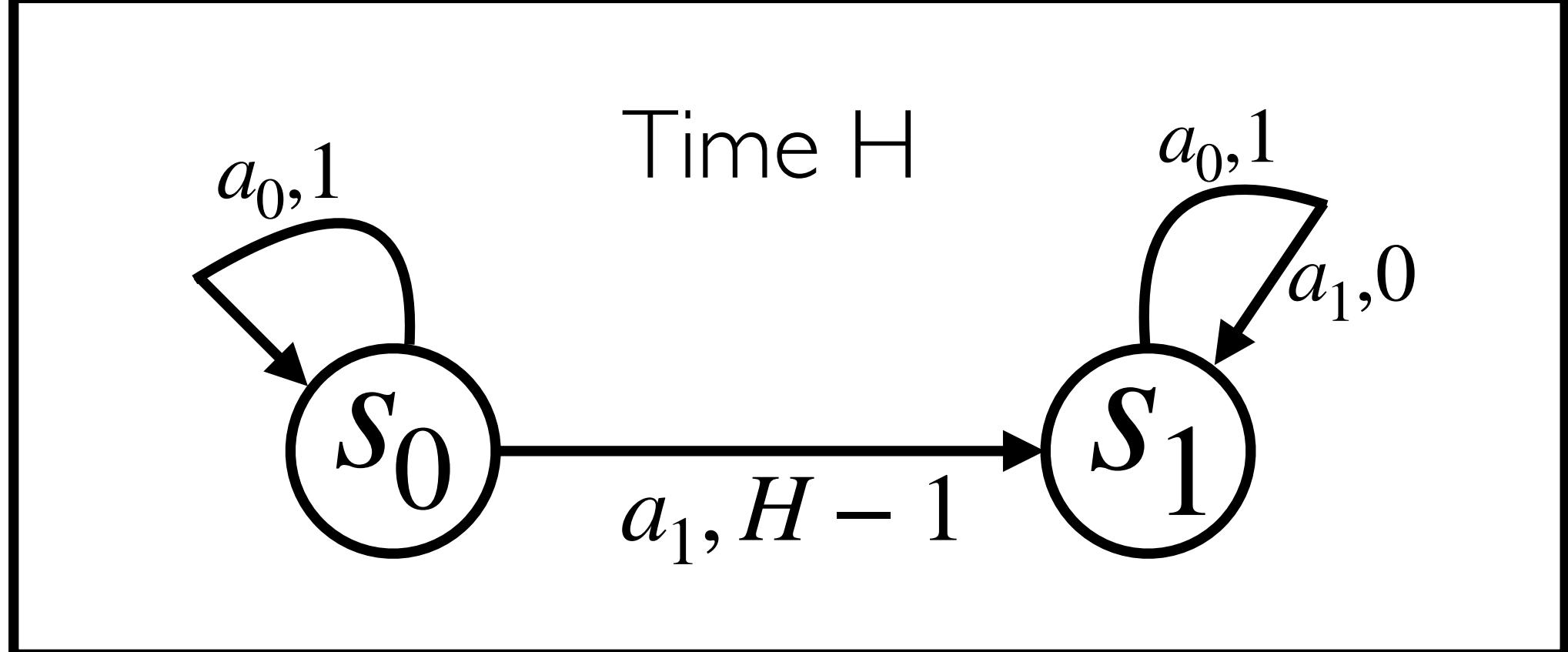
Optimal Policies may behave poorly under measurement noise or adversarial manipulations!



Optimal Policies are NOT Robust

Optimal Policies may behave poorly under measurement noise or adversarial manipulations!

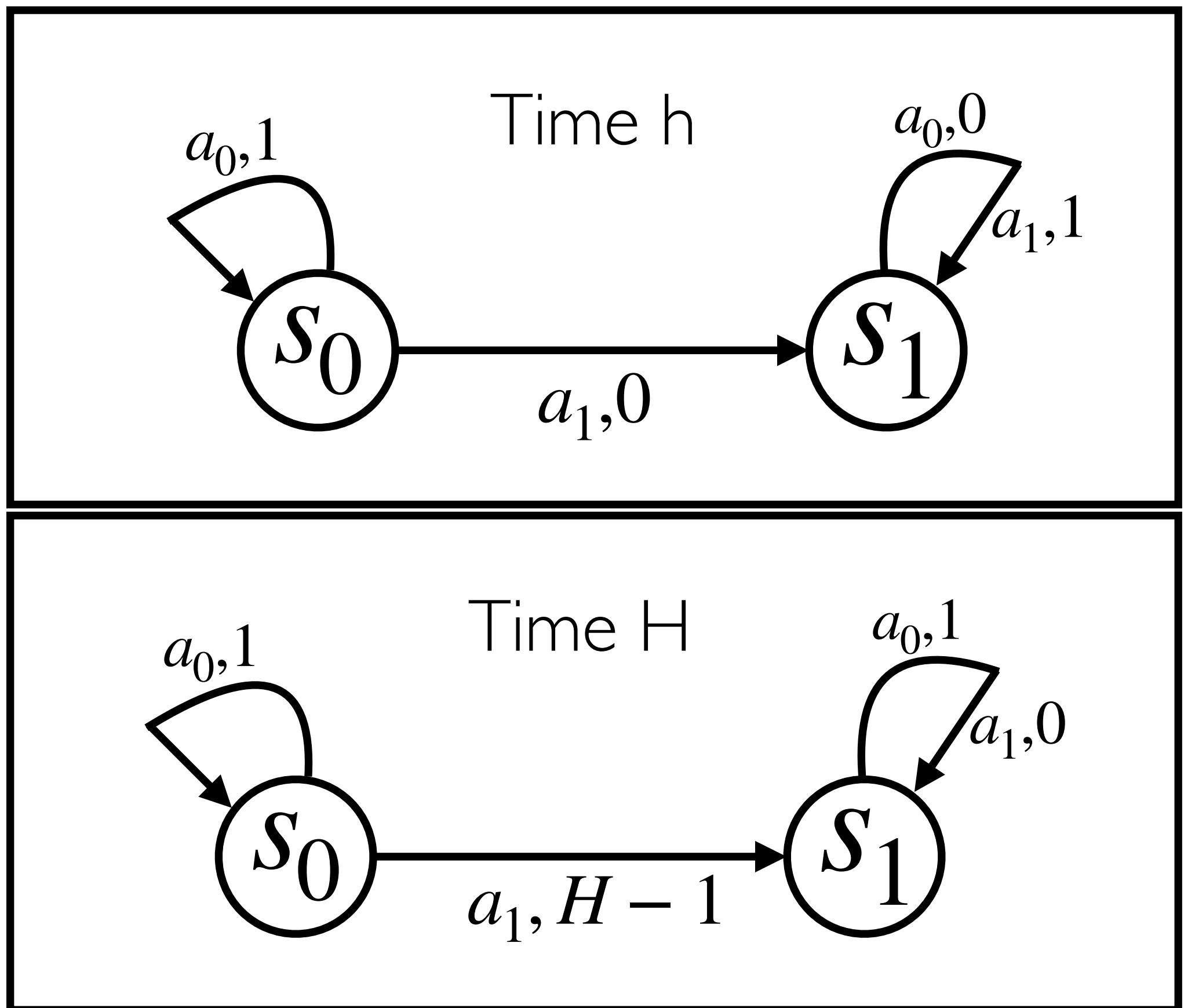
- If first state is actually s_1 or M receives a_1 instead, π^* at best gets $1/2$ of its value.



Optimal Policies are NOT Robust

Optimal Policies may behave poorly under measurement noise or adversarial manipulations!

- If first state is actually s_1 or M receives a_1 instead, π^* at best gets $1/2$ of its value.
- If states are swapped consistently, π^* gets no value!



Optimal Policies are NOT Robust

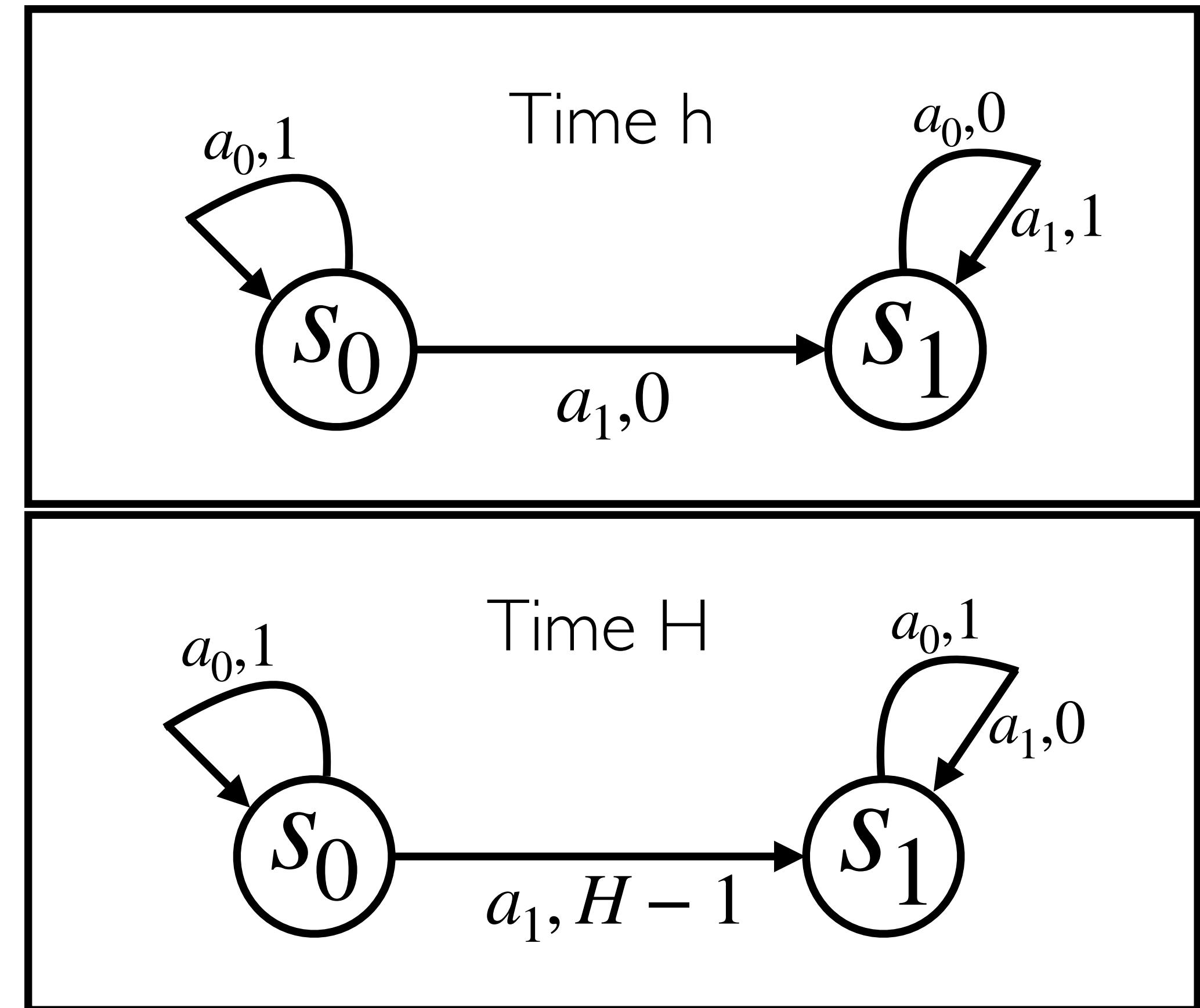
Optimal Policies may behave poorly under measurement noise or adversarial manipulations!

- If first state is actually s_1 or M receives a_1 instead, π^* at best gets $1/2$ of its value.

$$\pi^* \circ \nu$$

t/S	s_0	s_1
h	a_1	a_0
H	a_0	a_1

- If states are swapped consistently, π^* gets no value!



Security Threats to RL

Security Threats to RL

- Playing an optimal policy for the **ideal** environment is not always optimal for the **real** environment!

Security Threats to RL

- Playing an optimal policy for the **ideal** environment is not always optimal for the **real** environment!
- Strategies to compute **robust** policies are needed.

Security Threats to RL

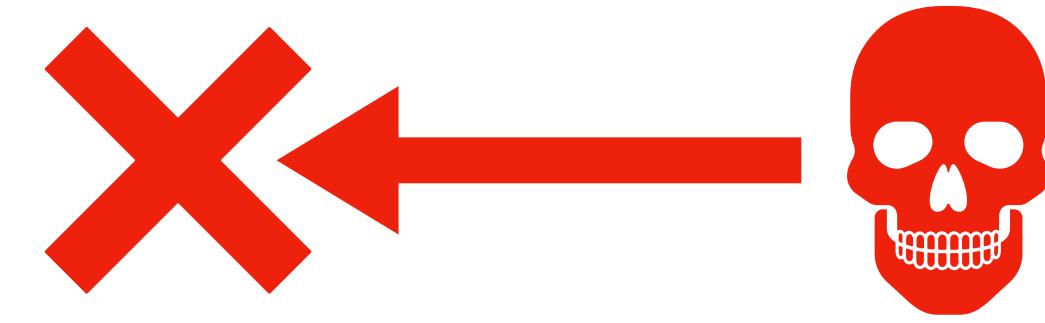
- Playing an optimal policy for the **ideal** environment is not always optimal for the **real** environment!
- Strategies to compute **robust** policies are needed.
- Inspiration for field of **adversarial** RL.

Adversarial RL

Adversarial RL

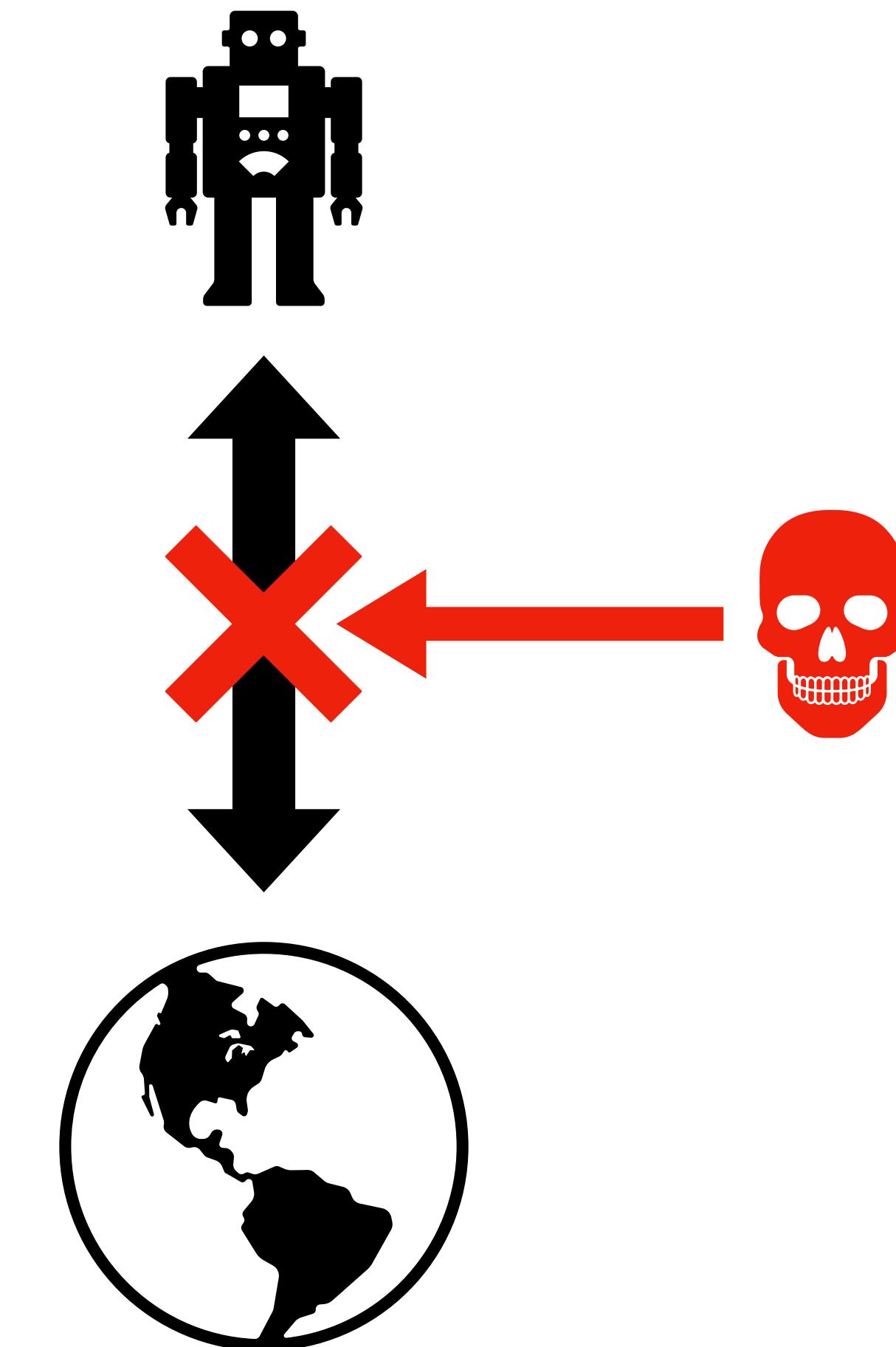
Adversarial RL

An external attacker can
manipulate the interaction.



Adversarial RL

An external attacker can
manipulate the interaction.



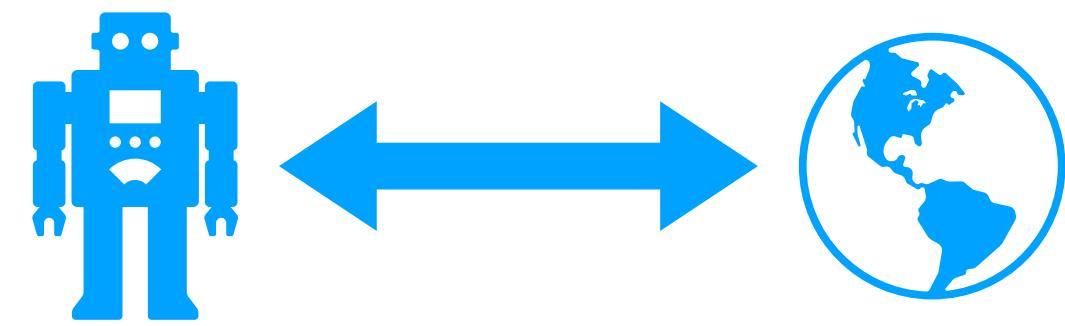
Attack Paradigms

Attack Paradigms

Training Time

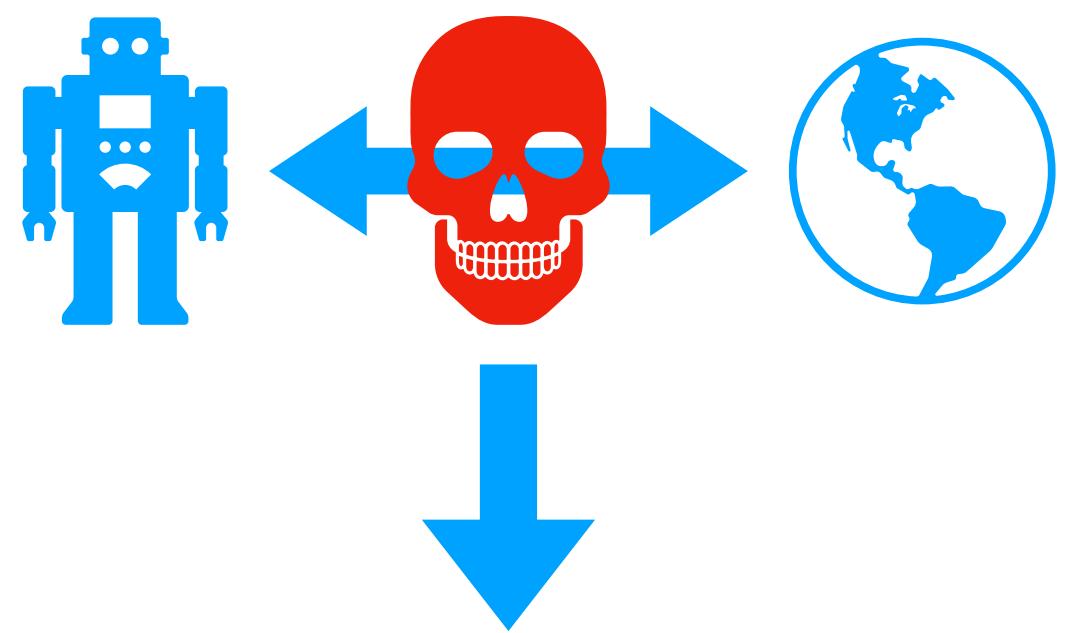
Attack Paradigms

Training Time



Attack Paradigms

Training Time

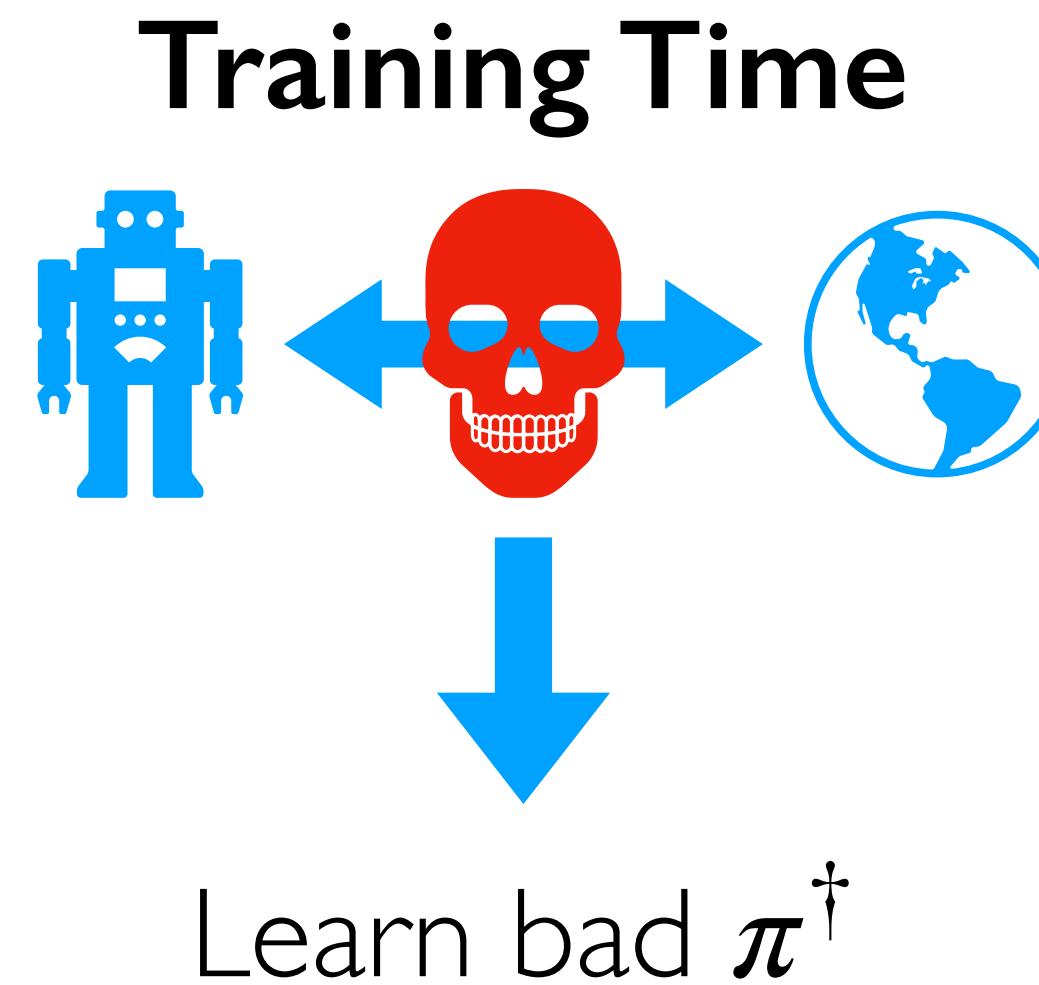
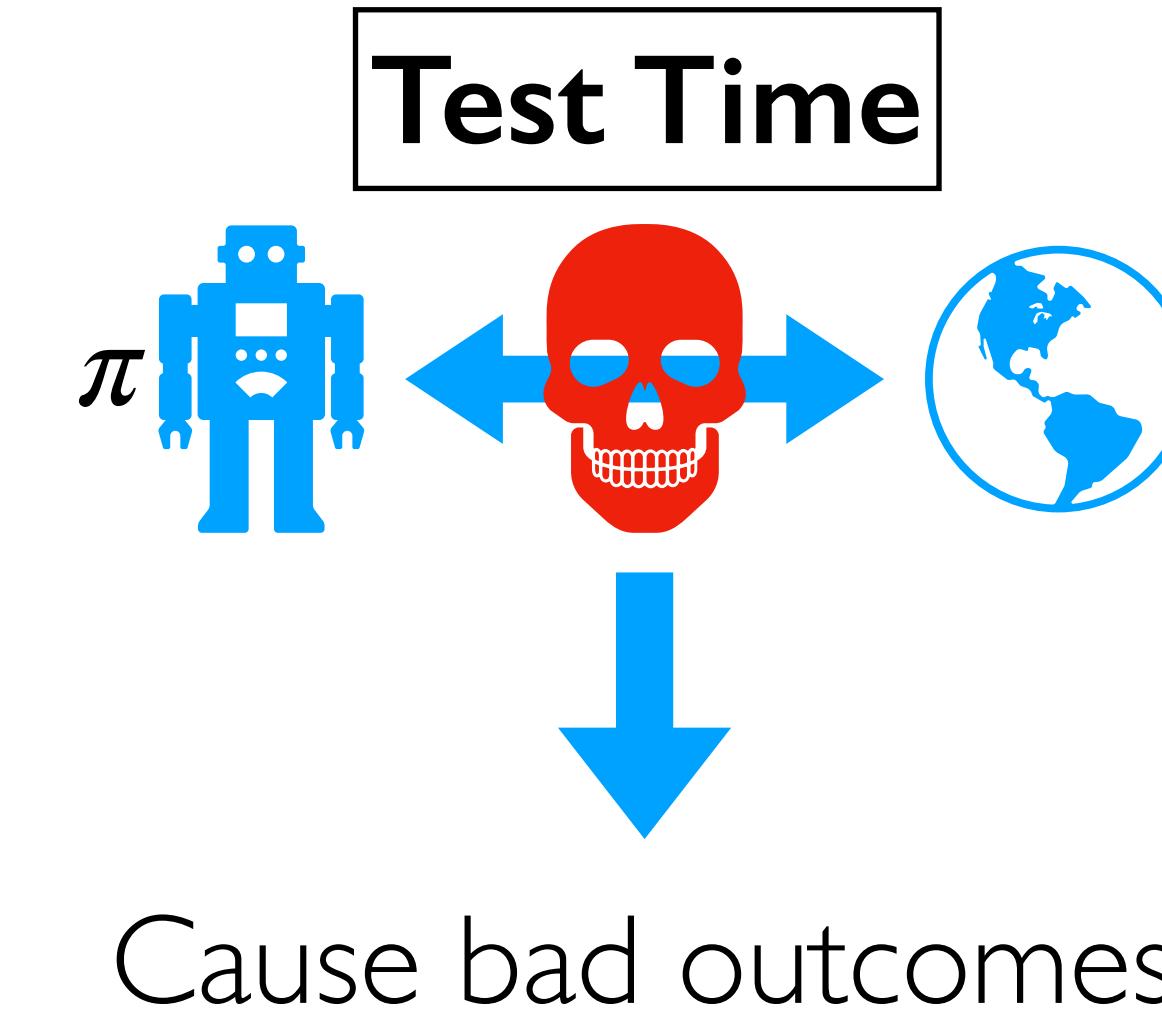


Learn bad π^\dagger

Attack Paradigms

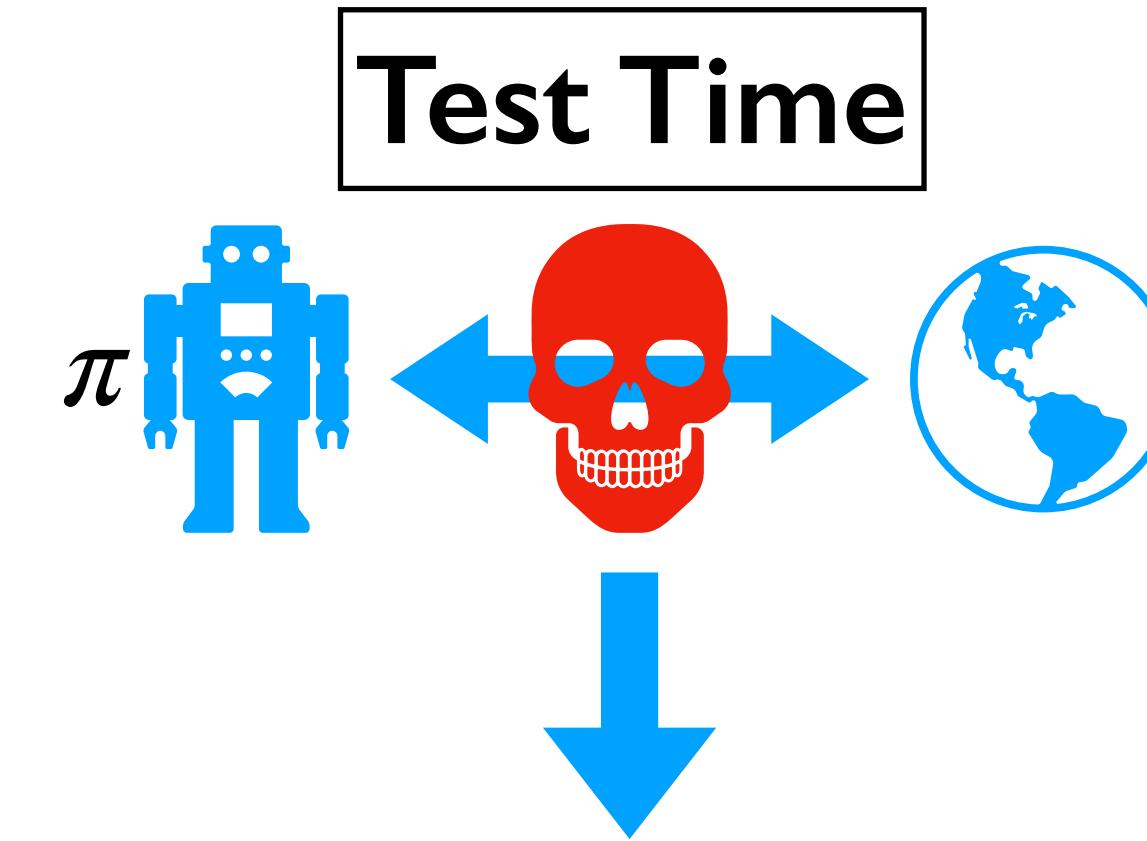
Attack Paradigms

Attack Paradigms



Attack Paradigms

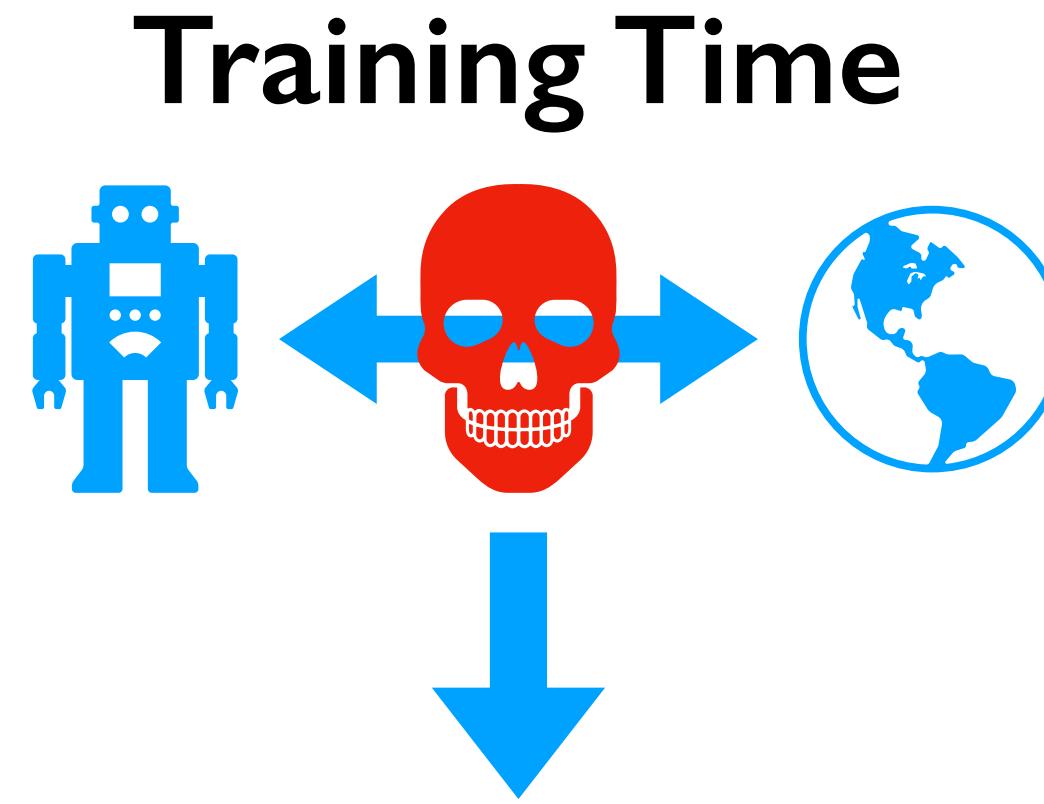
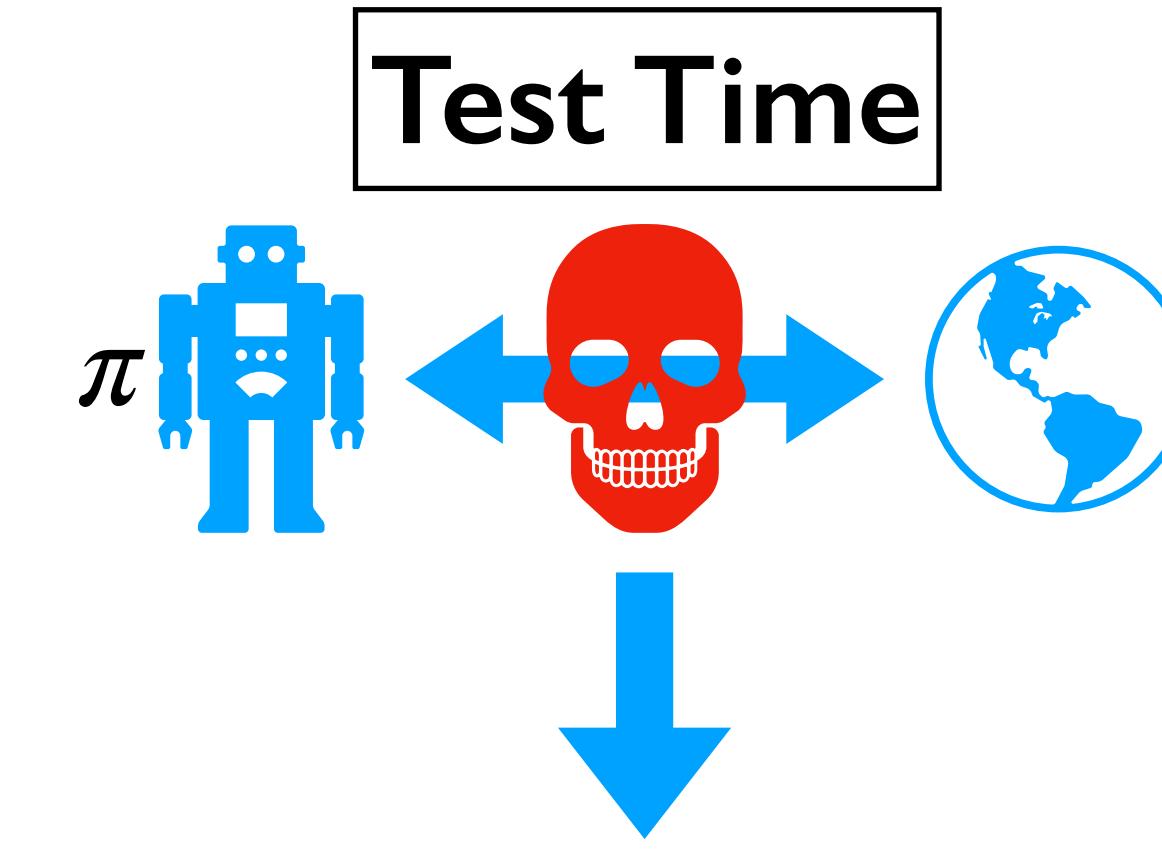
Learn bad $\pi^{'}$



Cause bad outcomes

Trojan

Attack Paradigms



Trojan

Hybrid: poison training to make policy easily test-time attackable

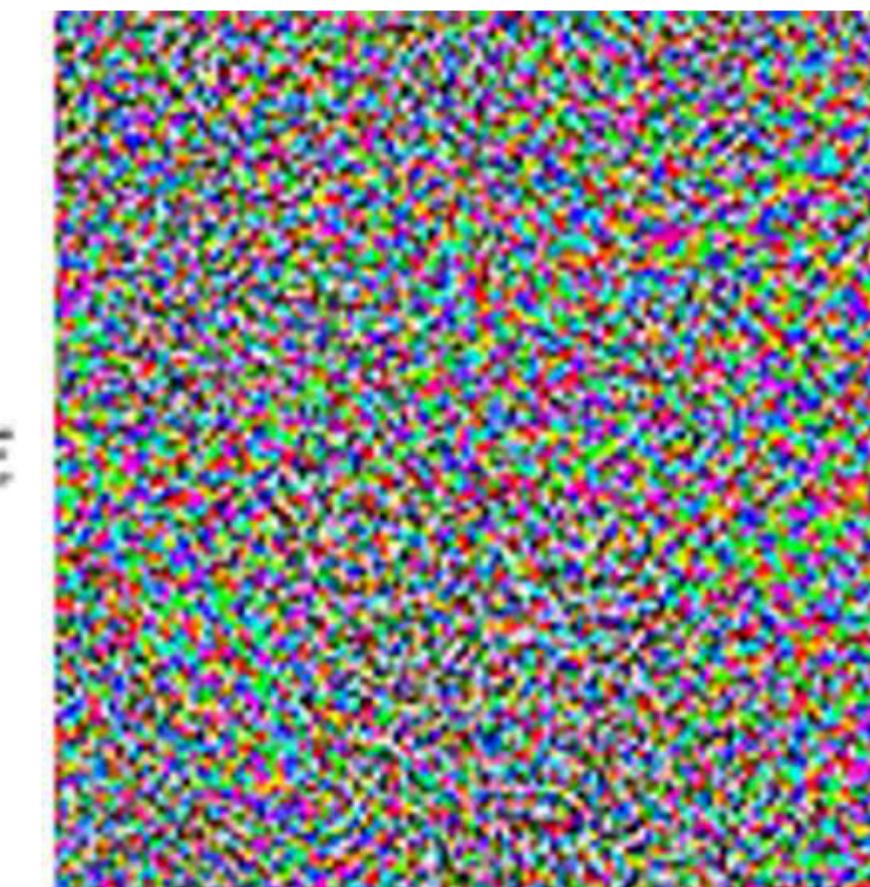
Panda Example

Panda Example

In [Explaining and Harnessing Adversarial Examples](#), Goodfellow and his team added a small perturbation to the image of a panda, as seen below. The result was surprising. Not only did the classifier mark the panda as a gibbon, but did so with high confidence.

As you can see, a barely noticeable disturbance that appears normal to us can easily deceive an ML model into predicting an incorrect class.

$+\epsilon$



=

“panda”

57.7% confidence

“gibbon”

99.3% confidence

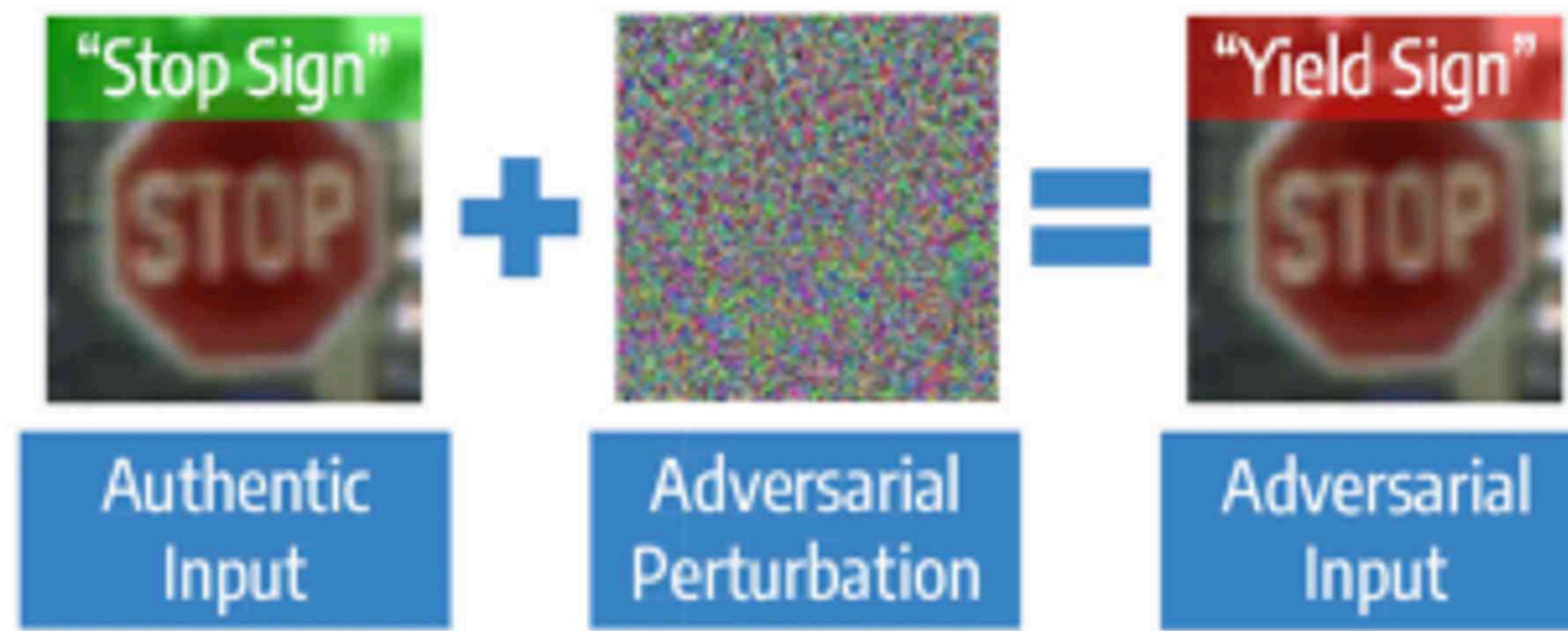
Source: [Goodfellow et al, 2014](#)

Car Crashing

Car Crashing

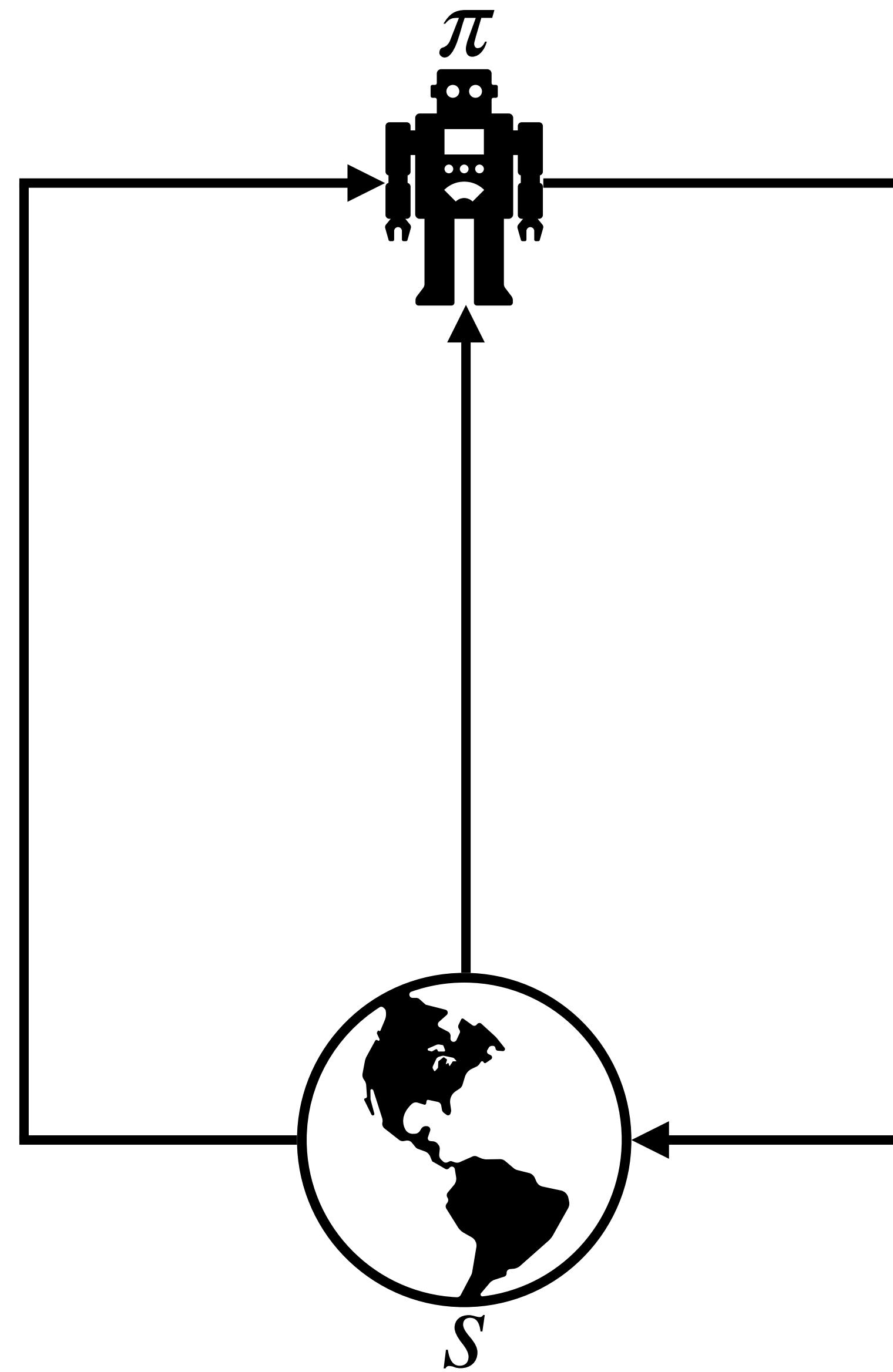
While the panda turned gibbon in the eyes of a machine is a harmless example of an adversarial attack, there are other forms of danger we must watch out for.

For instance, adversarial examples can also be used to [hijack the ML models behind autonomous vehicles](#), causing them to misclassify 'stop' signs as 'yield', as seen below.

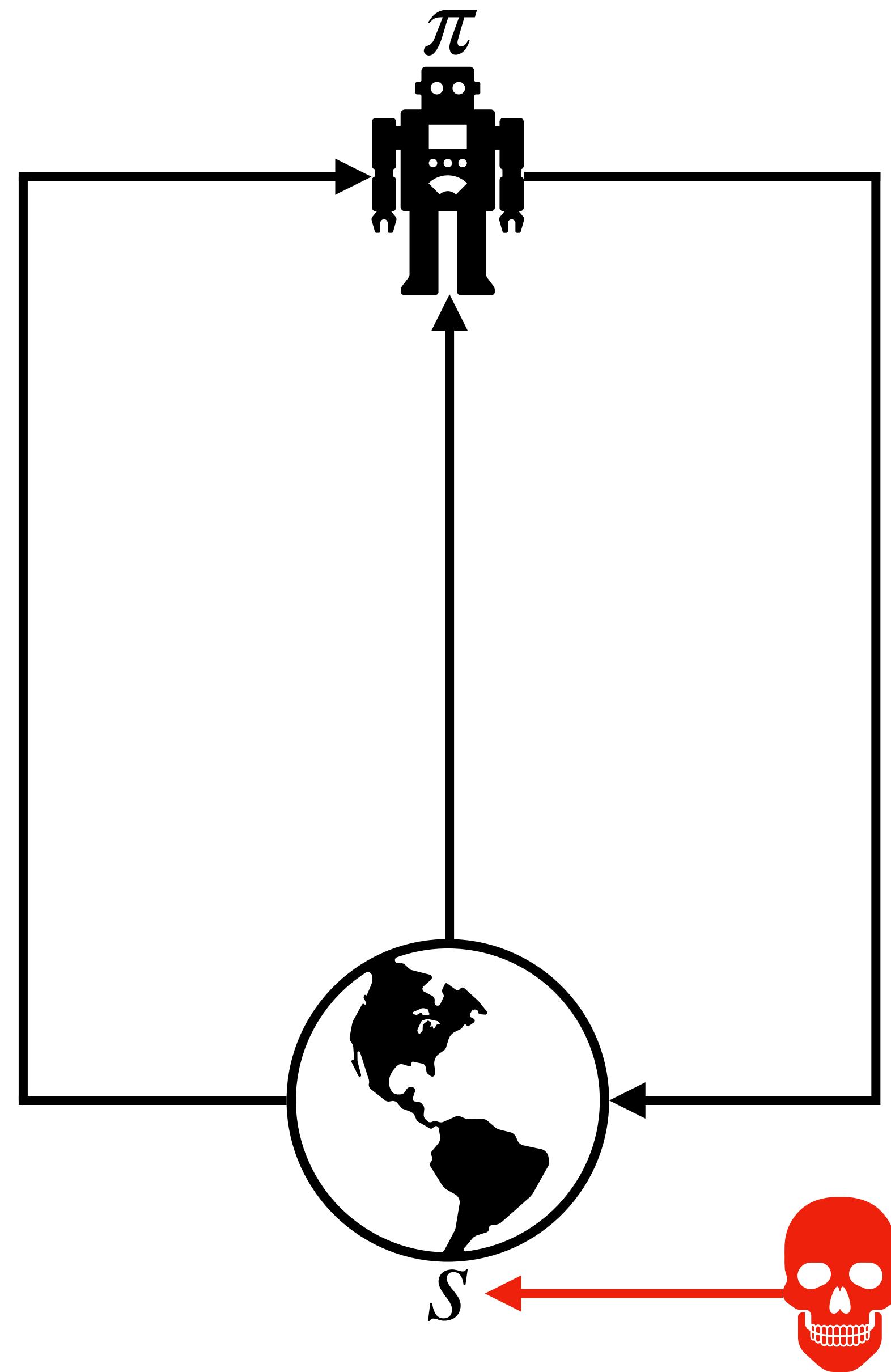


Source: [Kumar et al, 2021](#)

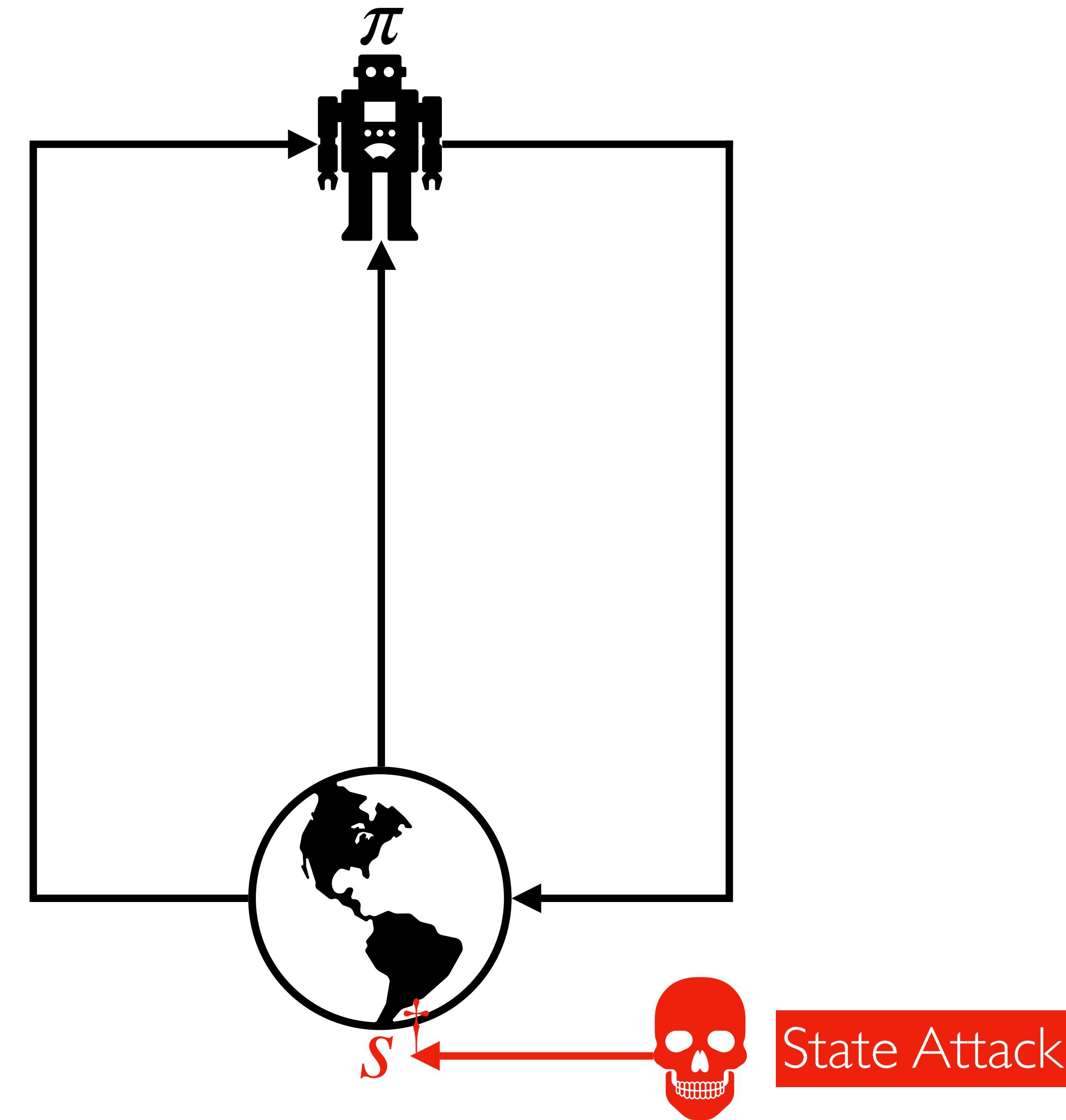
Attack Surfaces



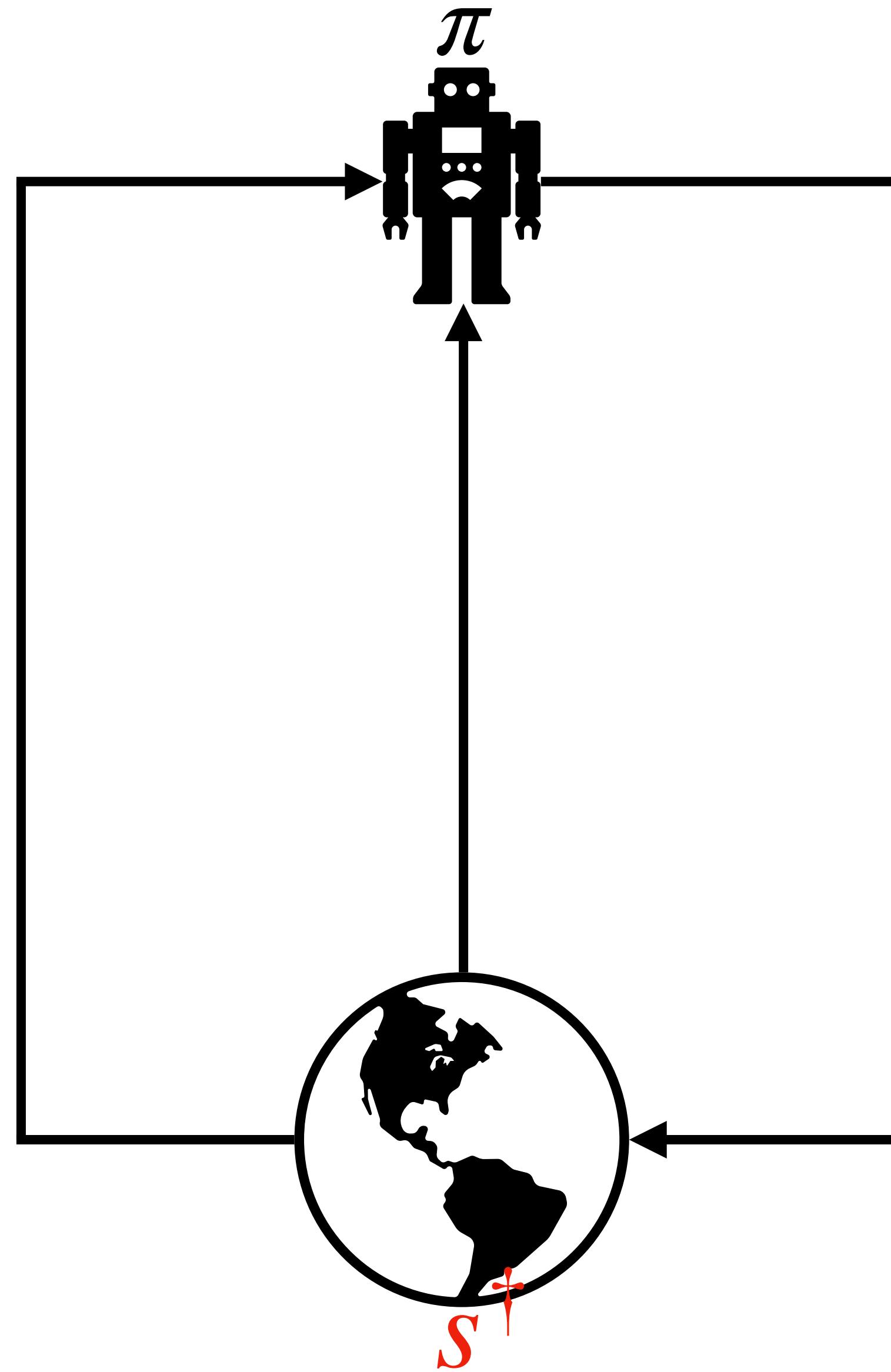
Attack Surfaces



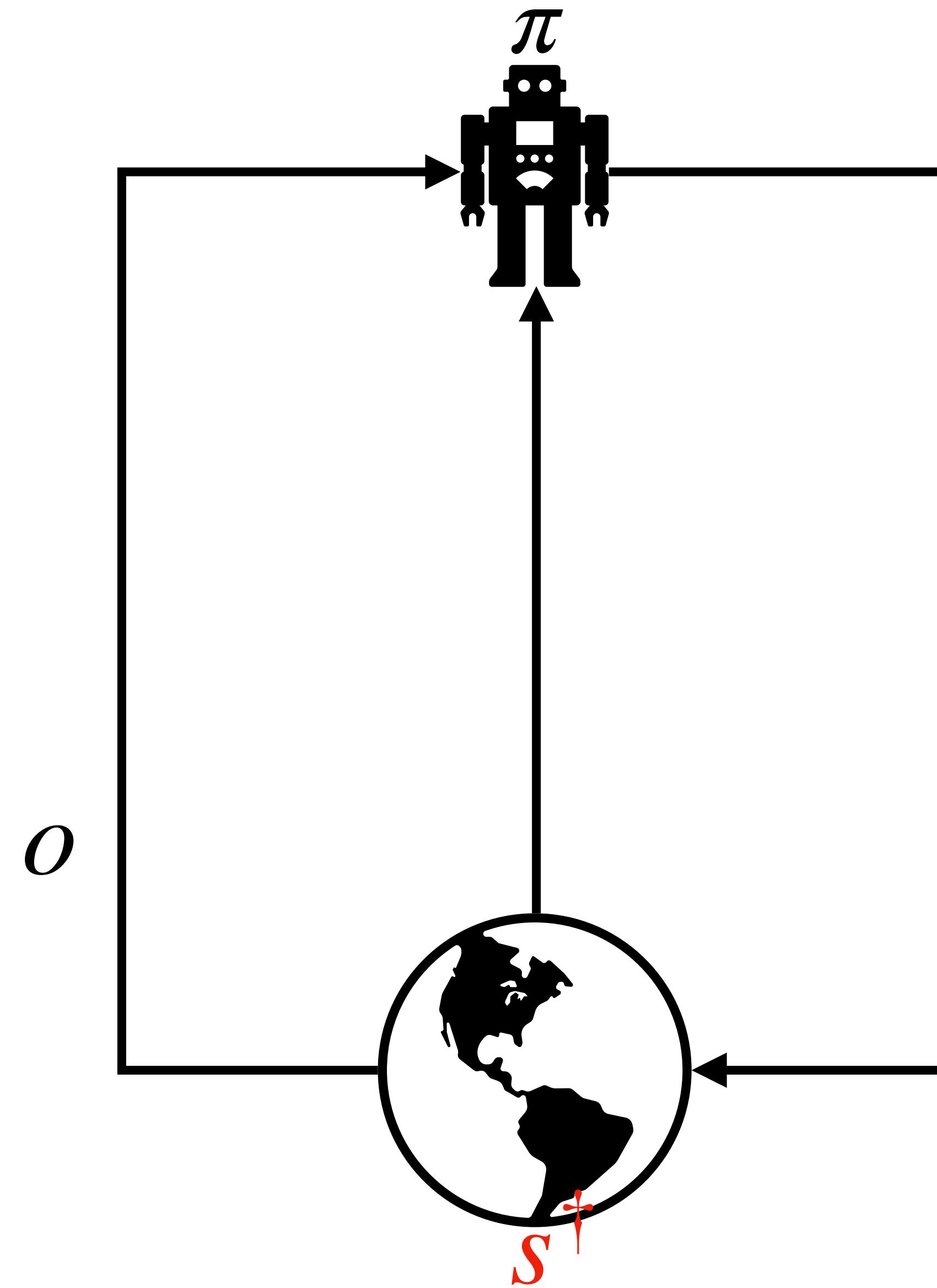
Attack Surfaces



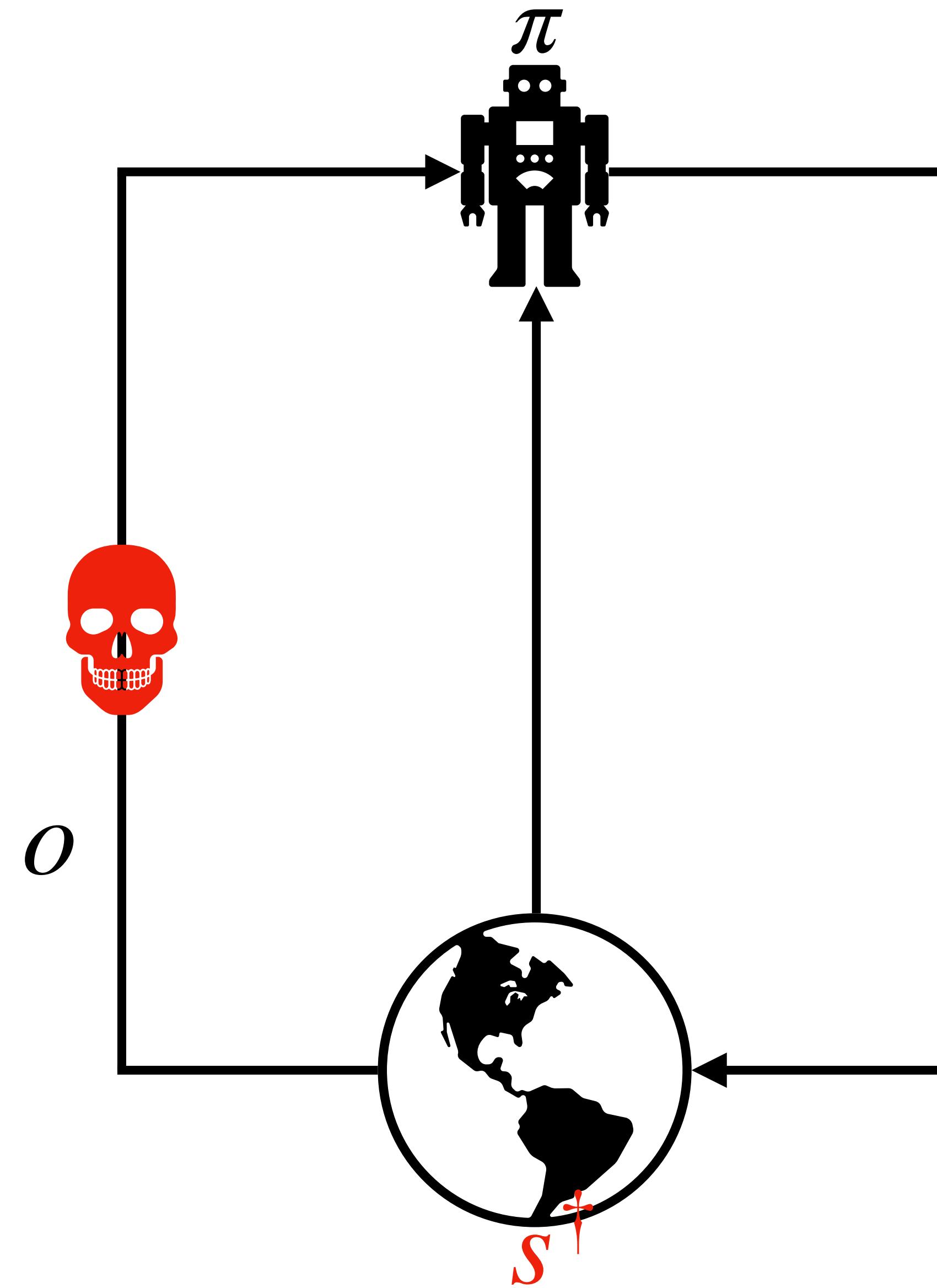
Attack Surfaces



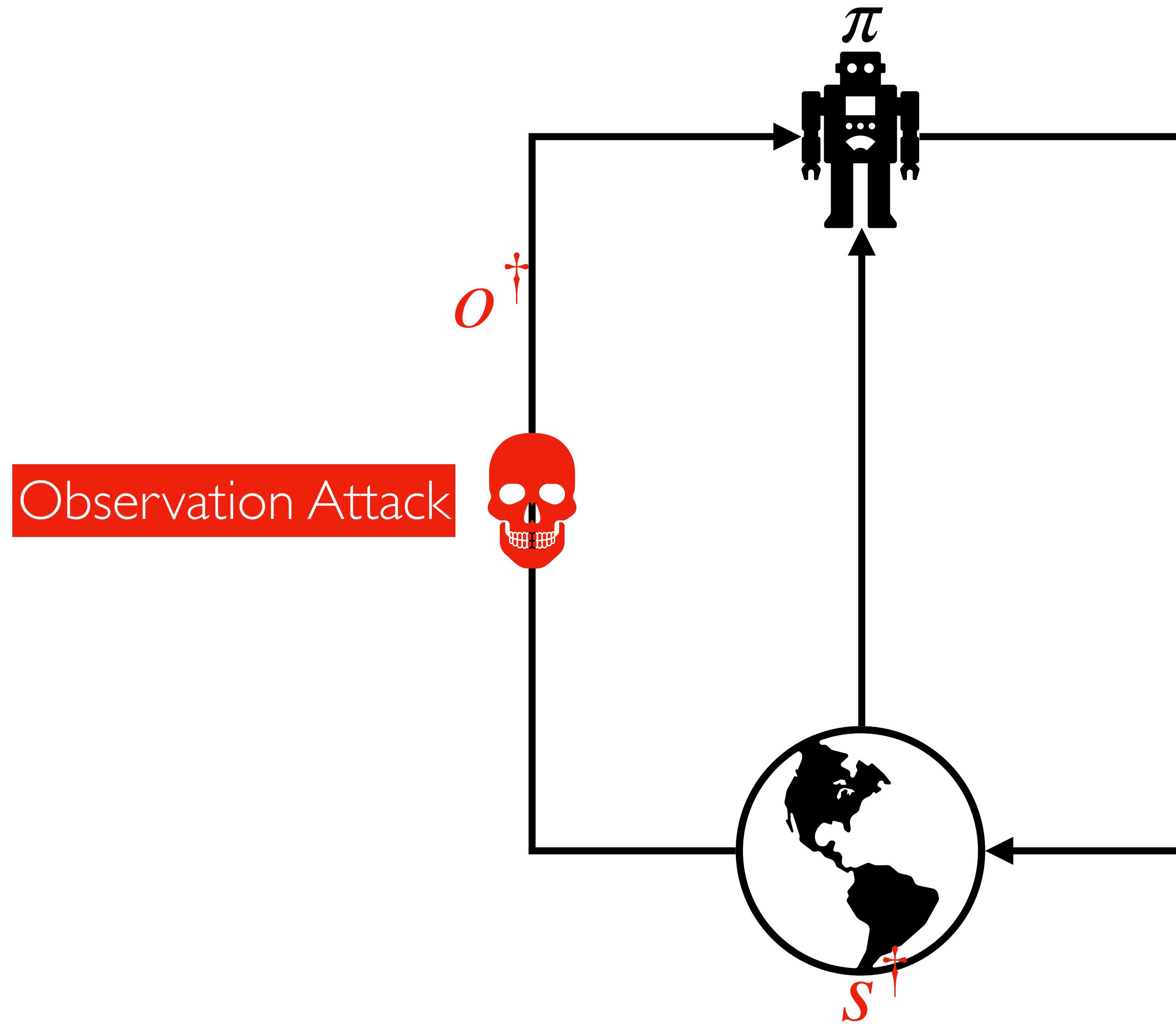
Attack Surfaces



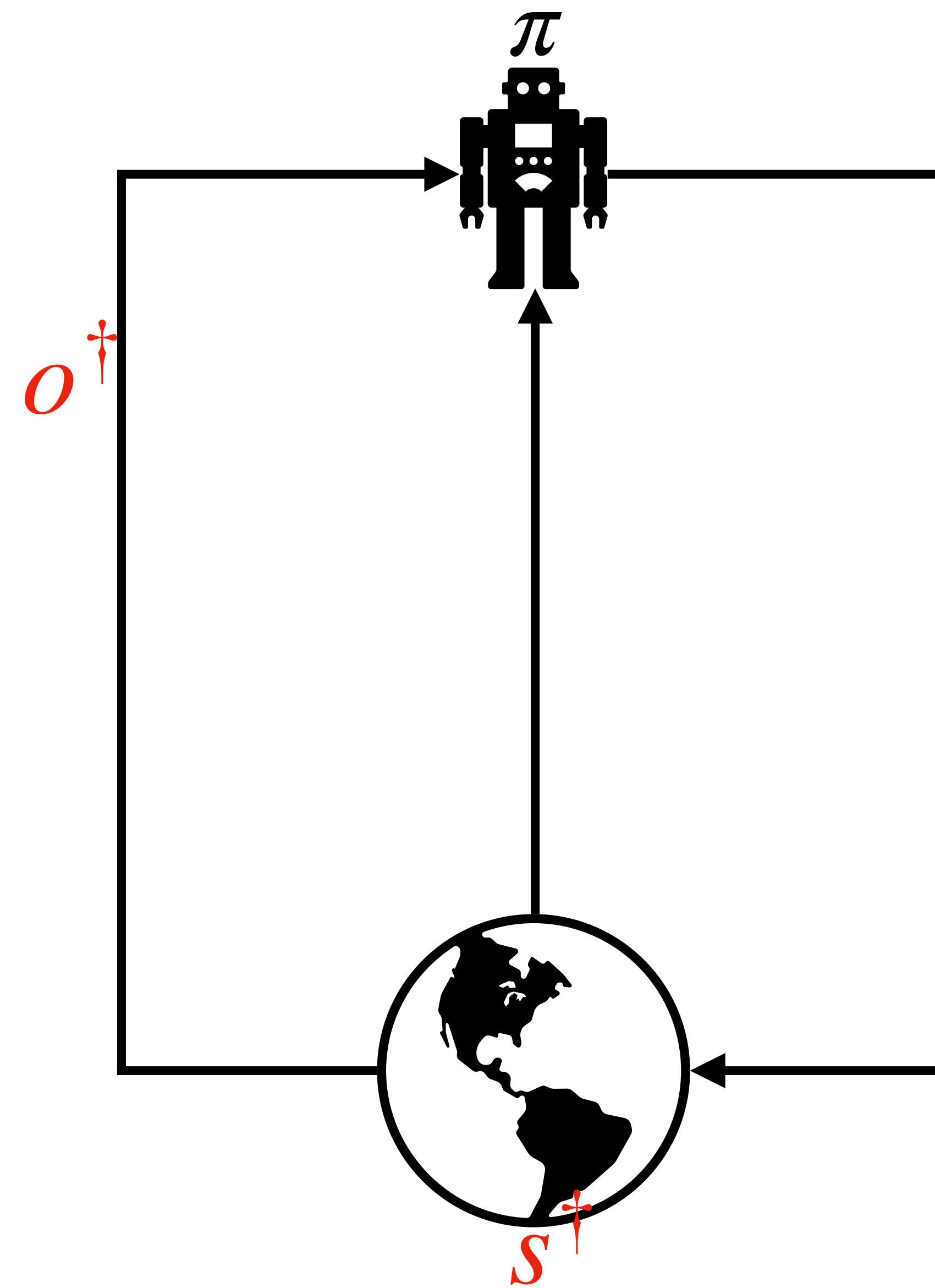
Attack Surfaces



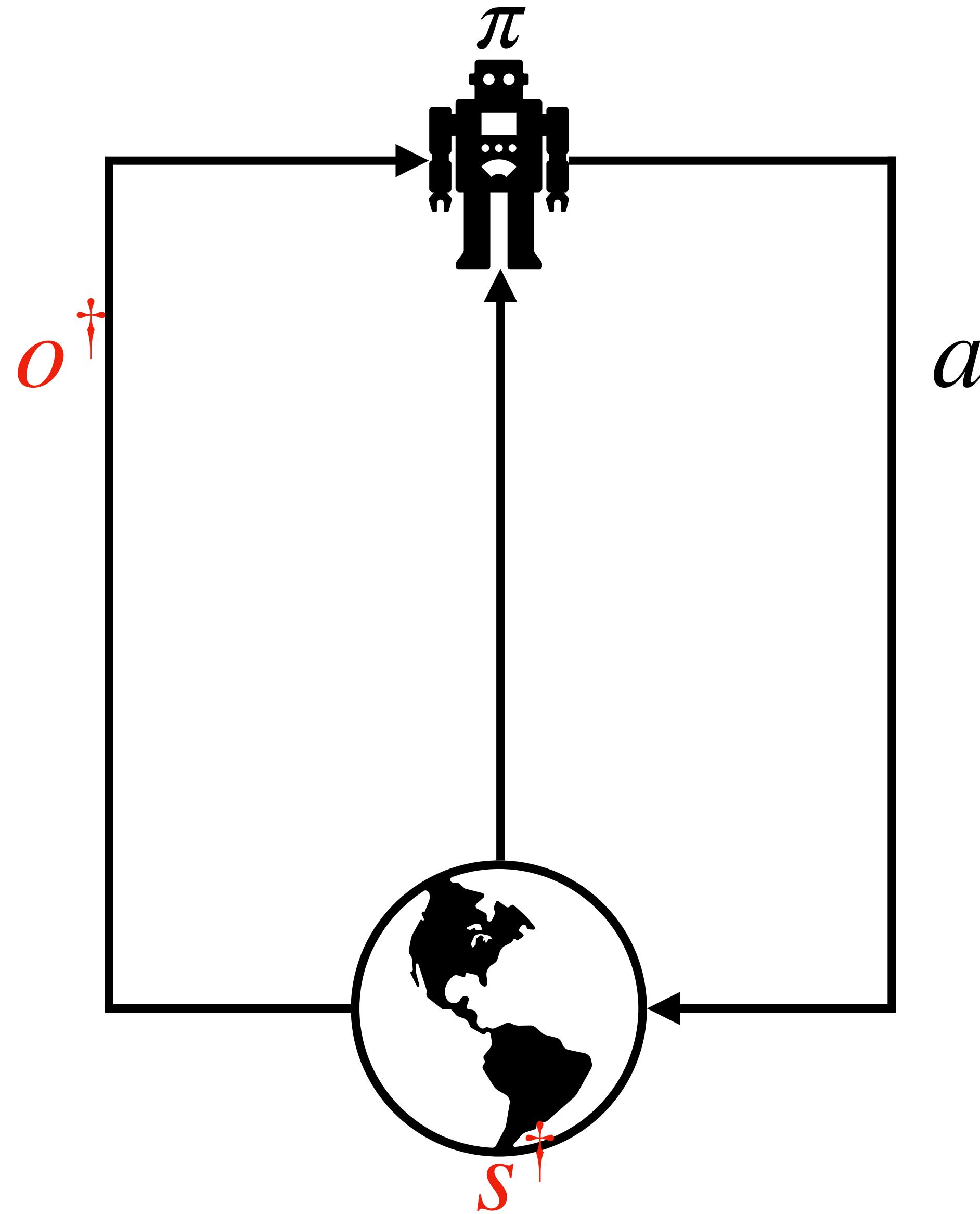
Attack Surfaces



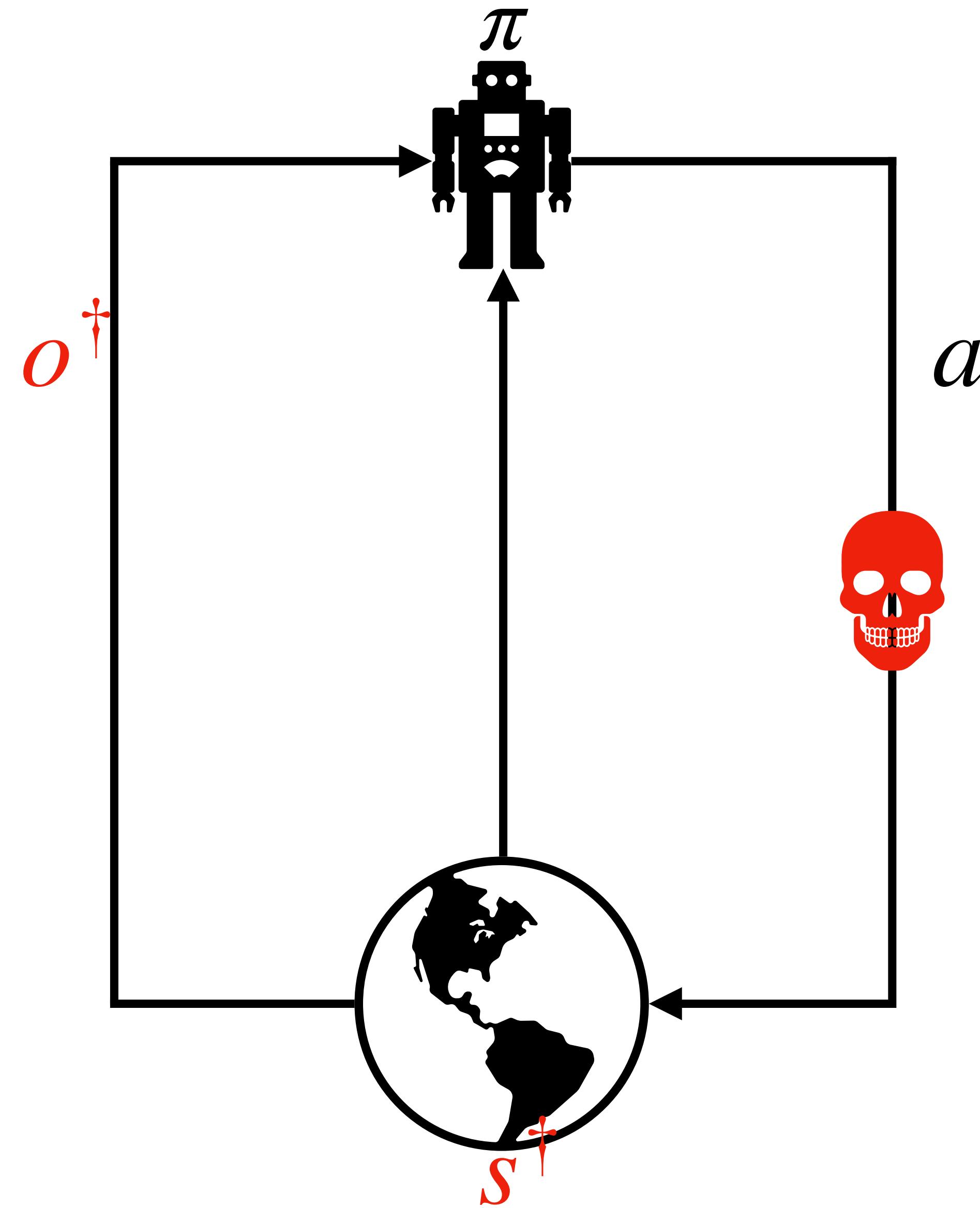
Attack Surfaces



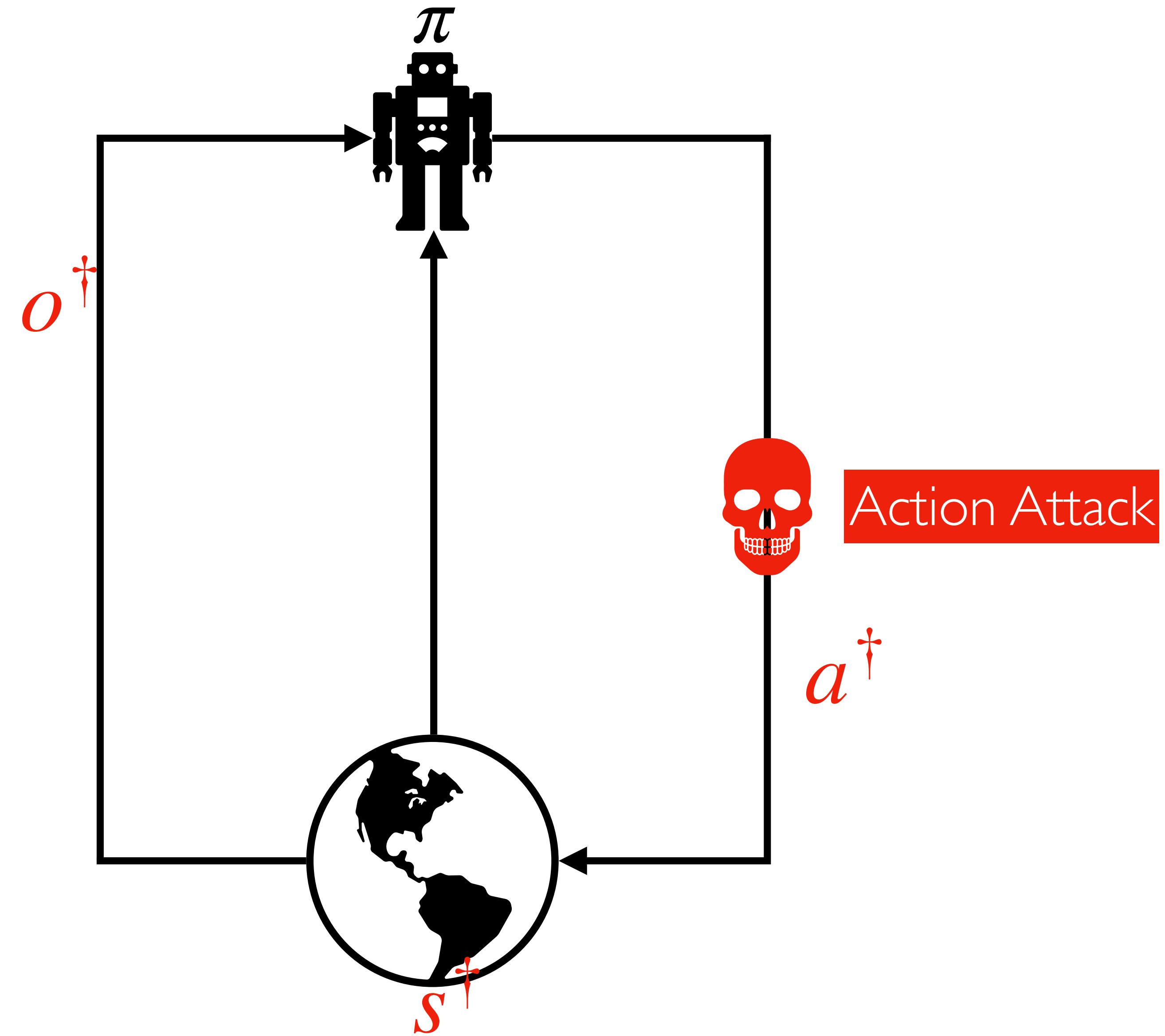
Attack Surfaces



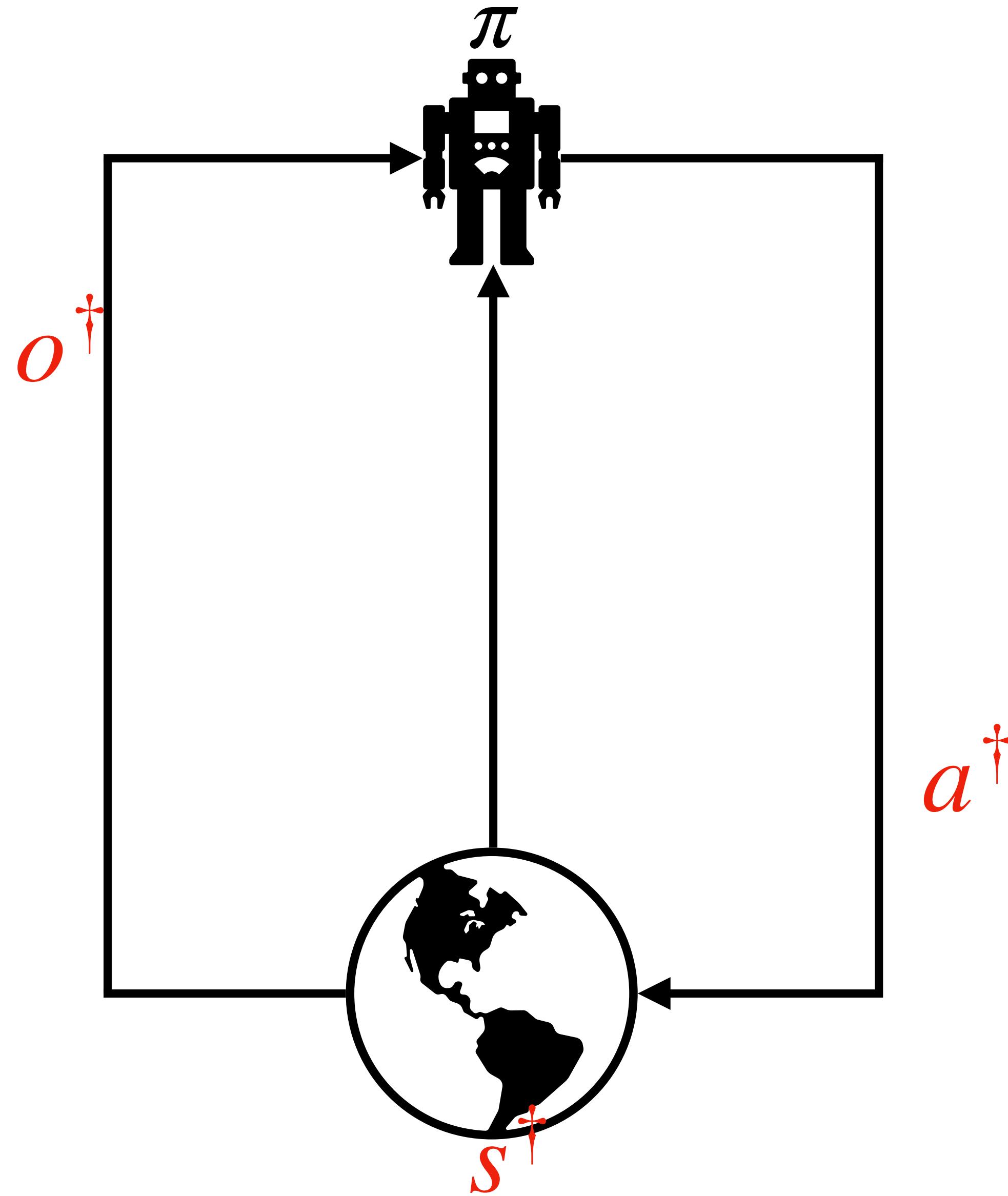
Attack Surfaces



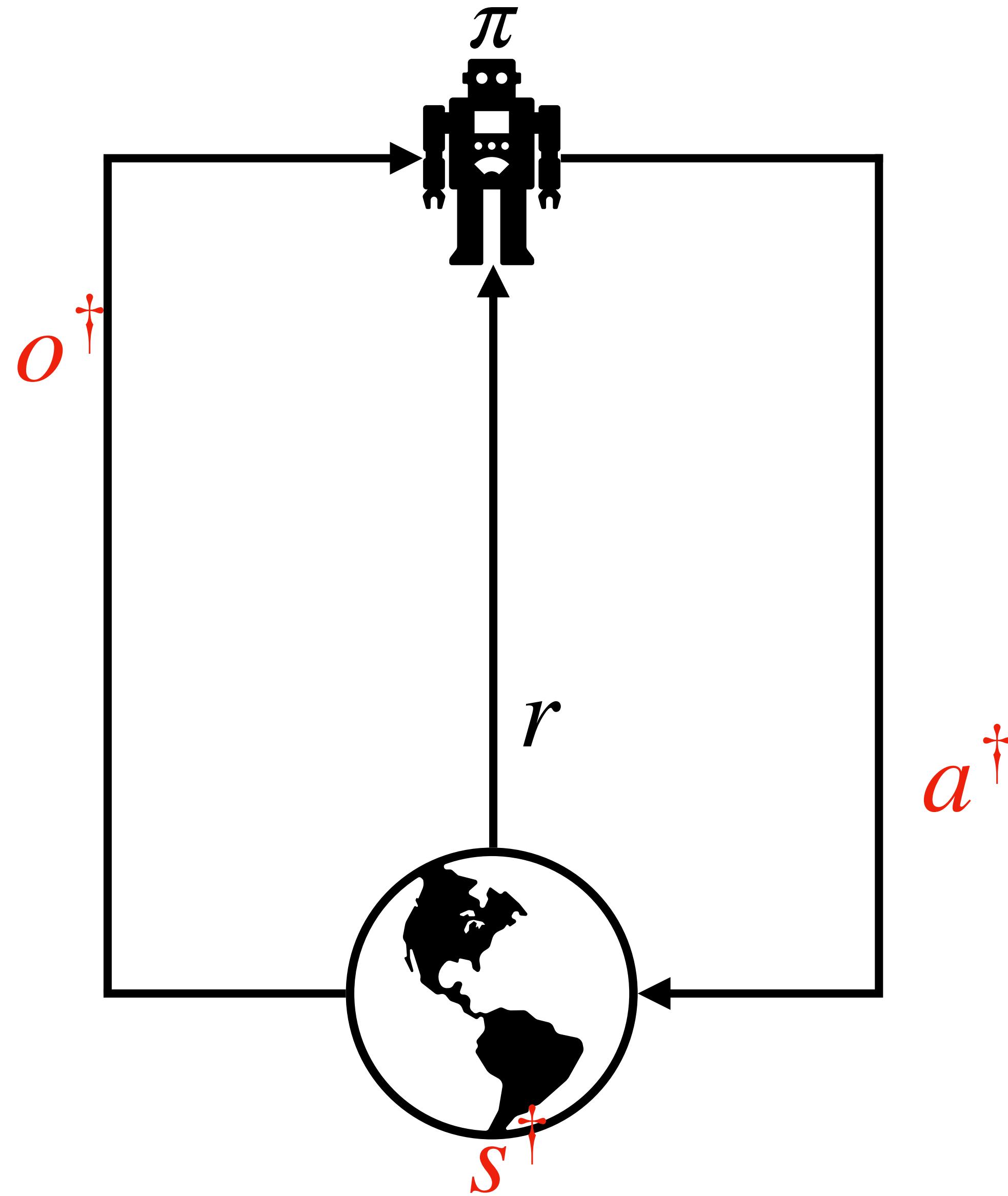
Attack Surfaces



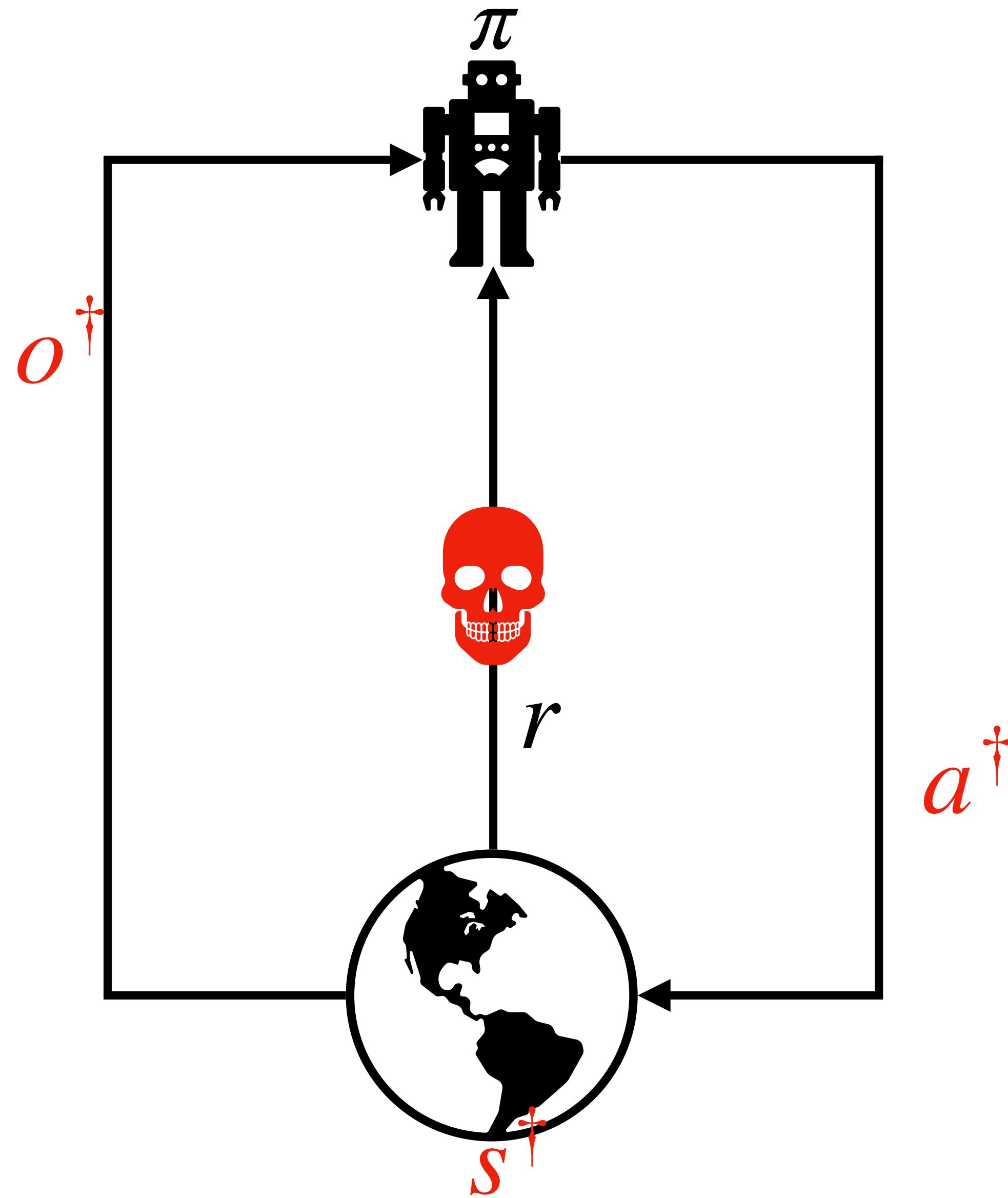
Attack Surfaces



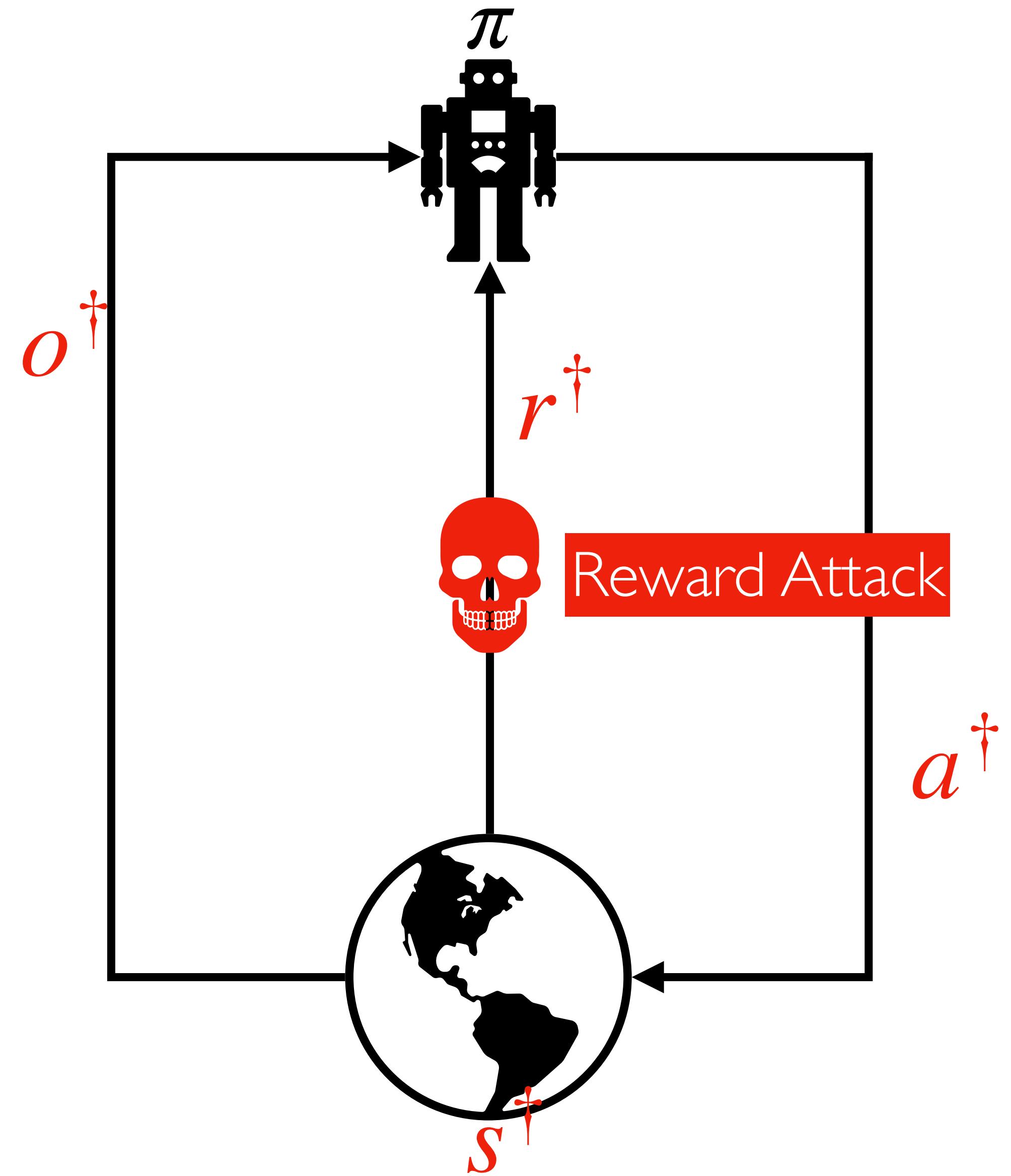
Attack Surfaces



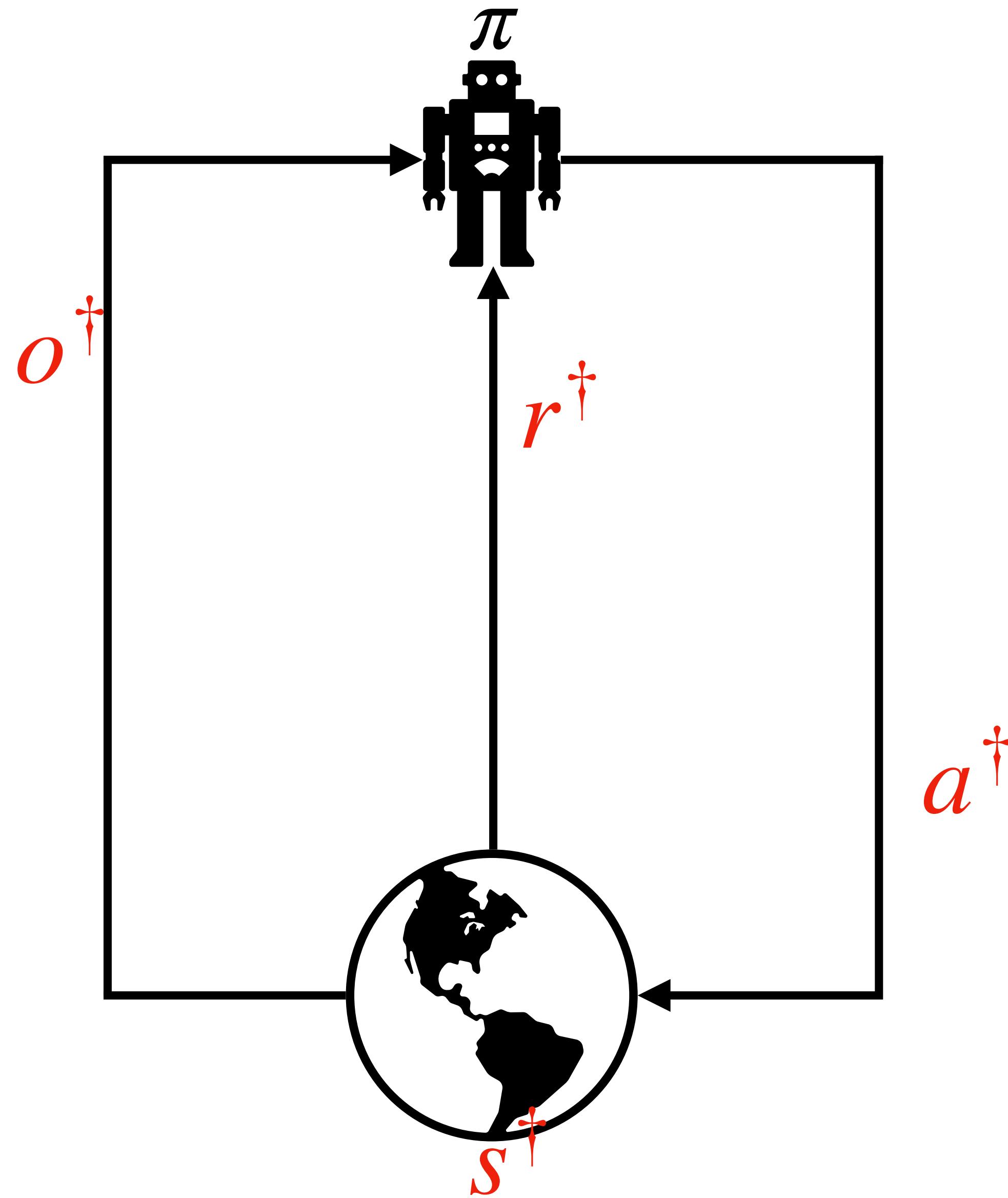
Attack Surfaces



Attack Surfaces



Attack Surfaces



Attack Surfaces

Attack Surfaces

- **State Attack:** changes the state of M from s_t to s_t^\dagger .

Attack Surfaces

- **State Attack:** changes the state of M from s_t to s_t^\dagger .
- **Observation Attack:** changes the agent's observation from o_t to o_t^\dagger .

Attack Surfaces

- **State Attack:** changes the state of M from s_t to s_t^\dagger .
- **Observation Attack:** changes the agent's observation from o_t to o_t^\dagger .
- **Action Attack:** changes the action M receives from a_t to a_t^\dagger .

Attack Surfaces

- **State Attack:** changes the state of M from s_t to s_t^\dagger .
- **Observation Attack:** changes the agent's observation from o_t to o_t^\dagger .
- **Action Attack:** changes the action M receives from a_t to a_t^\dagger .
- **Reward Attack:** changes the agent's reward from r_t to r_t^\dagger .

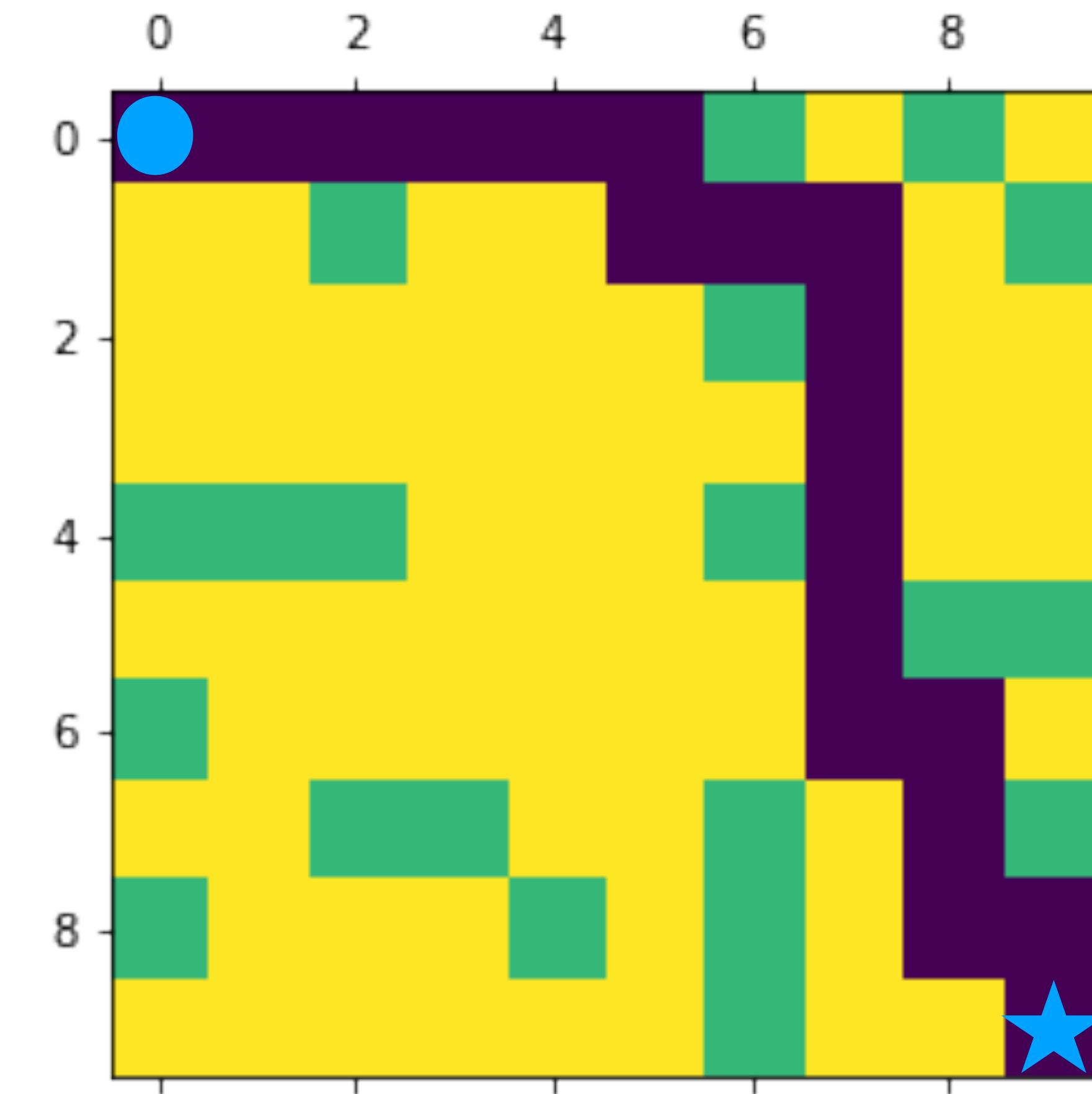
Attack Surfaces

- **State Attack:** changes the state of M from s_t to s_t^\dagger .
- **Observation Attack:** changes the agent's observation from o_t to o_t^\dagger .
- **Action Attack:** changes the action M receives from a_t to a_t^\dagger .
- **Reward Attack:** changes the agent's reward from r_t to r_t^\dagger .

The attacker can manipulate any element of the interaction tuple (s, a, r) .

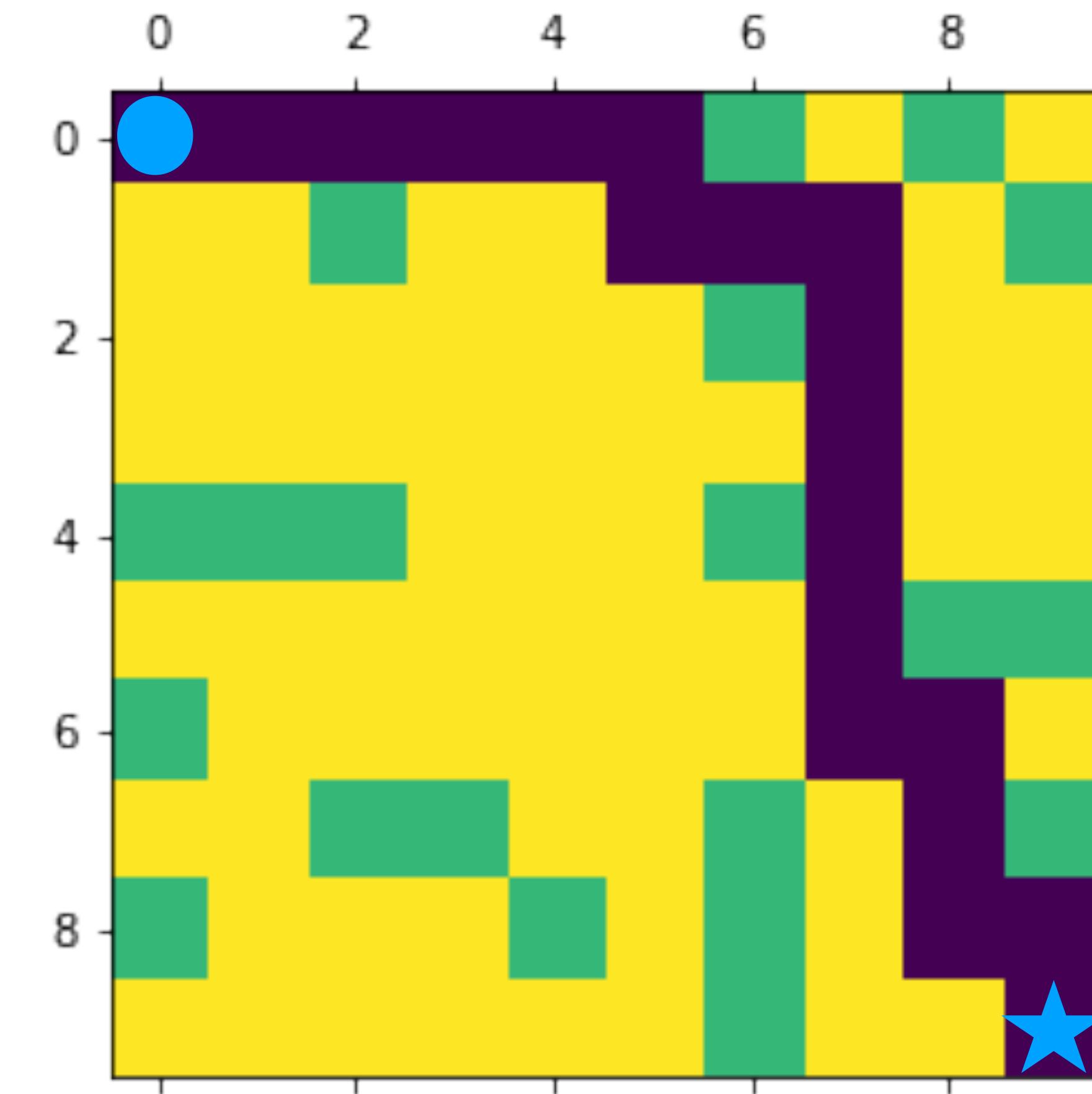
Maze Environment

Maze Environment



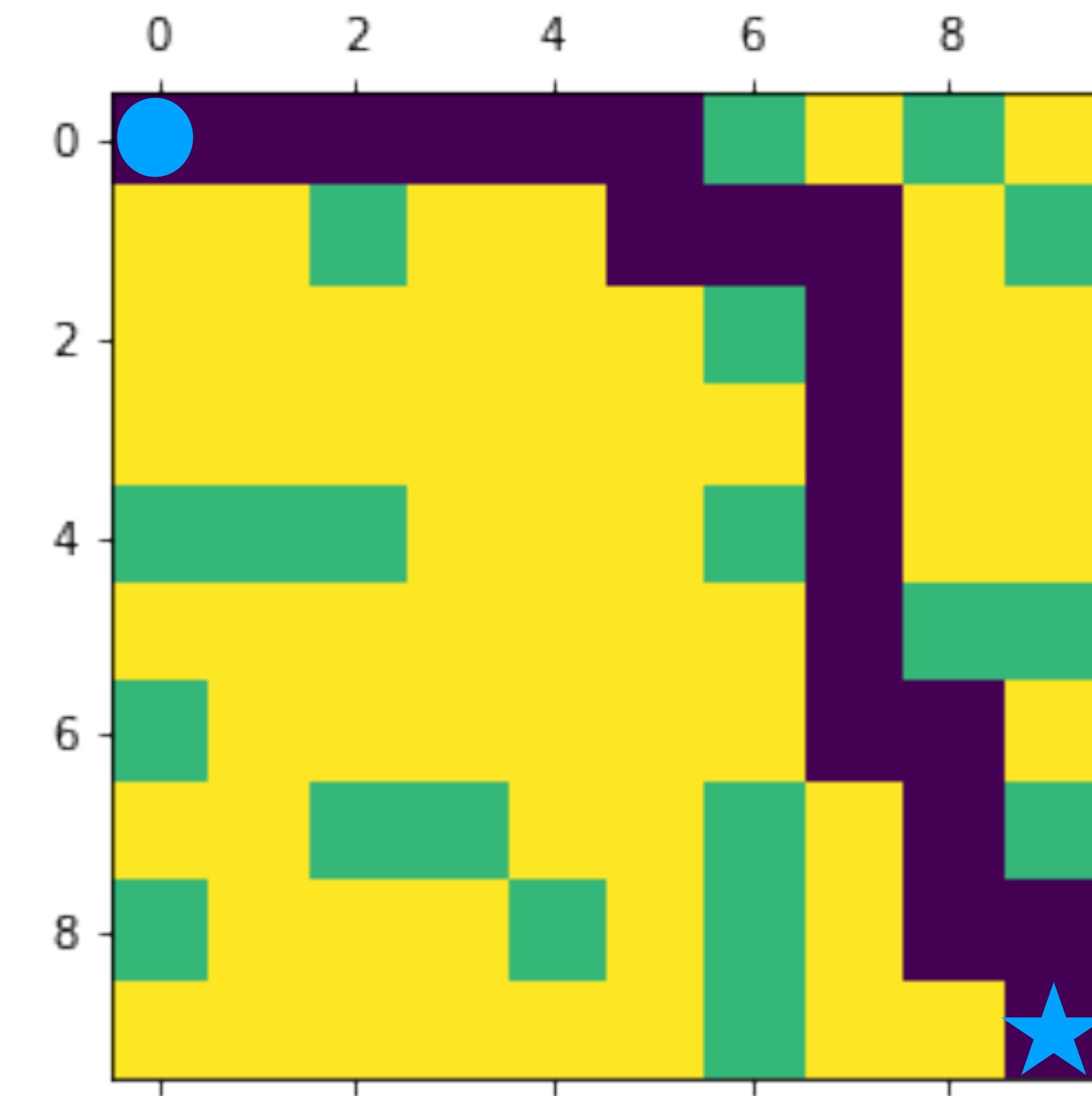
Maze Environment

- Green Squares are obstacles.



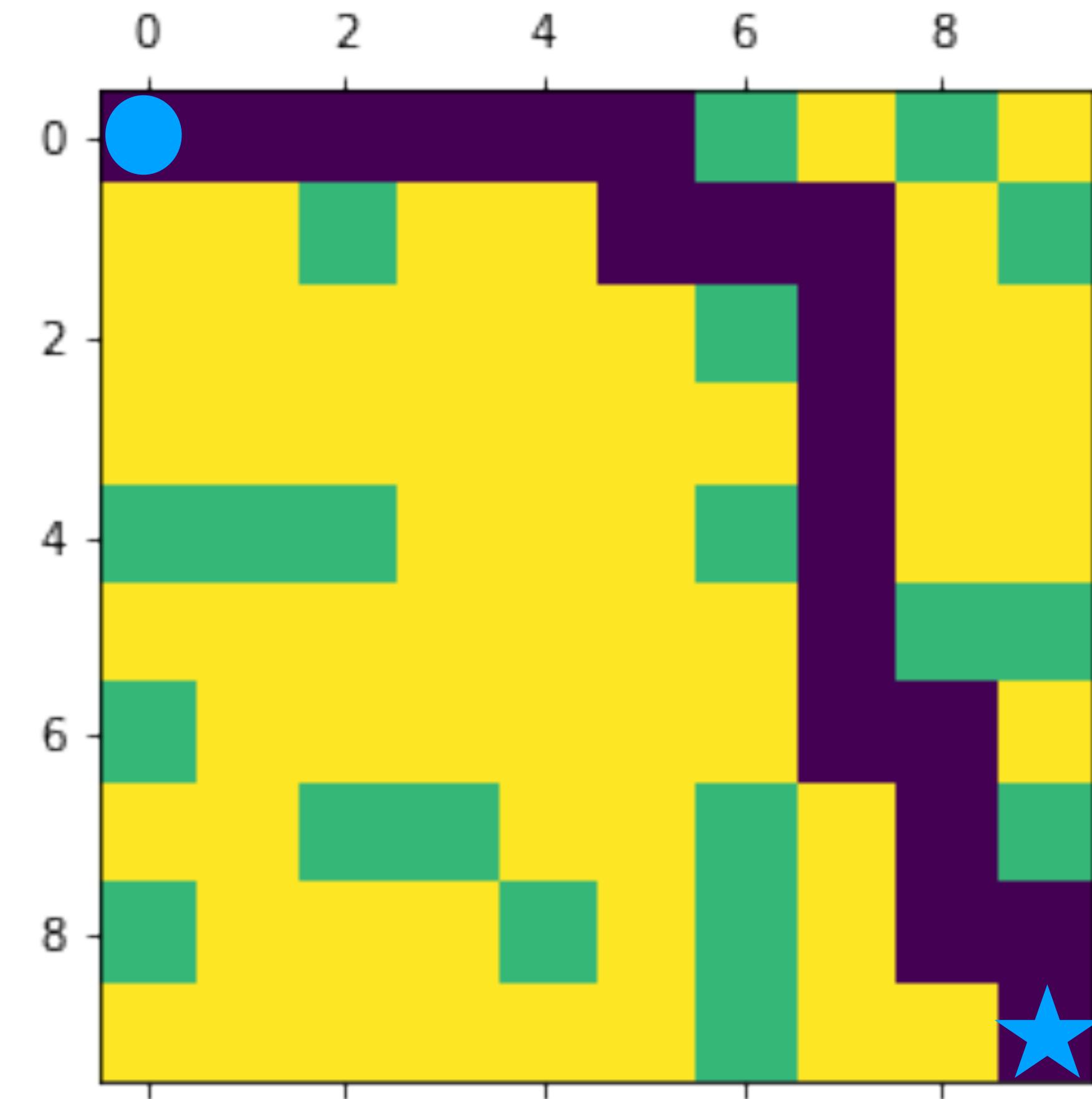
Maze Environment

- **Green** Squares are obstacles.
- **Yellow** Squares are traversable.



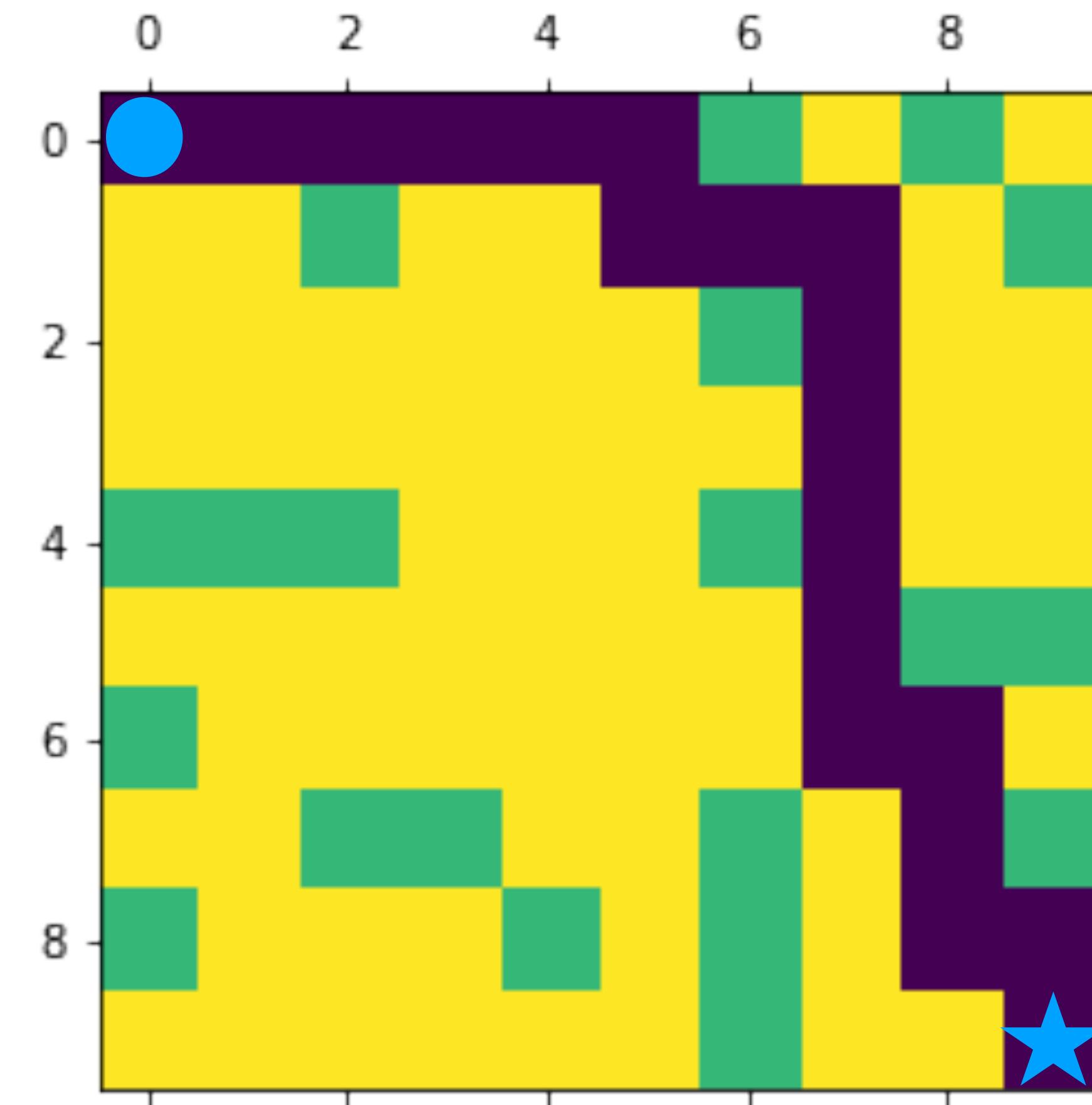
Maze Environment

- **Green** Squares are obstacles.
- **Yellow** Squares are traversable.
- The agent starts at top **left corner**.



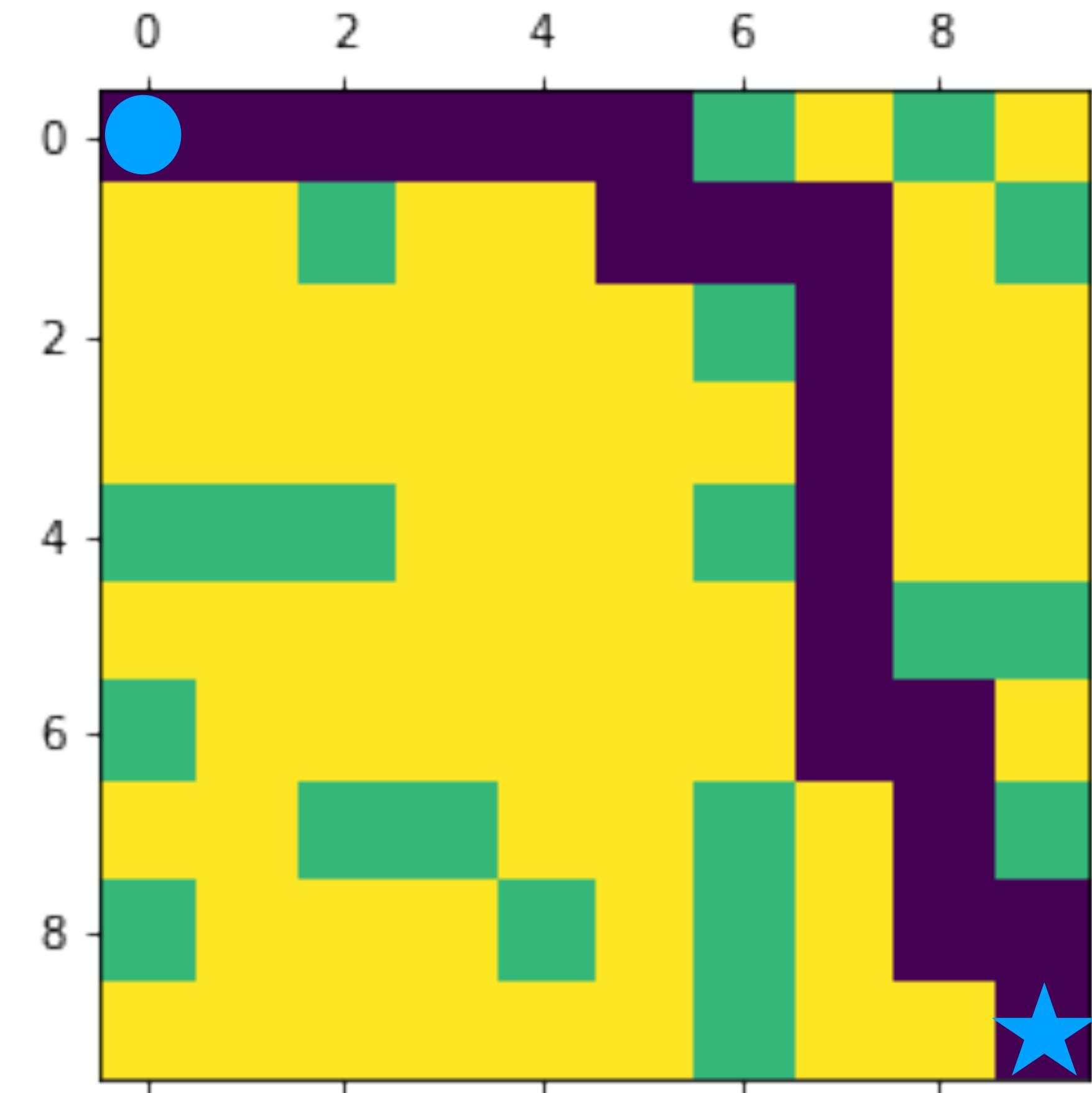
Maze Environment

- Green Squares are obstacles.
- Yellow Squares are traversable.
- The agent starts at top **left corner**.
- The agent receives reward only at the **bottom right corner**.



Maze Environment

- **Green** Squares are obstacles.
- **Yellow** Squares are traversable.
- The agent starts at top **left corner**.
- The agent receives reward only at the **bottom right** corner.
- An optimal (shortest path) policy for the agent is in **purple**.



Perceived-State Attack

Perceived-State Attack

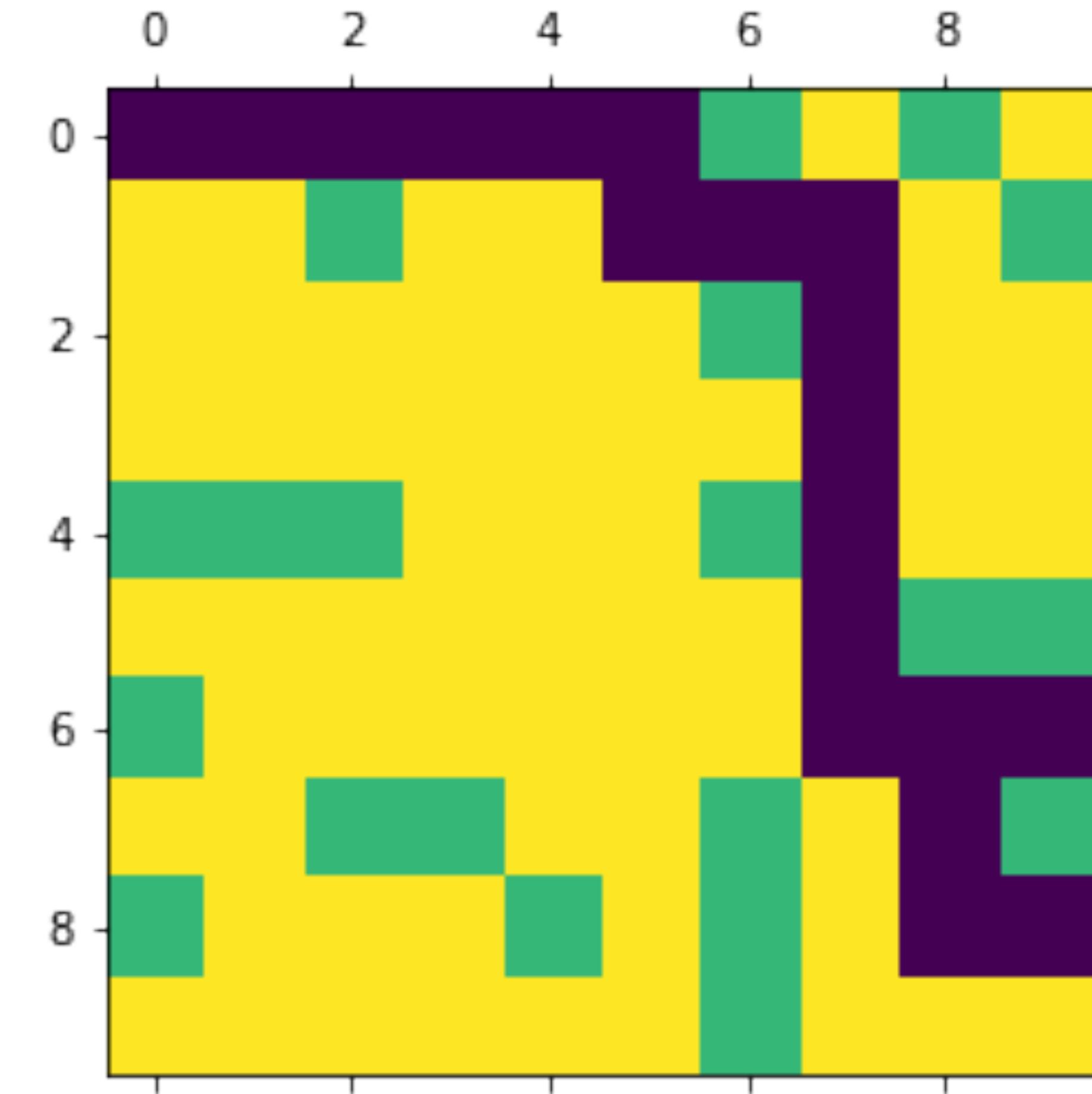
- Attacker shows agent s^\dagger .

Perceived-State Attack

- Attacker shows agent s^\dagger .
- Agent chooses action $\pi(s^\dagger)$ instead of $\pi(s)$

Perceived-State Attack

- Attacker shows agent s^\dagger .
- Agent chooses action $\pi(s^\dagger)$ instead of $\pi(s)$



Perceived-State Attack

Perceived-State Attack

Perceived-State Attack

Check out Shubham's full paper in
Neurips22!

**Provable Defense against Backdoor
Policies in Reinforcement Learning**

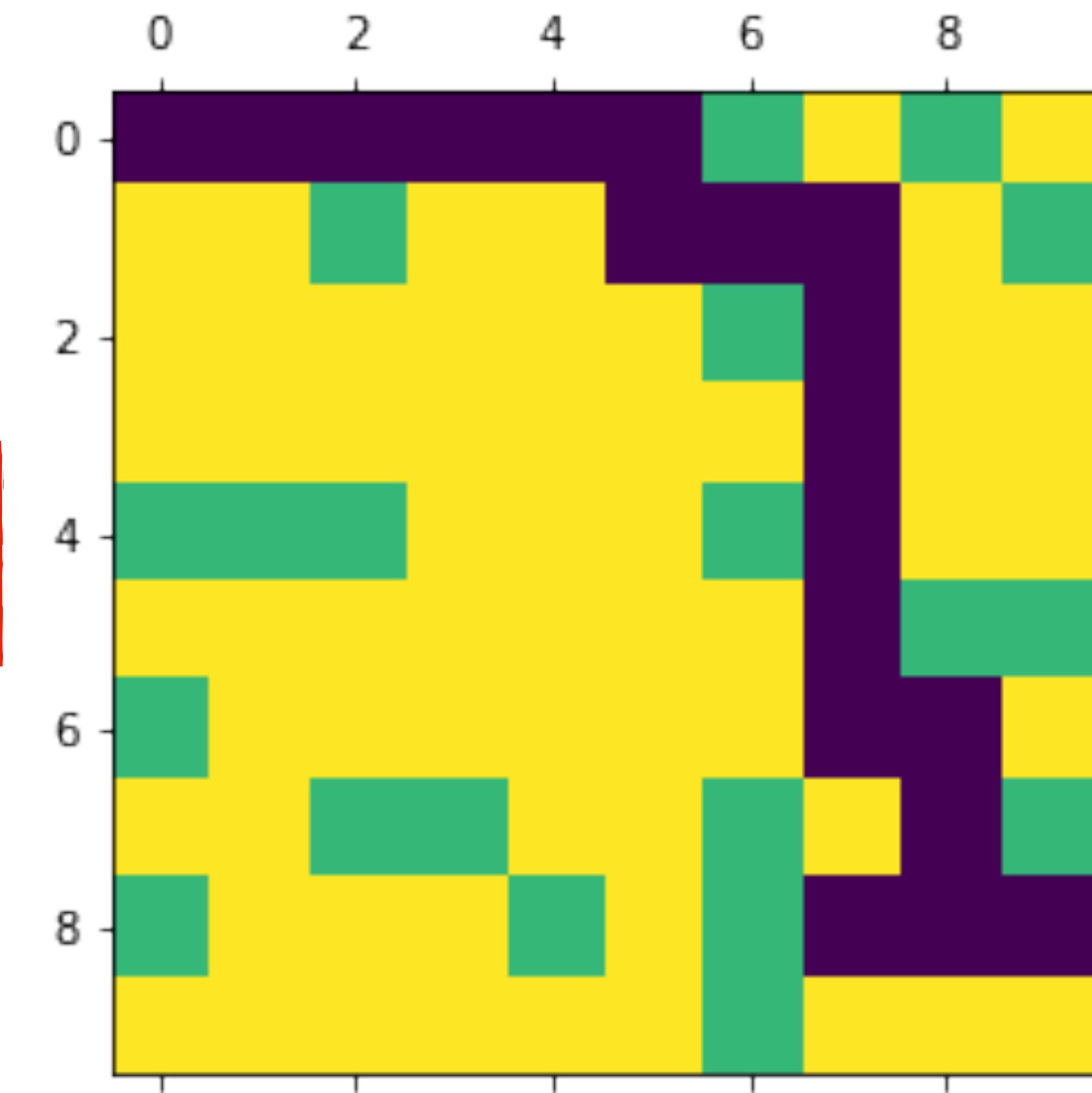
Action Attack

Action Attack

Attacker intercepts $a = \pi(s)$ and sends a^\dagger to the environment instead.

Action Attack

Attacker intercepts $a = \pi(s)$ and sends a^\dagger to the environment instead.



True-State Attack

True-State Attack

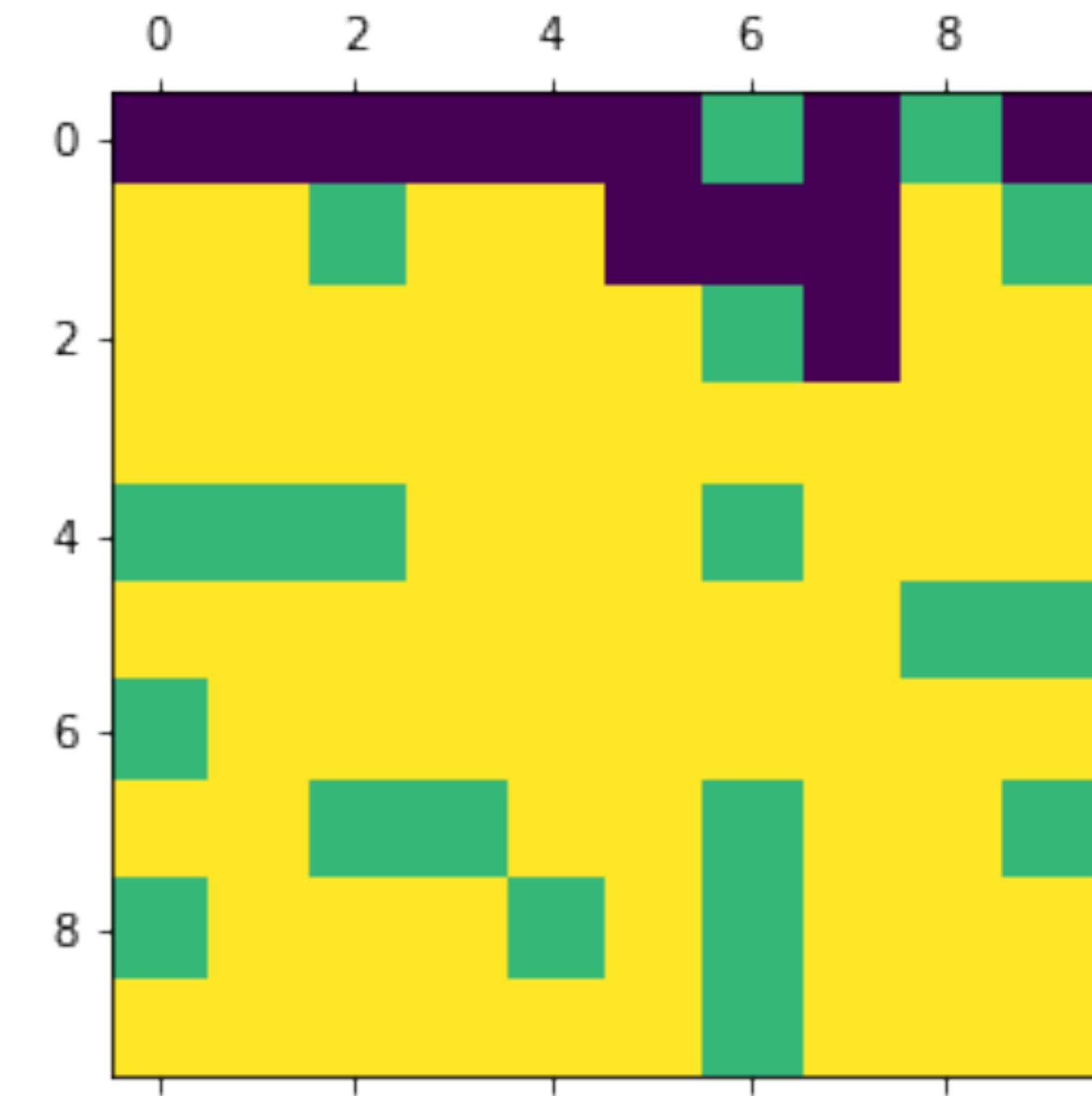
Attacker changes the environment's state to

$$s^\dagger$$

True-State Attack

Attacker changes the environment's state to

S



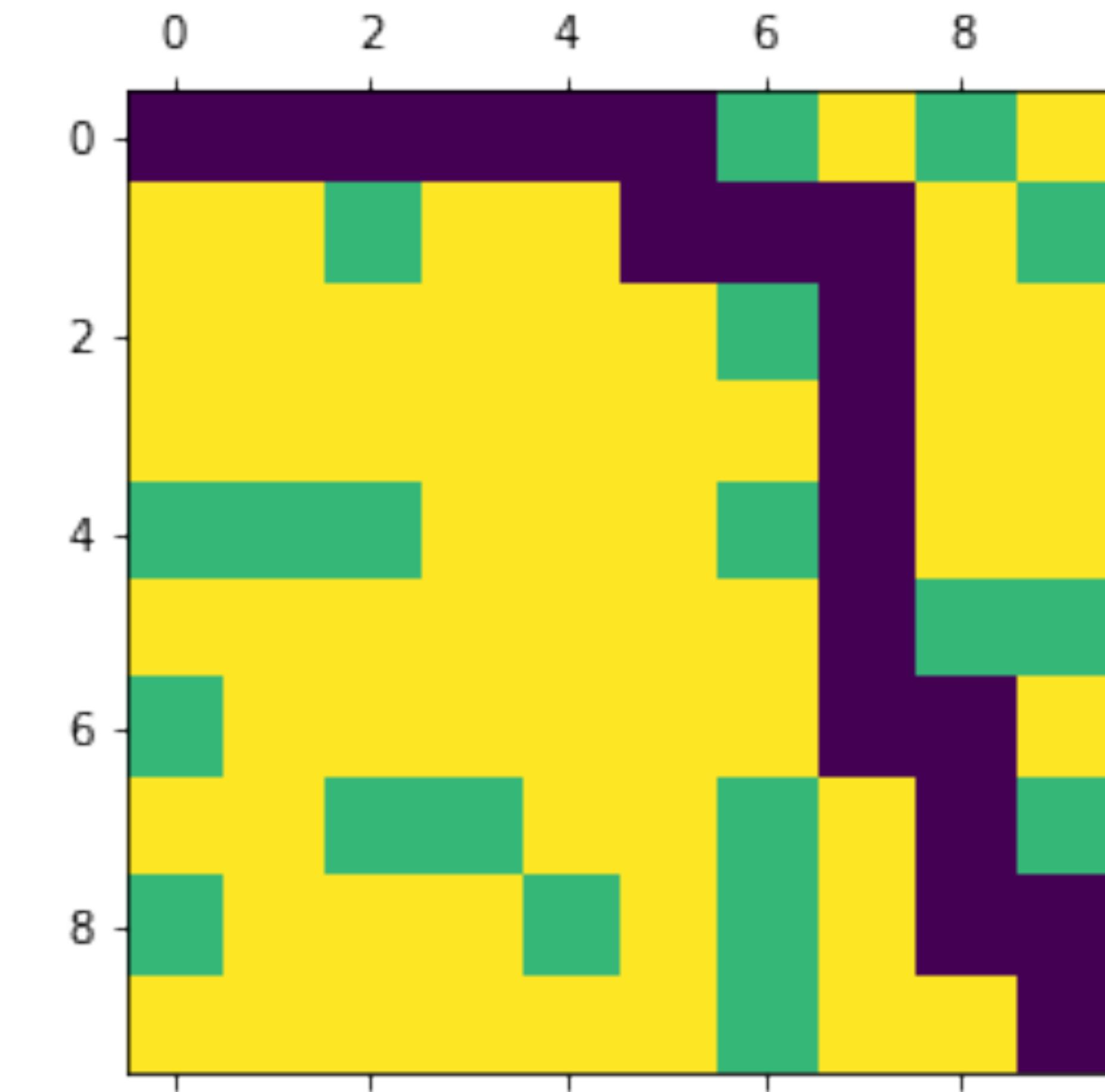
Reward Attack

Reward Attack

Attacker changes the reward the agent receives to r^\dagger

Reward Attack

Attacker changes the reward the agent receives to r^\dagger



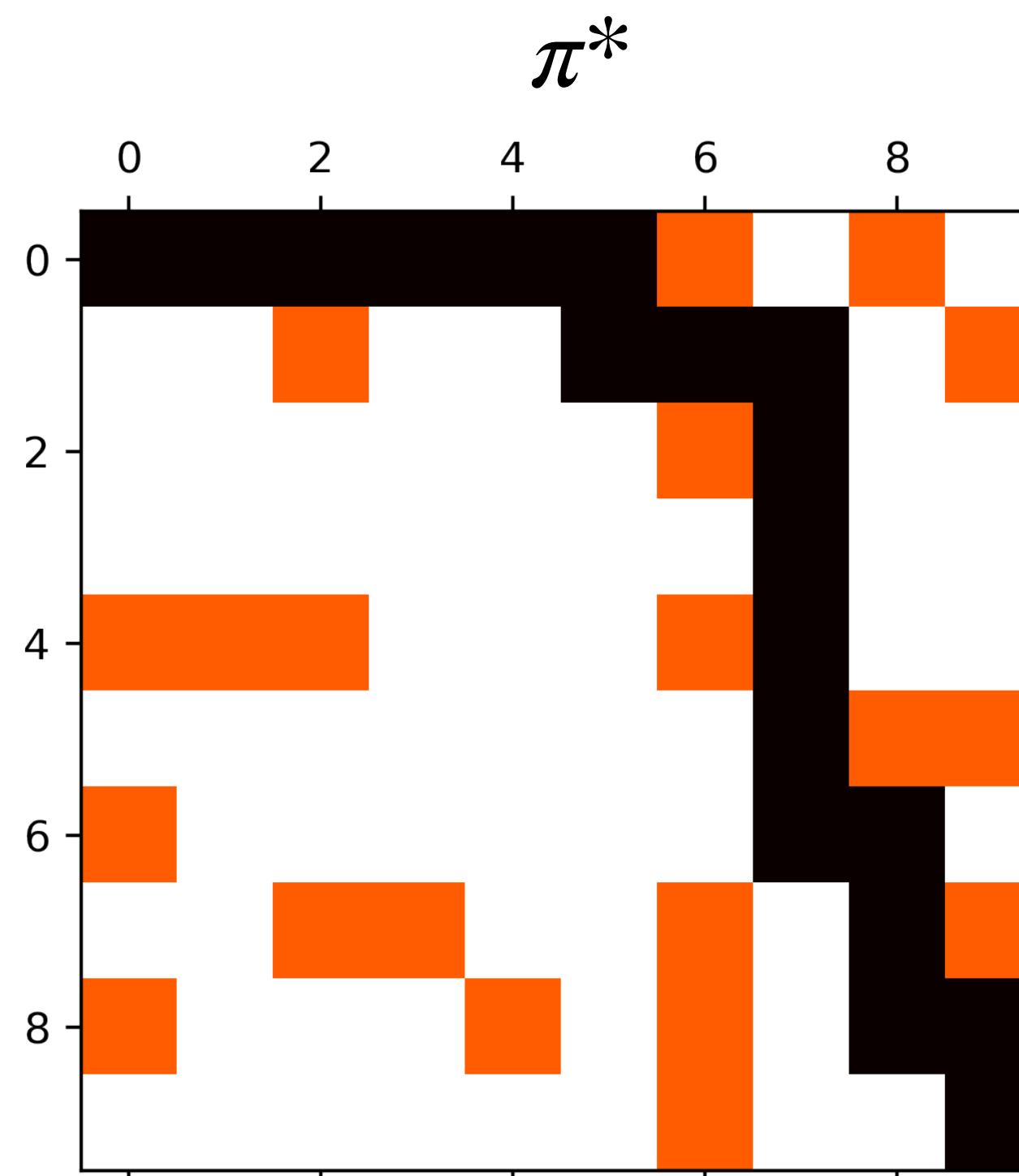
Motivation: Robust Policies

Motivation: Robust Policies

Optimal policies may be sensitive to noise or attacks.

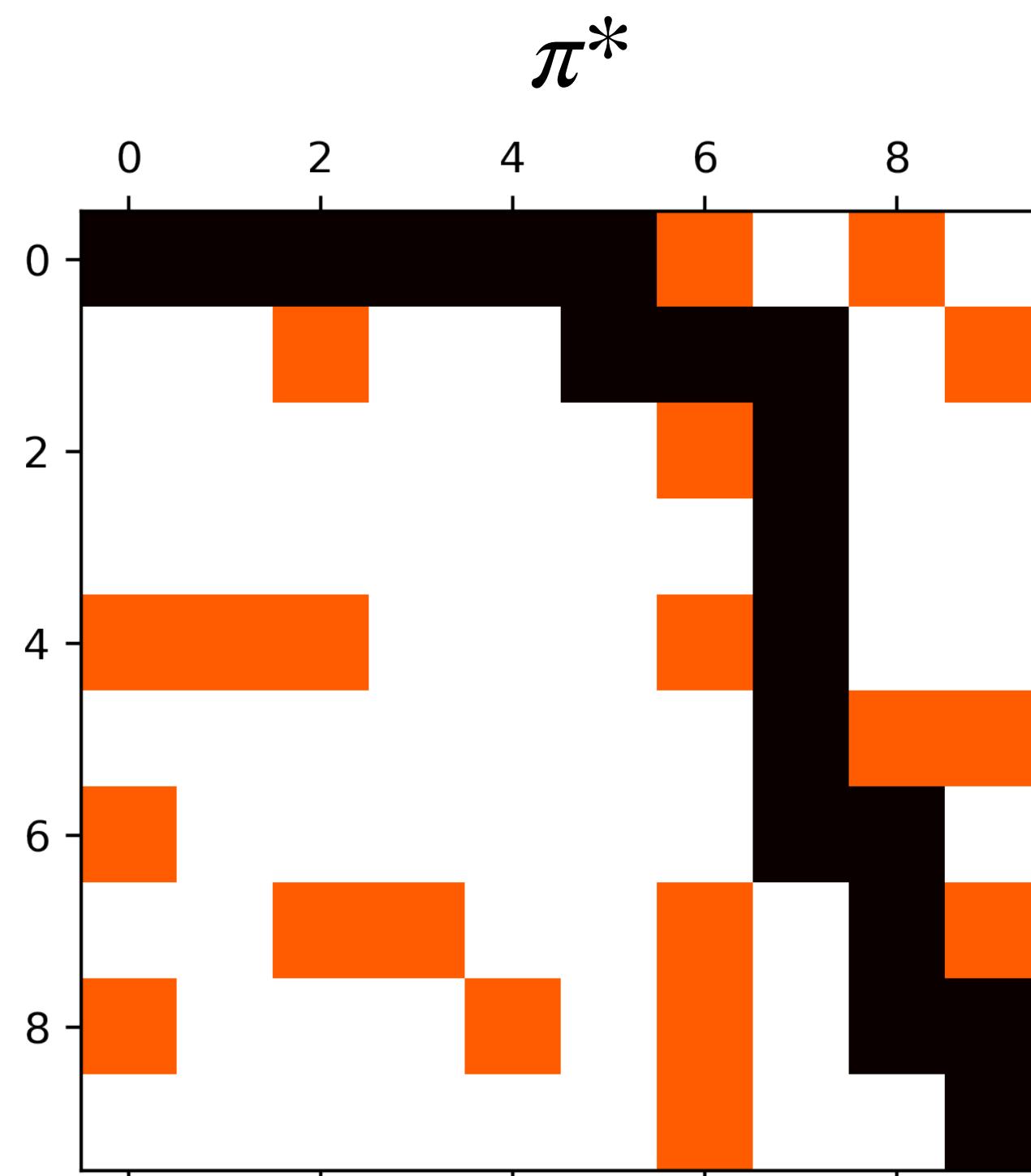
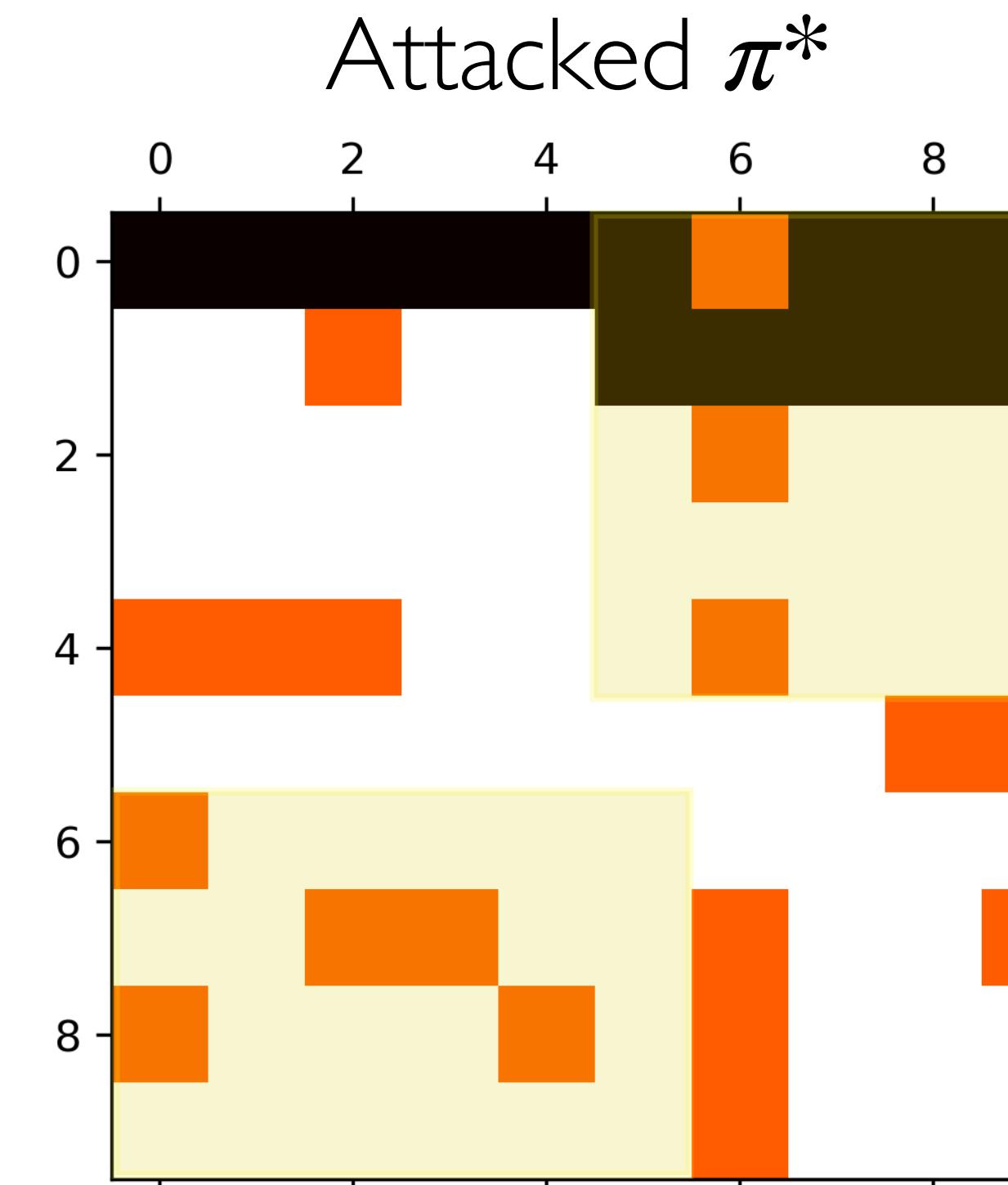
Motivation: Robust Policies

Optimal policies may be sensitive to noise or attacks.



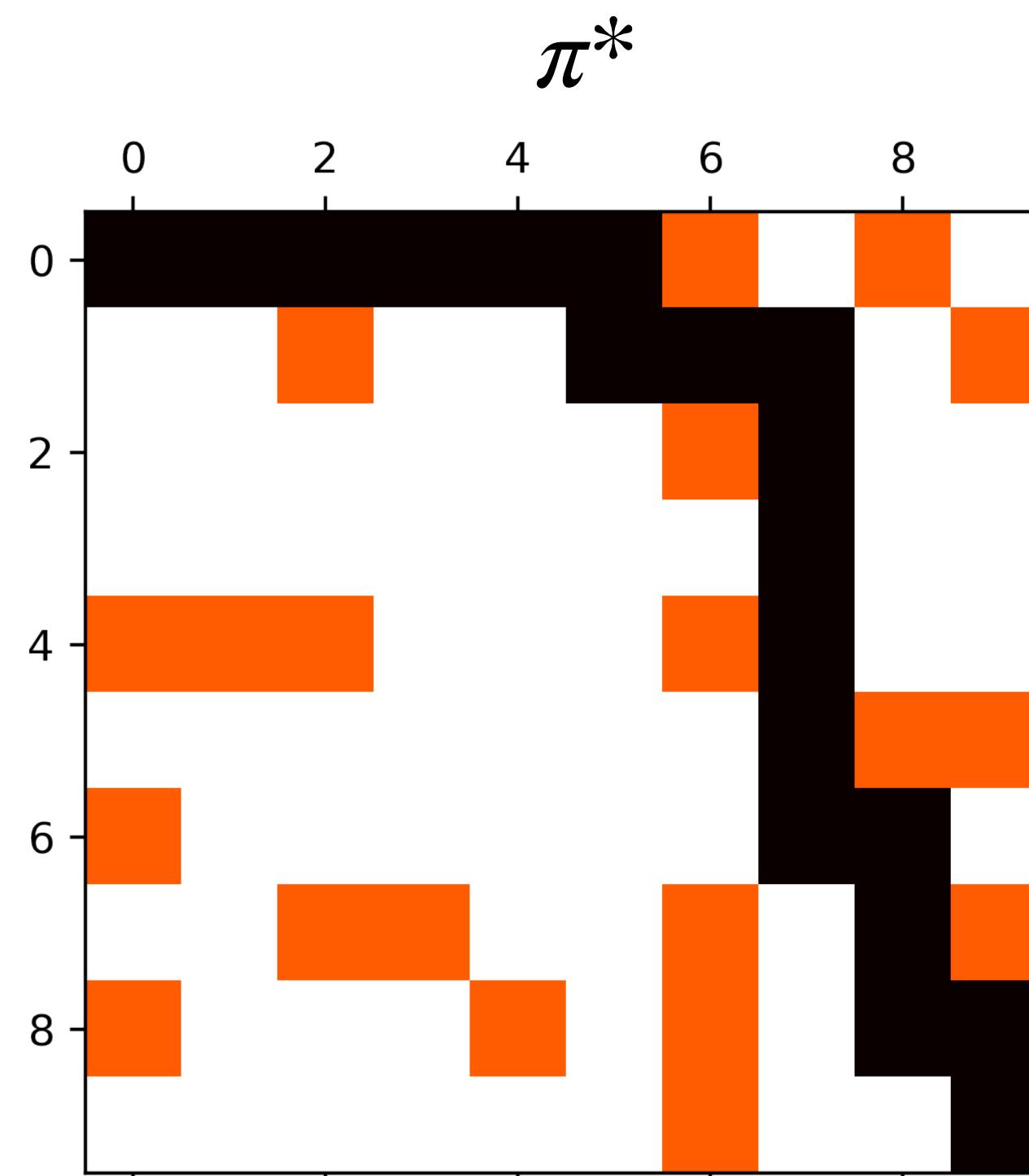
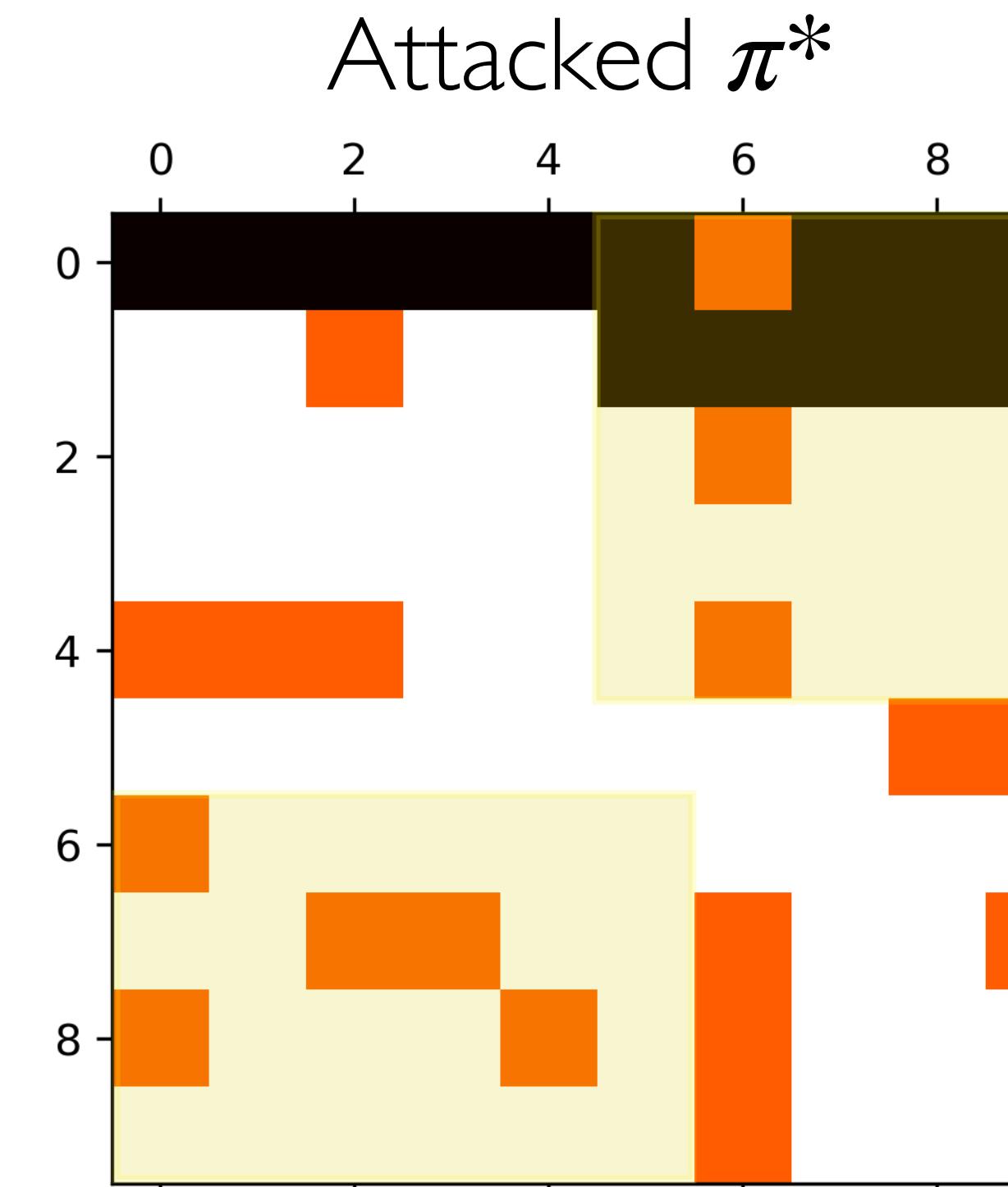
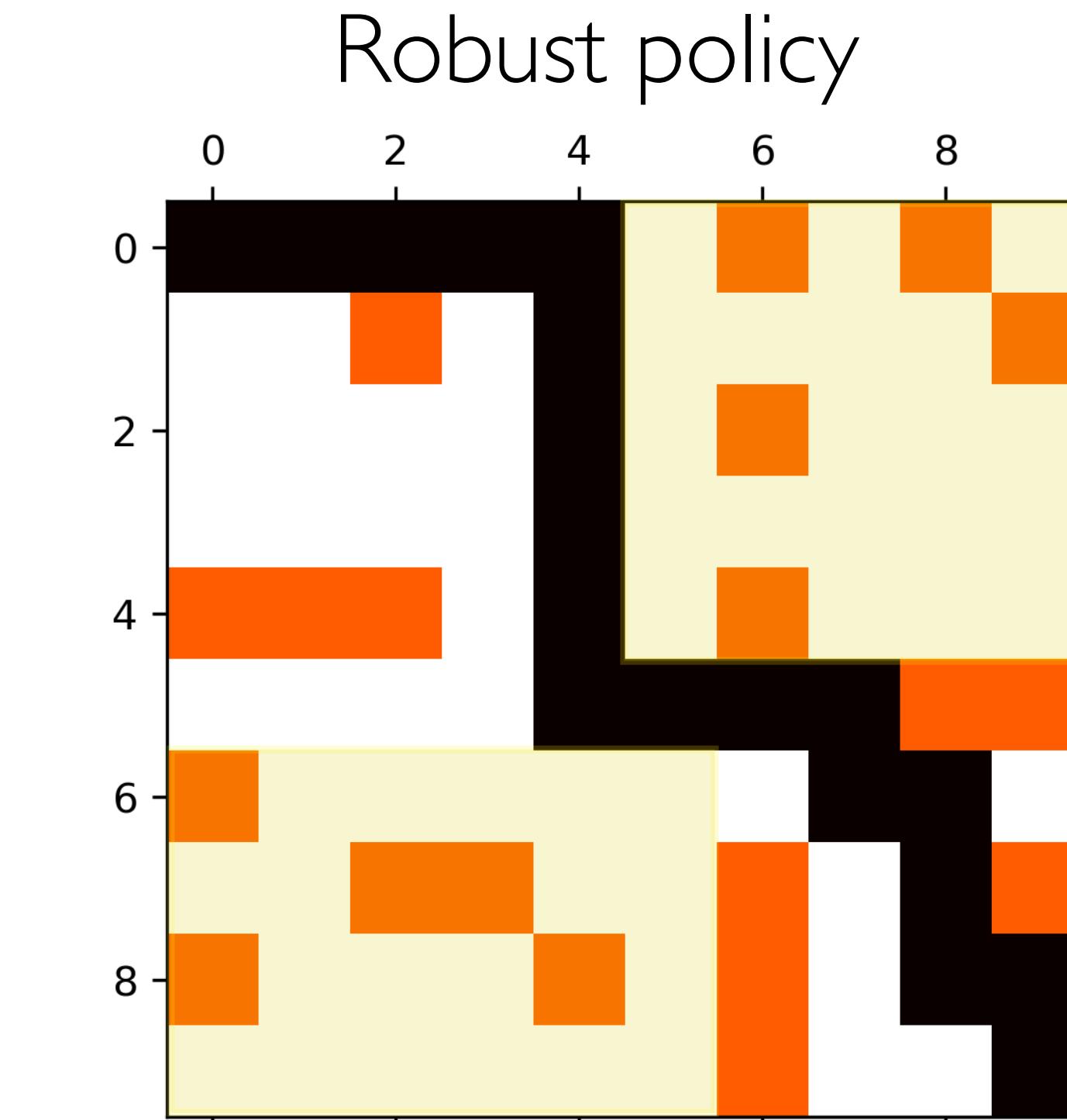
Motivation: Robust Policies

Optimal policies may be sensitive to noise or attacks



Motivation: Robust Policies

Optimal policies may be sensitive to noise or attacks.



What's known?

What's known?

Optimal Observation Attacks

Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations

Huan Zhang^{*,1} Hongge Chen^{*,2} Chaowei Xiao³

Bo Li⁴ Mingyan Liu⁵ Duane Boning² Cho-Jui Hsieh¹

¹UCLA ² MIT ³NVIDIA ⁴UIUC ⁵University of Michigan

huan@huan-zhang.com, chenhg@mit.edu, chaoweix@nvidia.com,
lbo@illinois.edu, mingyan@umich.edu, boning@mtl.mit.edu, chohsieh@cs.ucla.edu

What's known?

Optimal Observation Attacks

Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations

Huan Zhang^{*,1} Hongge Chen^{*,2} Chaowei Xiao³
Bo Li⁴ Mingyan Liu⁵ Duane Boning² Cho-Jui Hsieh¹

¹UCLA ²MIT ³NVIDIA ⁴UIUC ⁵University of Michigan

huan@huan-zhang.com, chenhg@mit.edu, chaoweix@nvidia.com,
lbo@illinois.edu, mingyan@umich.edu, boning@mtl.mit.edu, chohsieh@cs.ucla.edu

[Training-time] Action and Reward Attacks

Understanding the Limits of Poisoning Attacks in Episodic Reinforcement Learning

Anshuka Rangi¹, Haifeng Xu², Long Tran-Thanh³, Massimo Franceschetti¹

¹ University of California San Diego, USA

²University of Virginia, USA

³University of Warwick, UK

{arangi, mfranceschetti}@ucsd.edu, hx4ad@virginia.edu, long.tran-thanh@warwick.ac.uk

What's known?

Optimal Observation Attacks

Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations

Huan Zhang^{*,1} Hongge Chen^{*,2} Chaowei Xiao³
Bo Li⁴ Mingyan Liu⁵ Duane Boning² Cho-Jui Hsieh¹

¹UCLA ²MIT ³NVIDIA ⁴UIUC ⁵University of Michigan

huan@huan-zhang.com, chenhg@mit.edu, chaoweix@nvidia.com,
lbo@illinois.edu, mingyan@umich.edu, boning@mtl.mit.edu, chohsieh@cs.ucla.edu

[Training-time] Action and Reward Attacks

Understanding the Limits of Poisoning Attacks in Episodic Reinforcement Learning

Anshuka Rangi¹, Haifeng Xu², Long Tran-Thanh³, Massimo Franceschetti¹

¹ University of California San Diego, USA

²University of Virginia, USA

³University of Warwick, UK

{arangi, mfranceschetti}@ucsd.edu, hx4ad@virginia.edu, long.tran-thanh@warwick.ac.uk

Defense against a specific reward attack algorithm

Defense Against Reward Poisoning Attacks in Reinforcement Learning

Kiarash Banihashem
MPI-SWS
kbanihas@mpi-sws.org

Adish Singla
MPI-SWS
adishs@mpi-sws.org

Goran Radanovic
MPI-SWS
gradanovic@mpi-sws.org

What's known?

Optimal Observation Attacks

Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations

Huan Zhang^{*,1} Hongge Chen^{*,2} Chaowei Xiao³

Bo Li⁴ Mingyan Liu⁵ Duane Boning² Cho-Jui Hsieh¹

¹UCLA ² MIT ³NVIDIA ⁴UIUC ⁵University of Michigan

huan@huan-zhang.com, chenhg@mit.edu, chaoweix@nvidia.com, lbo@illinois.edu, mingyan@umich.edu, boning@mtl.mit.edu, chohsieh@cs.ucla.edu

[Training-time] Action and Reward Attacks

Understanding the Limits of Poisoning Attacks in Episodic Reinforcement Learning

Anshuka Rangi¹, Haifeng Xu², Long Tran-Thanh³, Massimo Franceschetti¹

¹ University of California San Diego, USA

²University of Virginia, USA

³University of Warwick, UK

{arangi, mfranceschetti}@ucsd.edu, hx4ad@virginia.edu, long.tran-thanh@warwick.ac.uk

Defense against a specific reward attack algorithm

Defense Against Reward Poisoning Attacks in Reinforcement Learning

Kiarash Banihashem
MPI-SWS
kbanihas@mpi-sws.org

Adish Singla
MPI-SWS
adishs@mpi-sws.org

Goran Radanovic
MPI-SWS
gradanovic@mpi-sws.org

Not robust! Attacker can change its algorithm later.

The Attack Problem

The Attack Problem

Attacker has its own reward $g(s_t, a_t, r_t)$ that depends on the victim's.

The Attack Problem

Attacker has its own reward $g(s_t, a_t, r_t)$ that depends on the victim's.

Definition 1 (Attack Problem). For any π , the attacker's seeks a policy $\nu^* \in N$ that maximizes its expected reward from the victim-attacker- M interaction:

$$\nu^* \in \arg \max_{\nu \in N} \mathbb{E}_M^{\pi, \nu} \left[\sum_{t=0}^{\infty} \gamma^t g(s_t, a_t, r_t) \right].$$

Adversarial Decomposition

Adversarial Decomposition

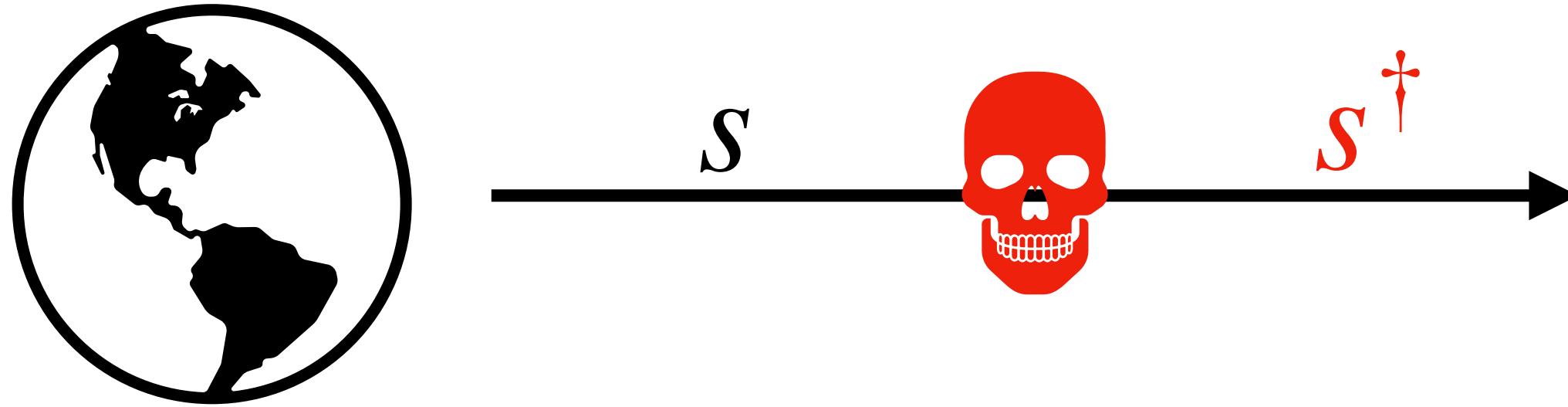
We decompose the attacked π -M interaction based on the *flow of information*.

Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.

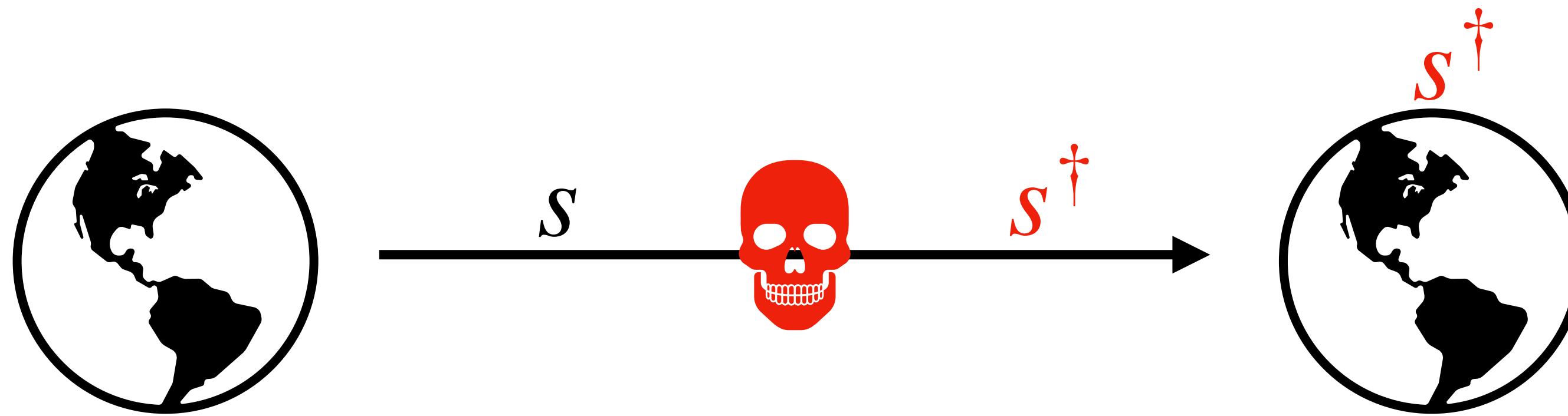
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



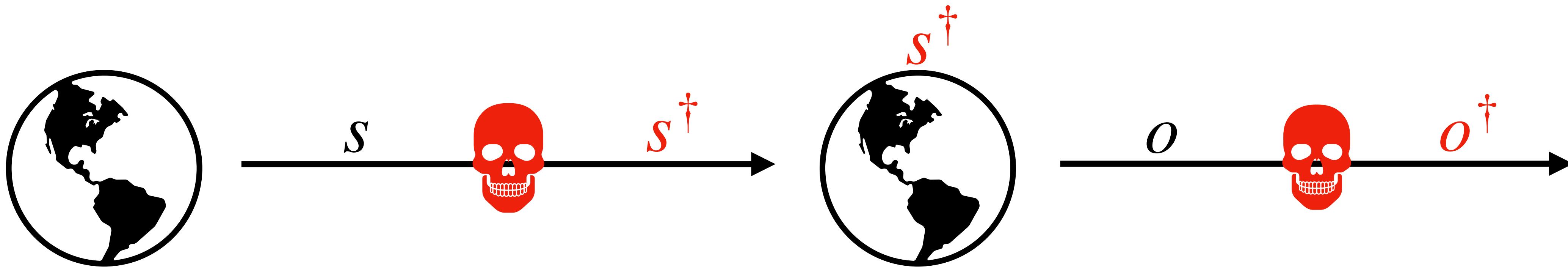
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



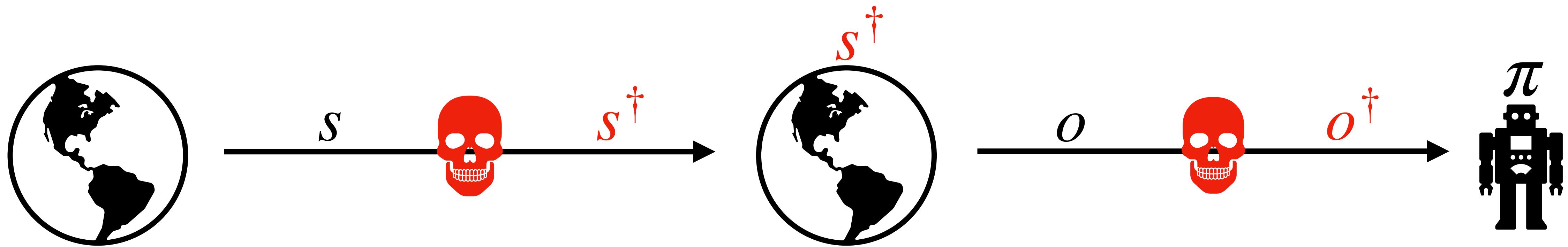
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



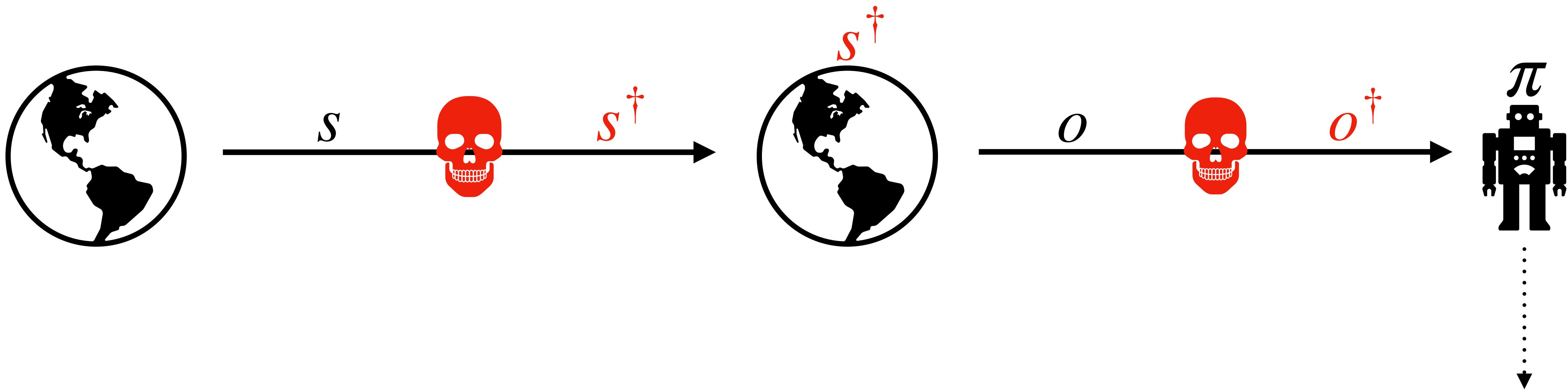
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



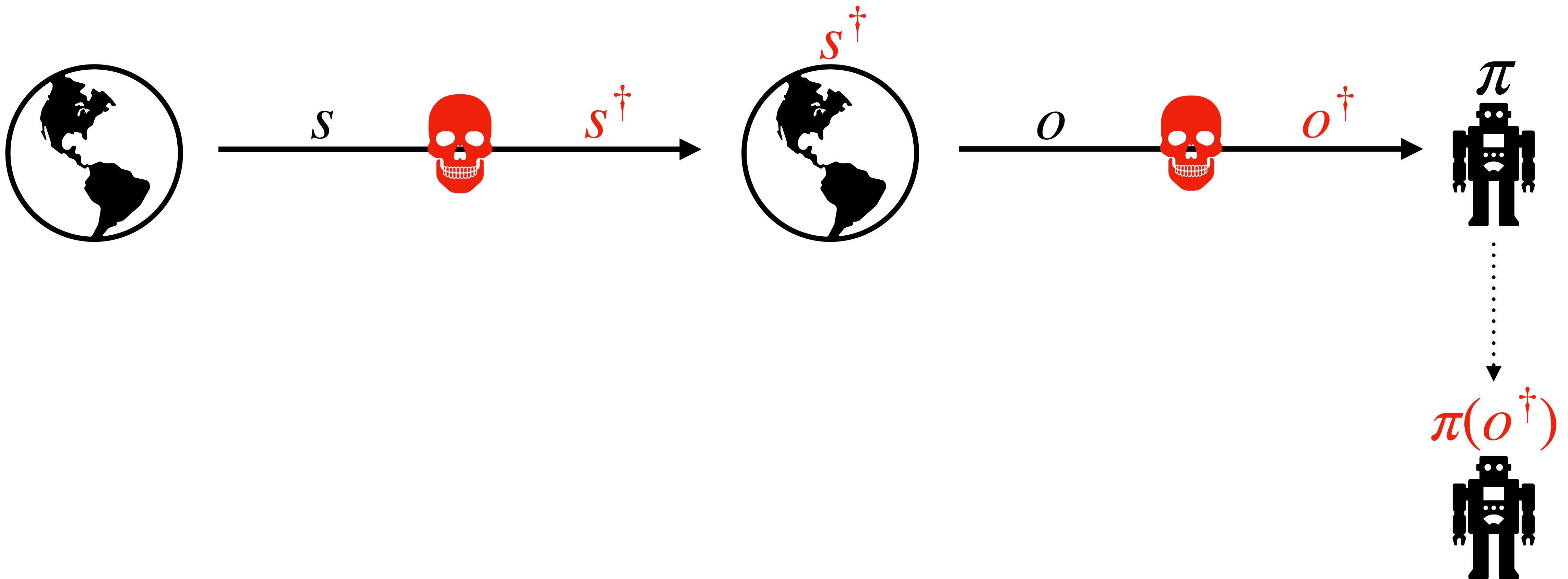
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



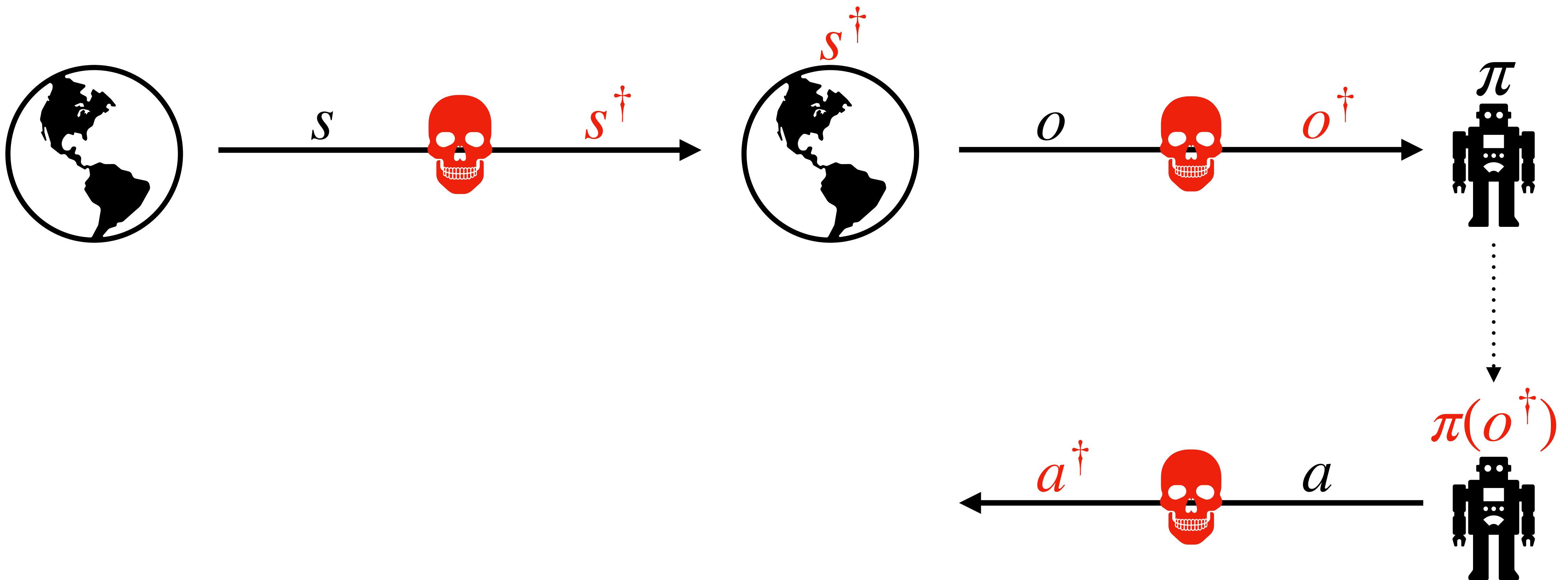
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



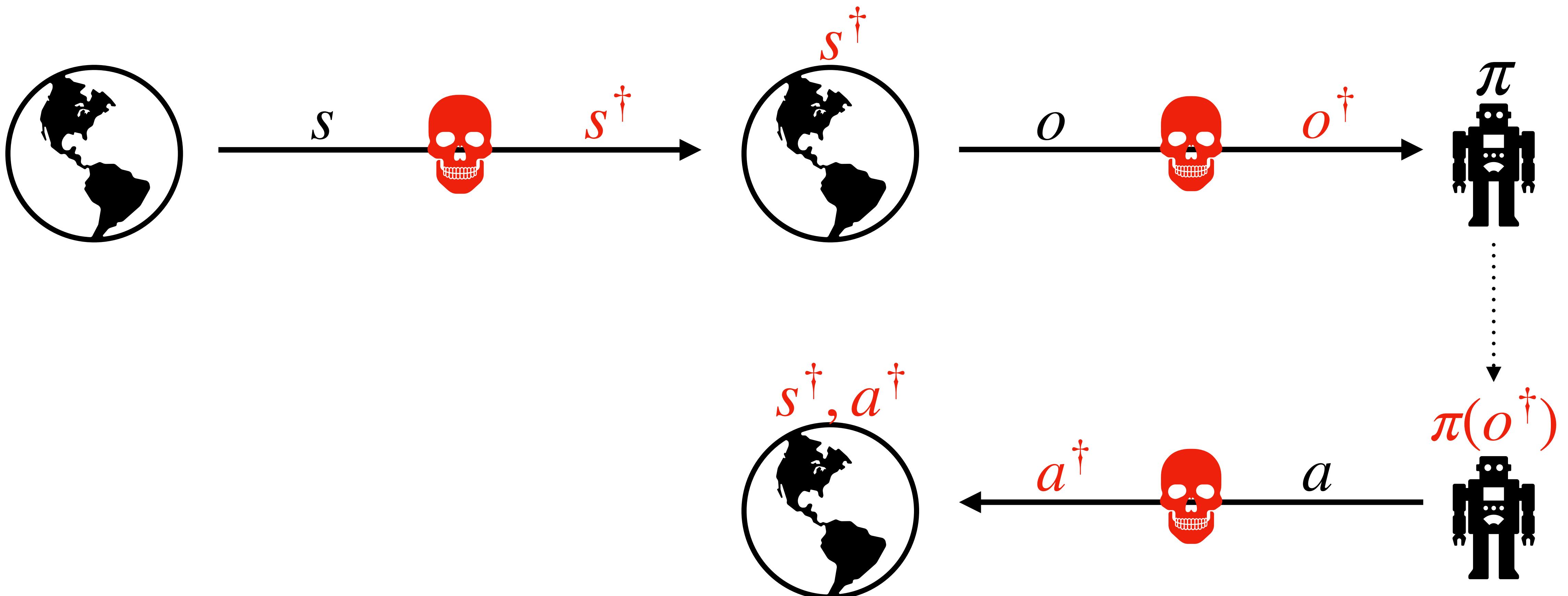
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



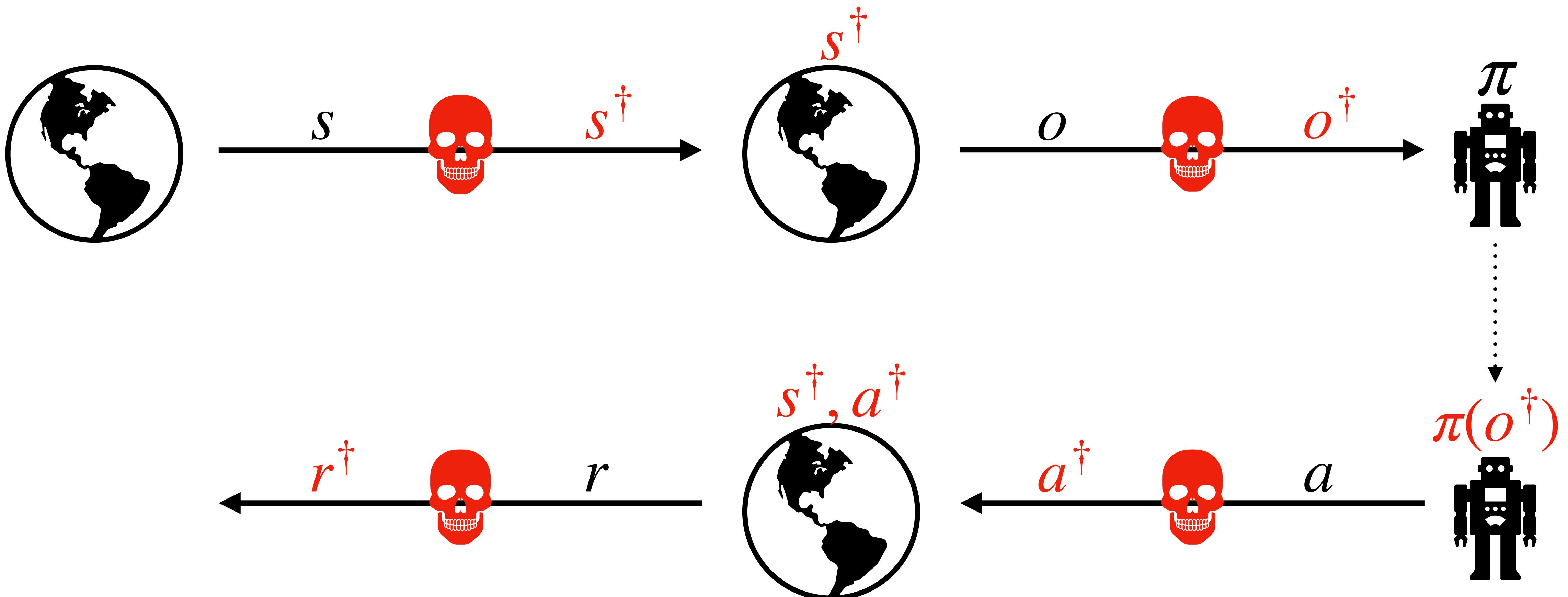
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



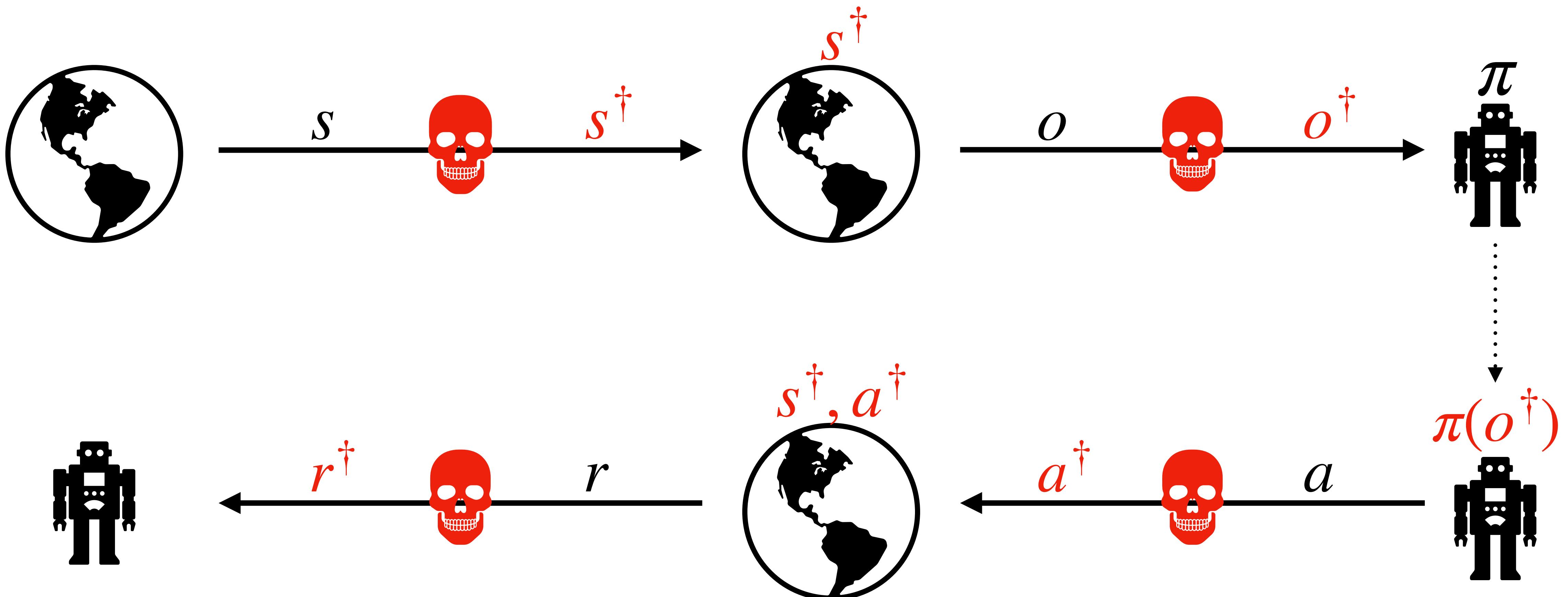
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



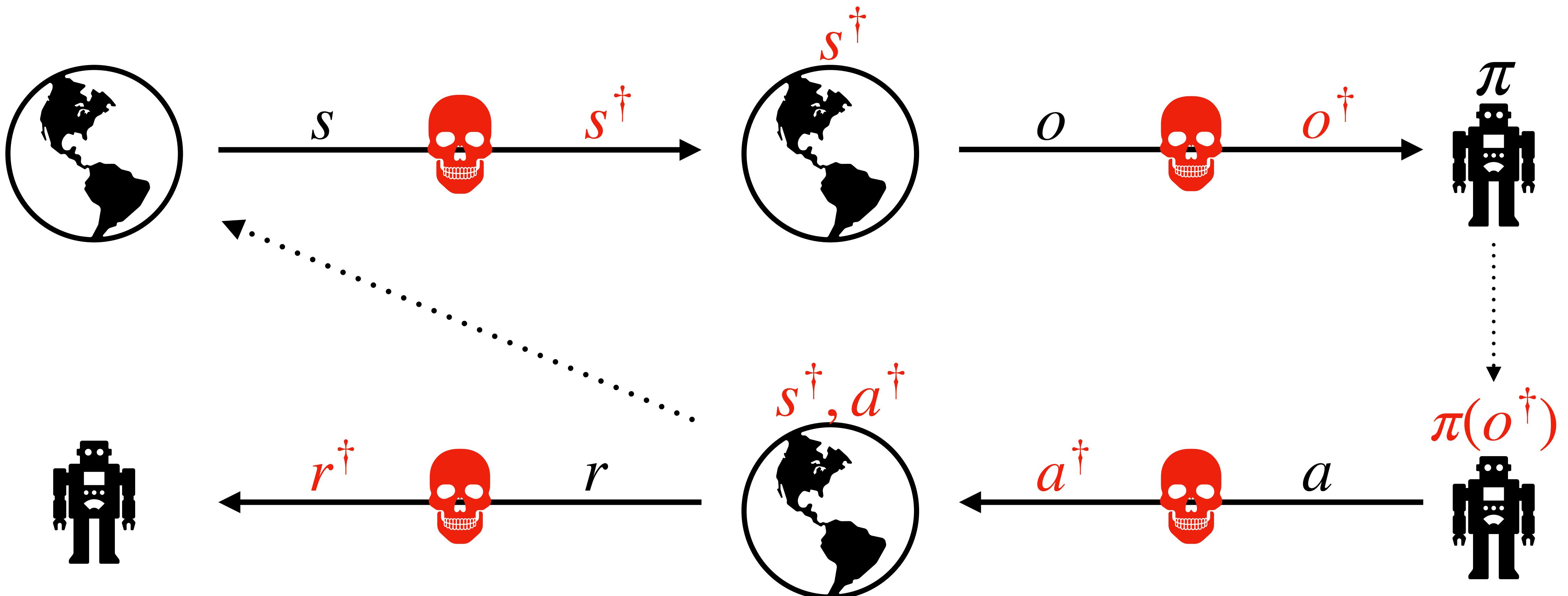
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



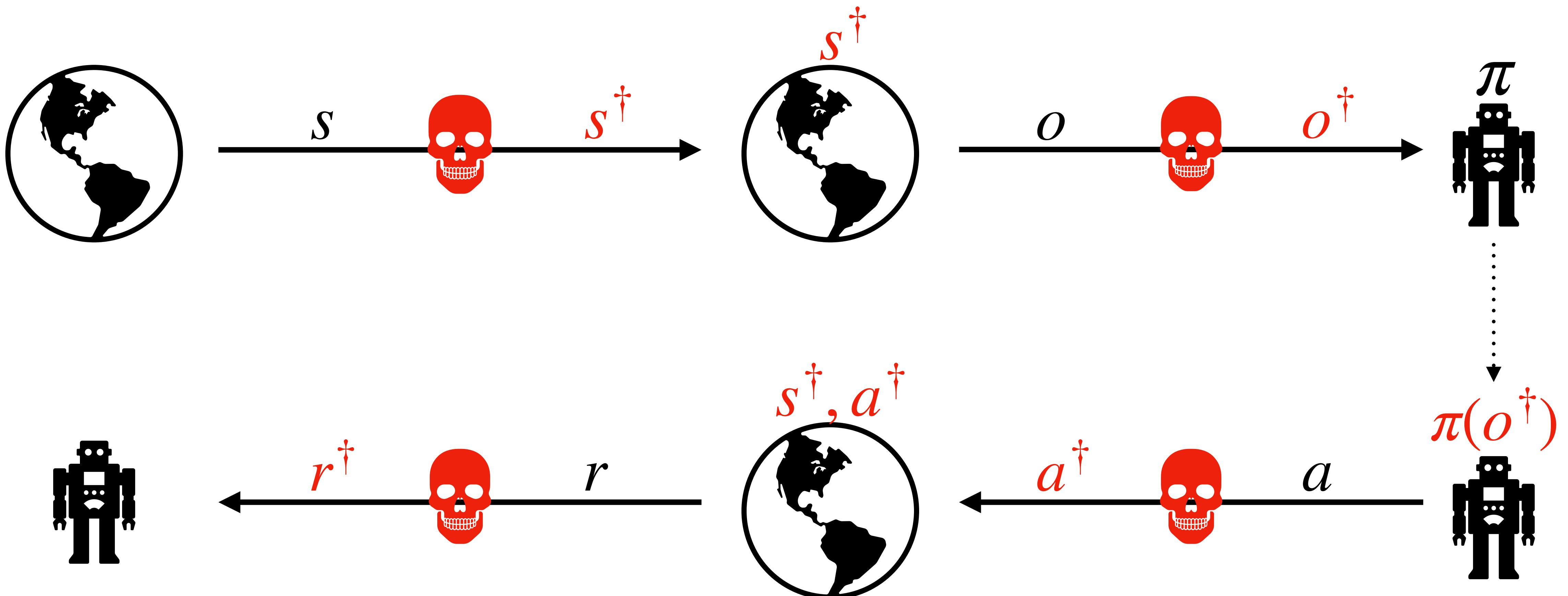
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



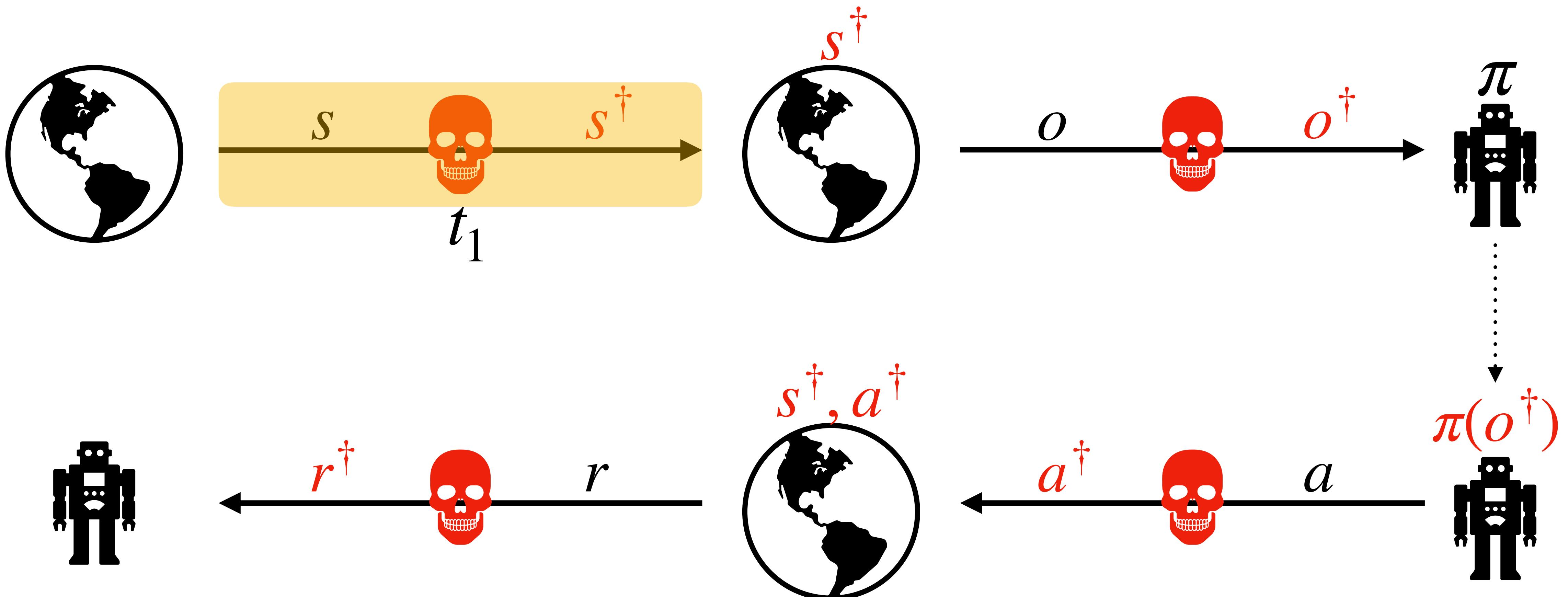
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



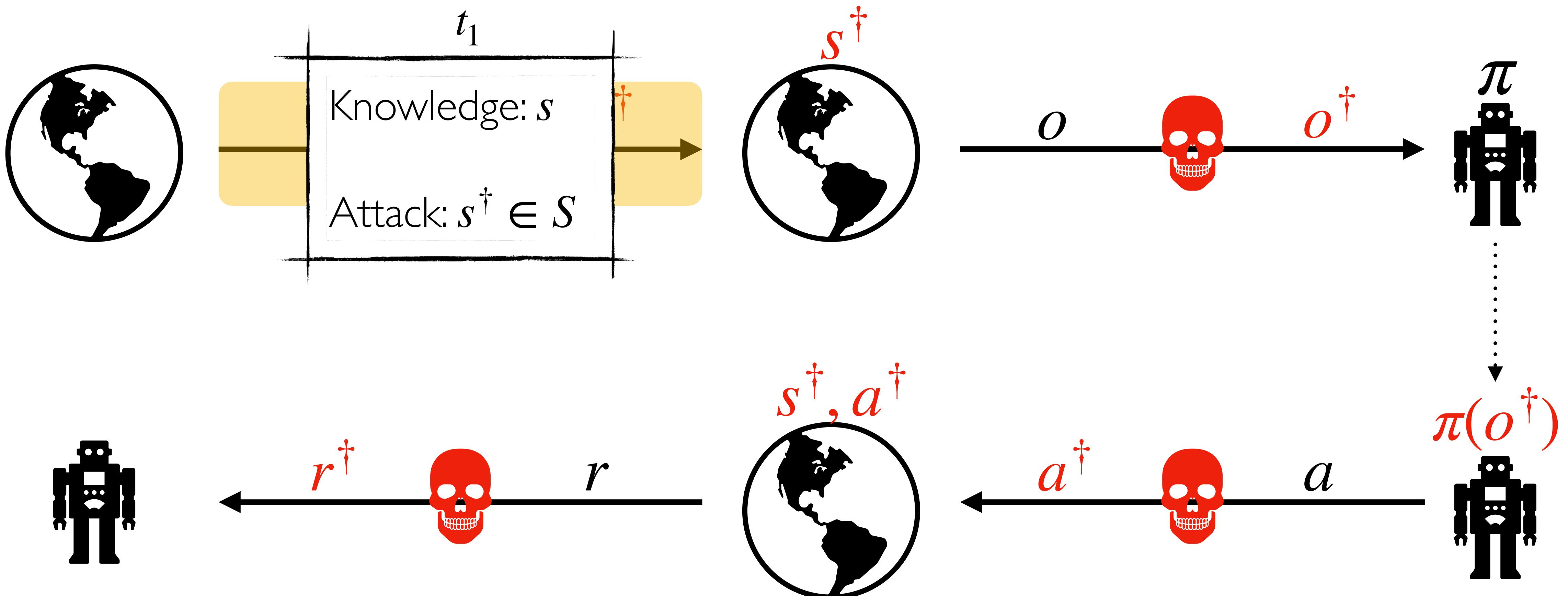
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



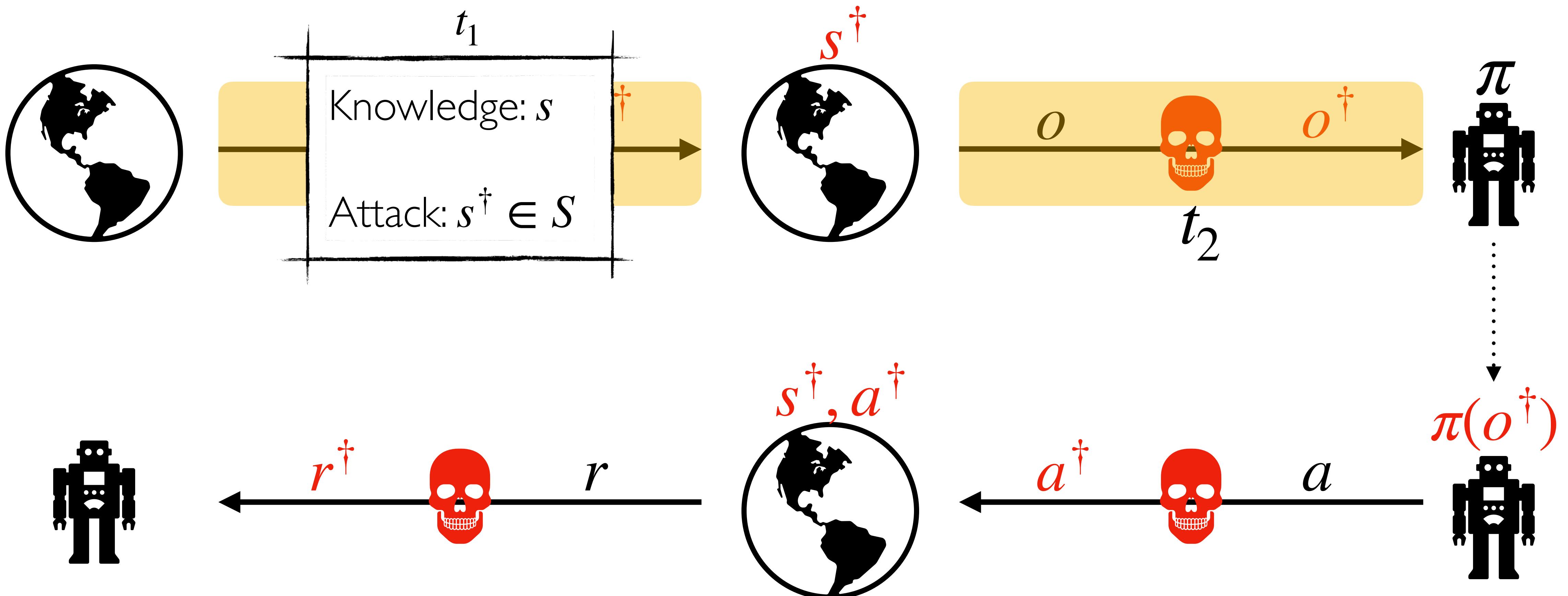
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



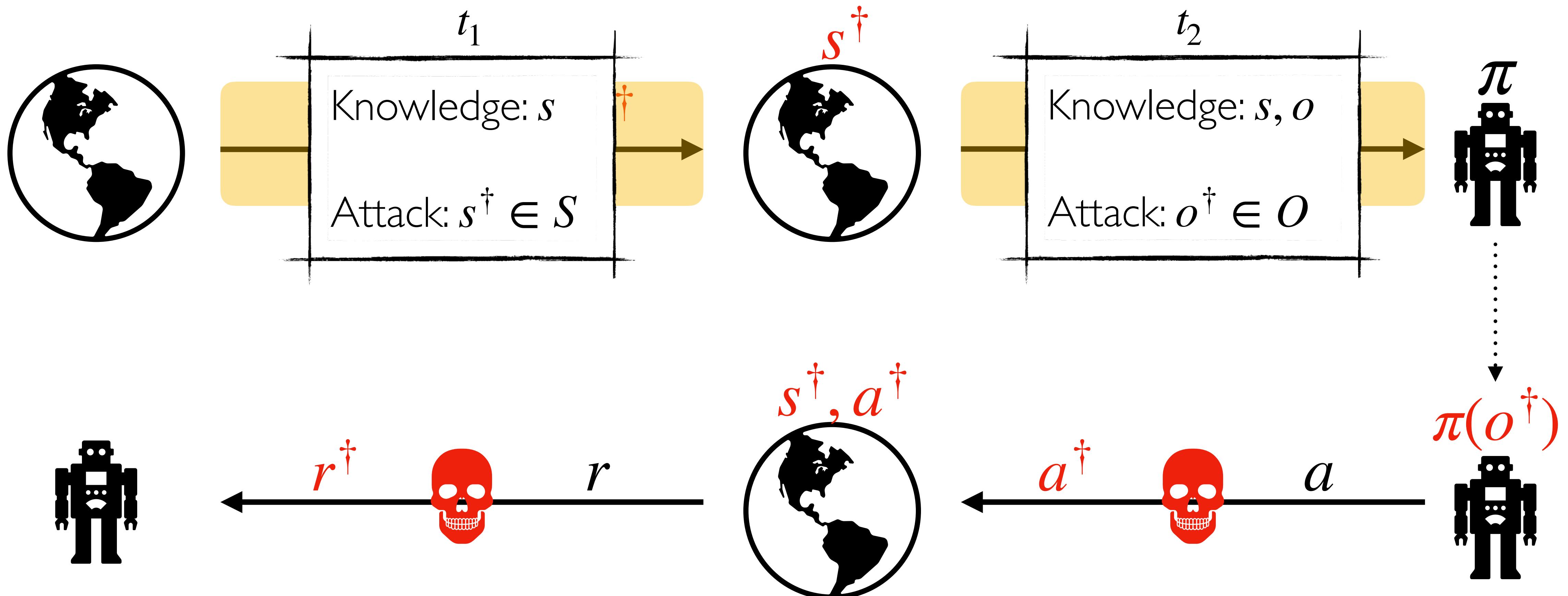
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



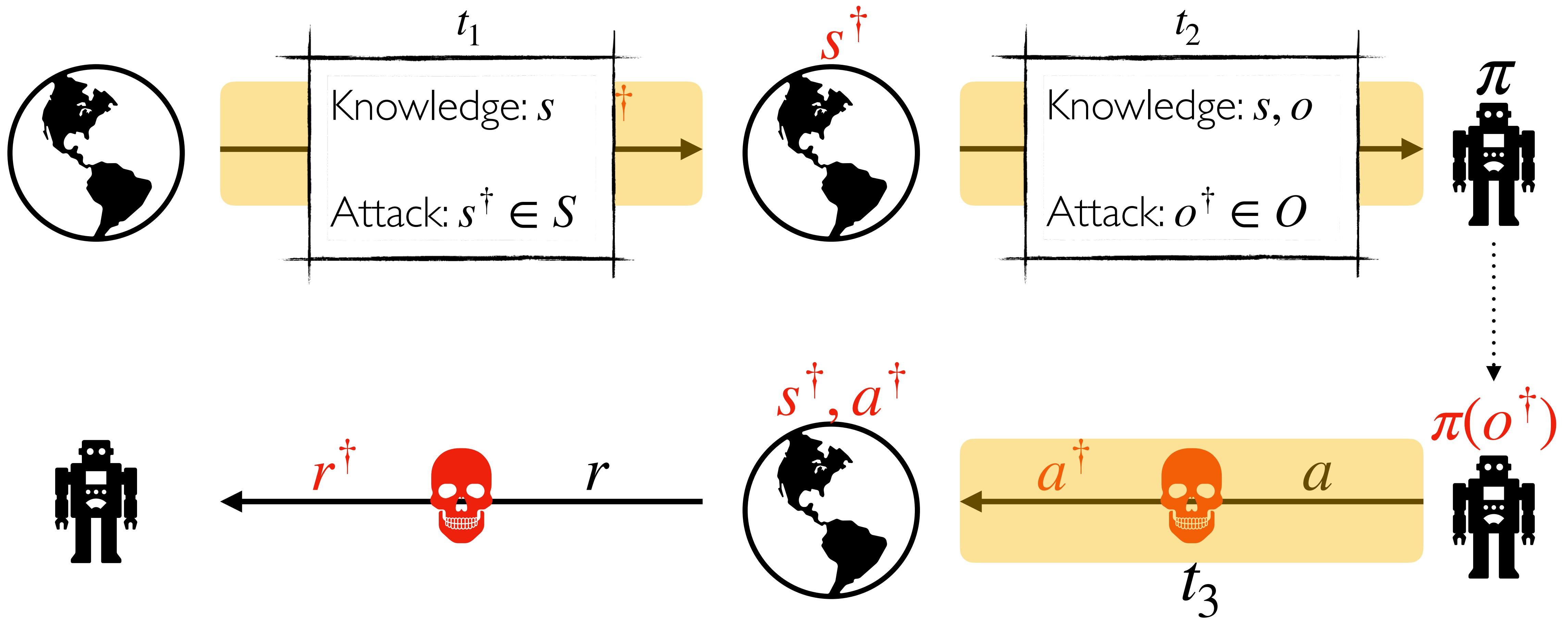
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



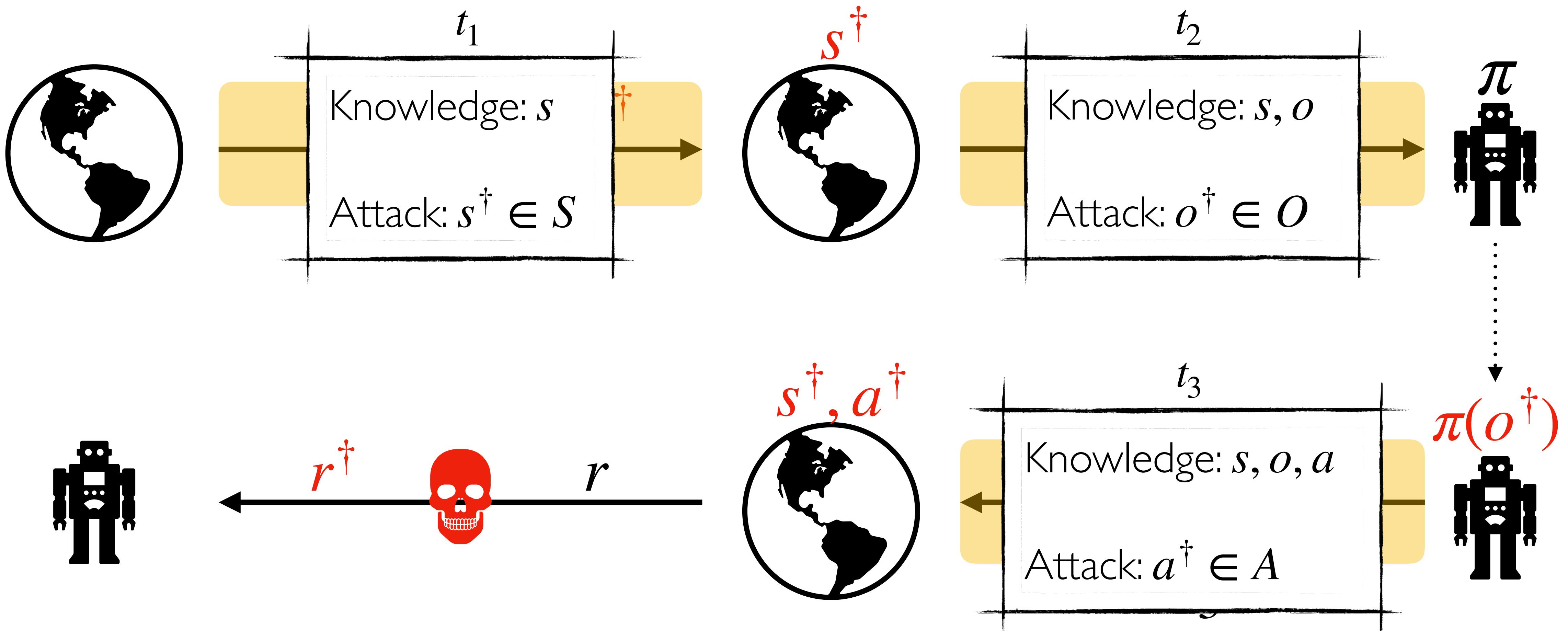
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



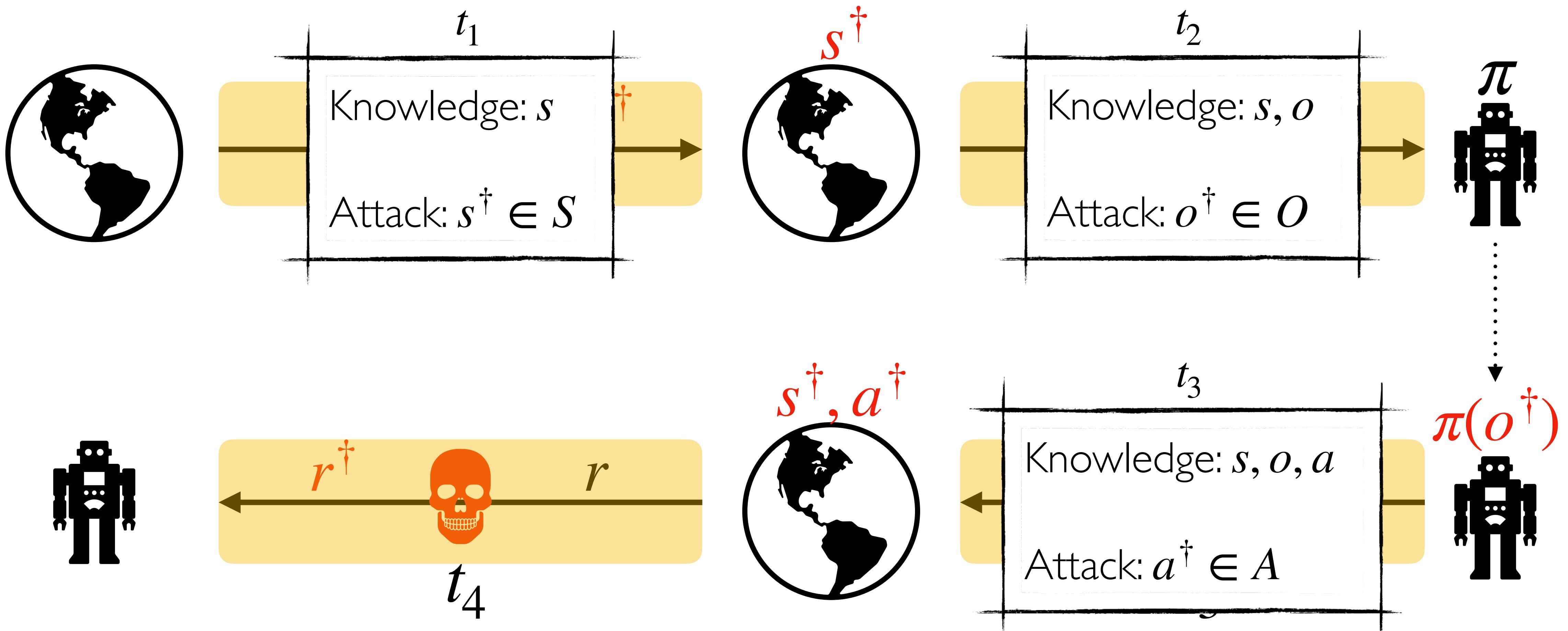
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.



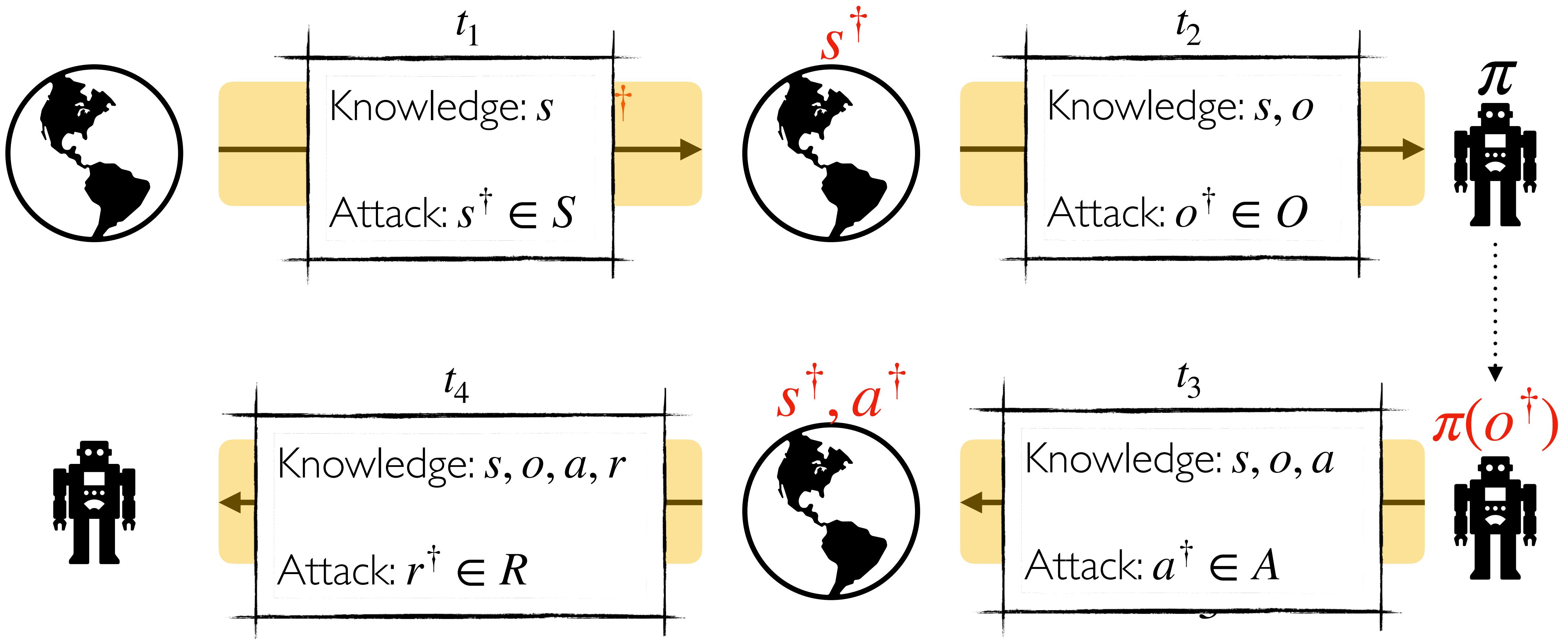
Adversarial Decomposition

We decompose the attacked π -M interaction based on the *flow of information*.

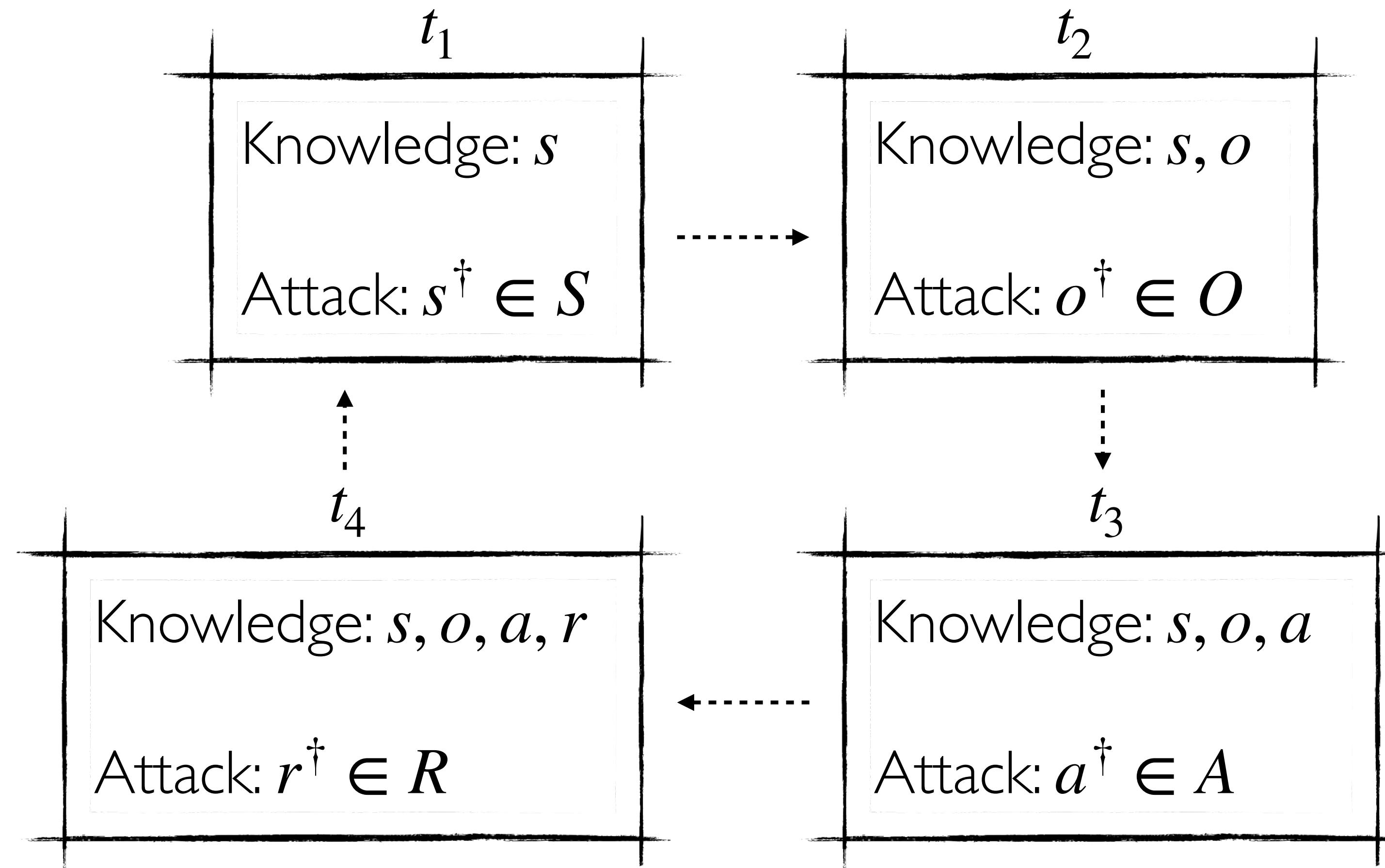


Adversarial Decomposition

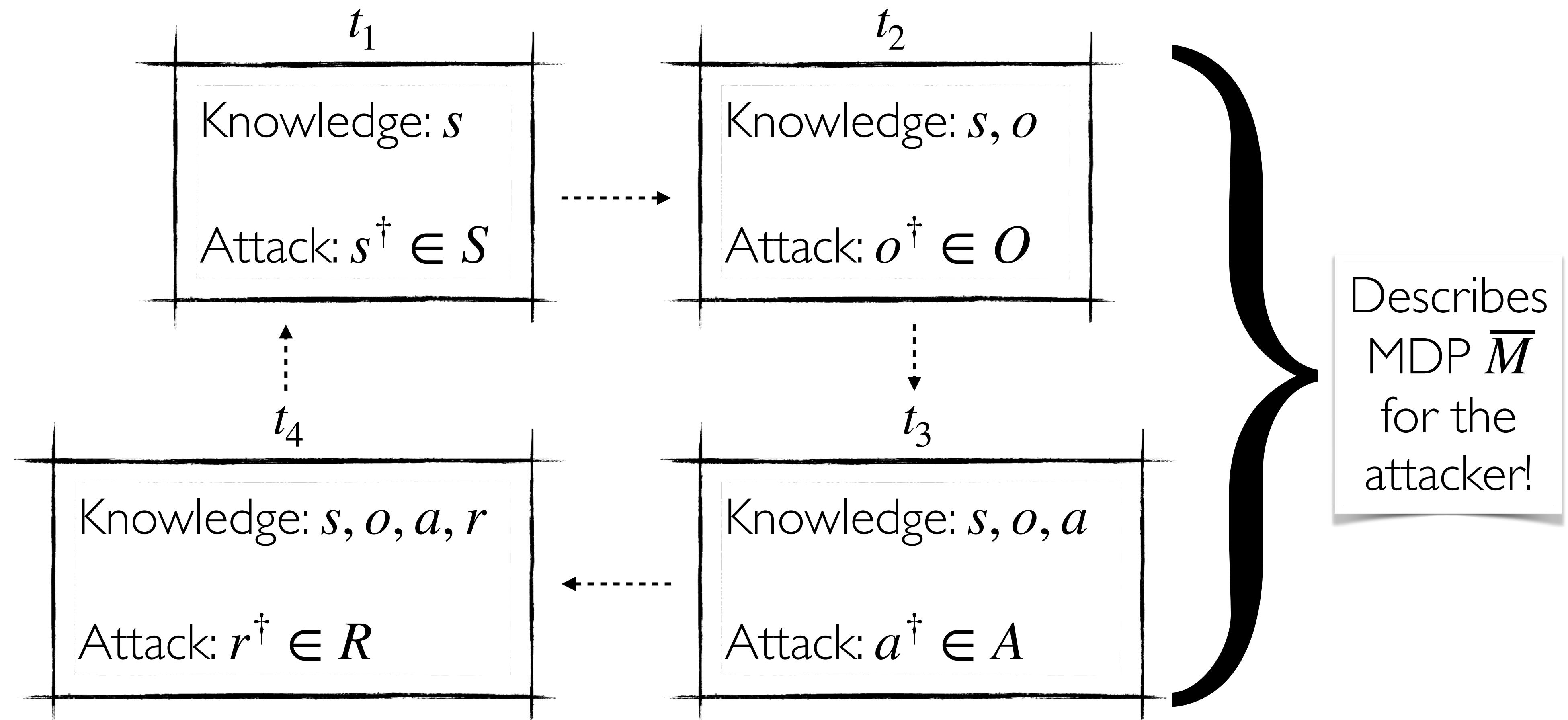
We decompose the attacked π -M interaction based on the *flow of information*.



Attacker's Perspective



Attacker's Perspective



Meta MDP

Meta MDP

Attacker's interaction with π and M evolves according to MDP \bar{M} .

Meta MDP

Attacker's interaction with π and M evolves according to MDP \bar{M} .

- I. \bar{S} records the attacker's information at any subperiod:

Meta MDP

Attacker's interaction with π and M evolves according to MDP \bar{M} .

- I. \bar{S} records the attacker's information at any subperiod:

$$\bar{S} = S \cup (S \cup O) \cup (S \cup O \cup A) \cup (S \cup O \cup A \cup R)$$

Meta MDP

Attacker's interaction with π and M evolves according to MDP \bar{M} .

1. \bar{S} records the attacker's information at any subperiod:

$$\bar{S} = \mathcal{S} \cup (\mathcal{S} \cup \mathcal{O}) \cup (\mathcal{S} \cup \mathcal{O} \cup \mathcal{A}) \cup (\mathcal{S} \cup \mathcal{O} \cup \mathcal{A} \cup \mathcal{R})$$

2. \bar{A} captures the attacks available at any subperiod:

Meta MDP

Attacker's interaction with π and M evolves according to MDP \bar{M} .

1. \bar{S} records the attacker's information at any subperiod:

$$\bar{\mathcal{S}} = \mathcal{S} \cup (\mathcal{S} \cup \mathcal{O}) \cup (\mathcal{S} \cup \mathcal{O} \cup \mathcal{A}) \cup (\mathcal{S} \cup \mathcal{O} \cup \mathcal{A} \cup \mathcal{R})$$

2. $\bar{\mathcal{A}}$ captures the attacks available at any subperiod:

$$\bar{\mathcal{A}}(s) \subseteq \mathcal{S}, \bar{\mathcal{A}}(s, o) \subseteq \mathcal{O}, \bar{\mathcal{A}}(s, o, a) \subseteq \mathcal{A}, \bar{\mathcal{A}}(s, o, a, r) \subseteq \mathcal{R}$$

Meta MDP

Attacker's interaction with π and M evolves according to MDP \bar{M} .

1. \bar{S} records the attacker's information at any subperiod:

$$\bar{\mathcal{S}} = \mathcal{S} \cup (\mathcal{S} \cup \mathcal{O}) \cup (\mathcal{S} \cup \mathcal{O} \cup \mathcal{A}) \cup (\mathcal{S} \cup \mathcal{O} \cup \mathcal{A} \cup \mathcal{R})$$

2. $\bar{\mathcal{A}}$ captures the attacks available at any subperiod:

$$\bar{\mathcal{A}}(s) \subseteq \mathcal{S}, \bar{\mathcal{A}}(s, o) \subseteq \mathcal{O}, \bar{\mathcal{A}}(s, o, a) \subseteq \mathcal{A}, \bar{\mathcal{A}}(s, o, a, r) \subseteq \mathcal{R}$$

3. Transitions capture the evolution of information.

Meta MDP

Attacker's interaction with π and M evolves according to MDP \bar{M} .

1. \bar{S} records the attacker's information at any subperiod:

$$\bar{\mathcal{S}} = \mathcal{S} \cup (\mathcal{S} \cup \mathcal{O}) \cup (\mathcal{S} \cup \mathcal{O} \cup \mathcal{A}) \cup (\mathcal{S} \cup \mathcal{O} \cup \mathcal{A} \cup \mathcal{R})$$

2. $\bar{\mathcal{A}}$ captures the attacks available at any subperiod:

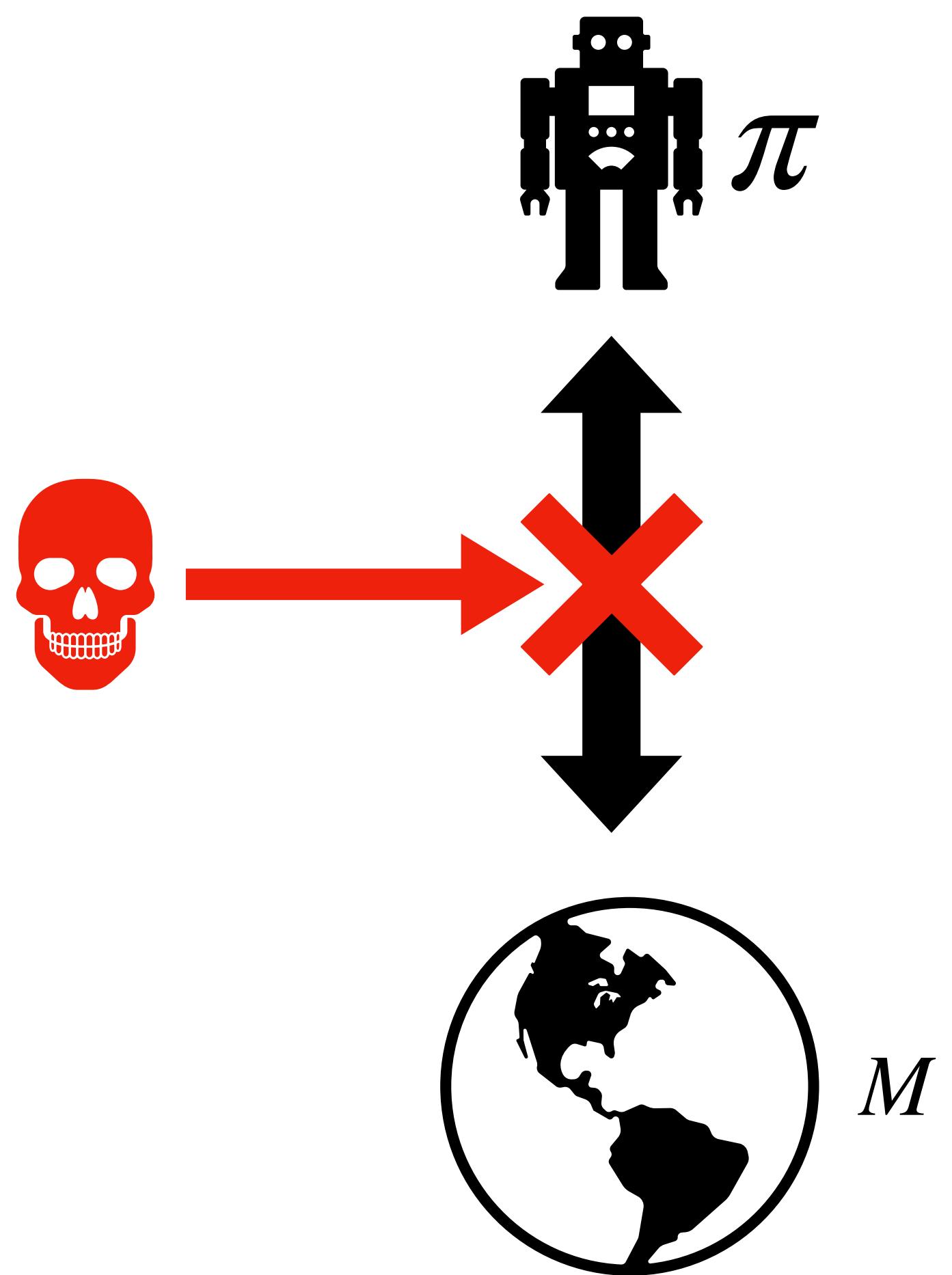
$$\bar{\mathcal{A}}(s) \subseteq \mathcal{S}, \bar{\mathcal{A}}(s, o) \subseteq \mathcal{O}, \bar{\mathcal{A}}(s, o, a) \subseteq \mathcal{A}, \bar{\mathcal{A}}(s, o, a, r) \subseteq \mathcal{R}$$

3. Transitions capture the evolution of information.

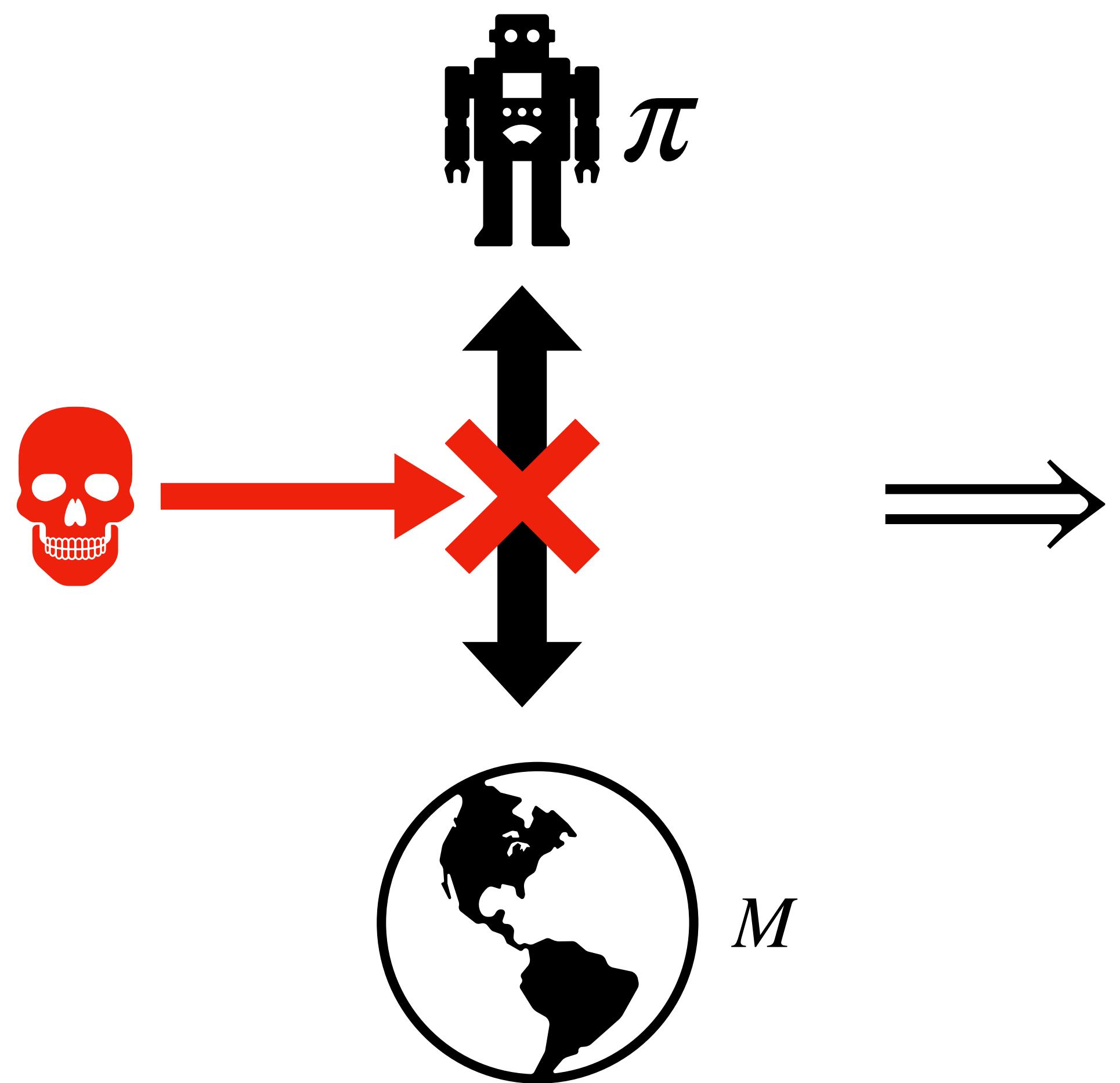
Proposition: Any optimal policy for \bar{M} is an optimal attack policy.

Reduction to RL

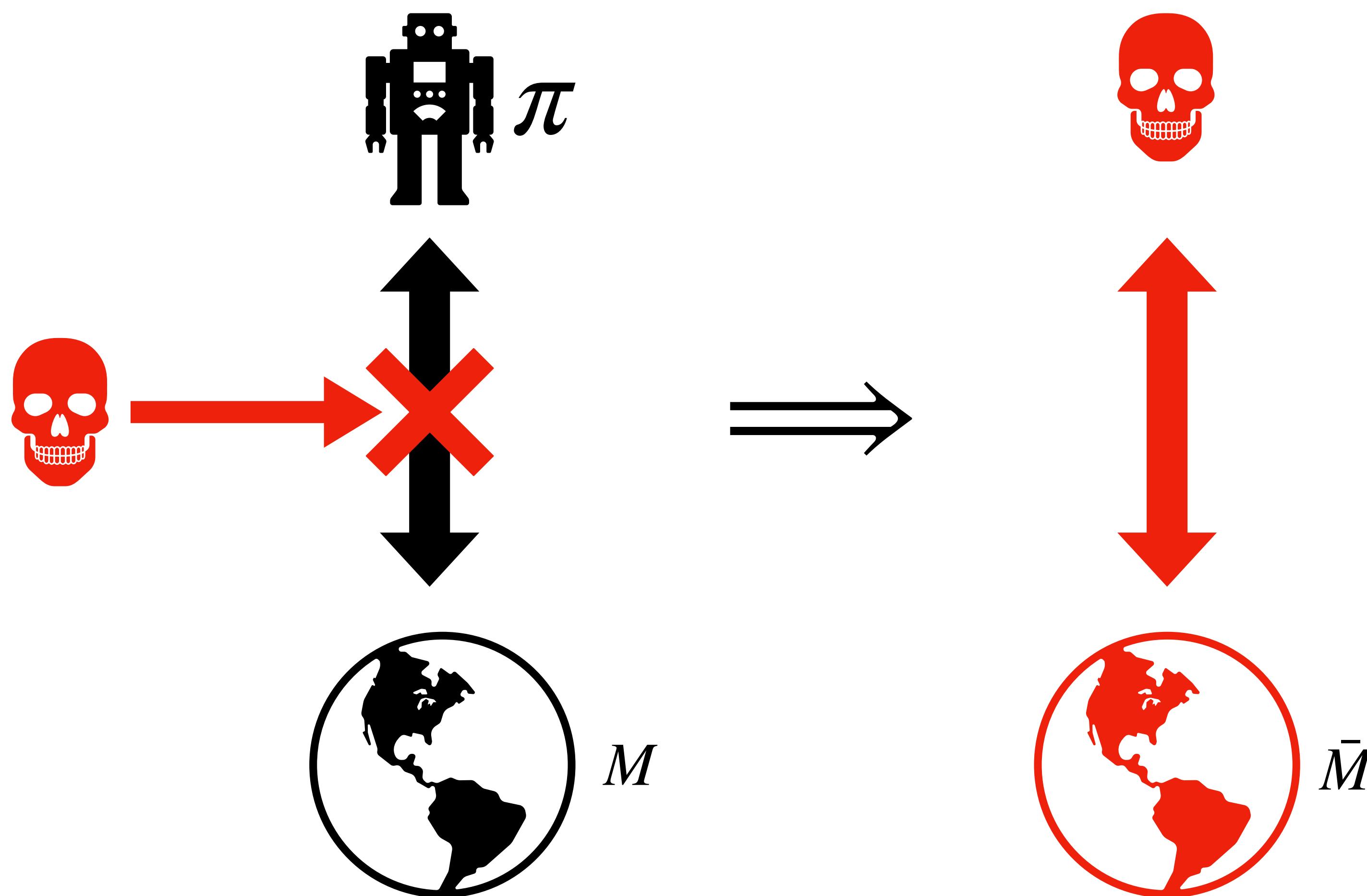
Reduction to RL



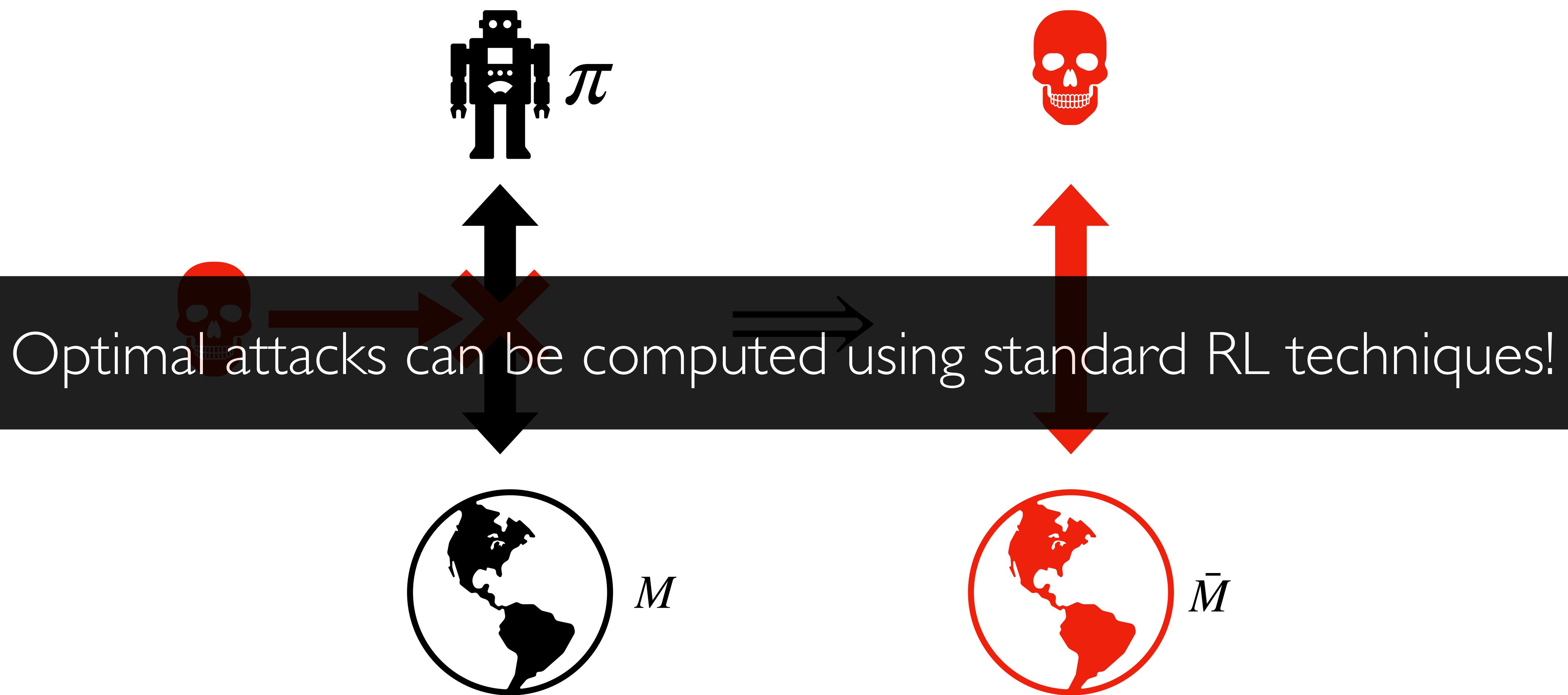
Reduction to RL



Reduction to RL



Reduction to RL



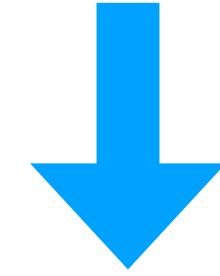
Computational Efficiency

Computational Efficiency

$$|\bar{S}| \leq SOAR \quad \text{and} \quad |\bar{A}| \leq S + O + A + R$$

Computational Efficiency

$$|\bar{S}| \leq SOAR \quad \text{and} \quad |\bar{A}| \leq S + O + A + R$$



\bar{M} has only polynomially larger state and action space than M .

Computational Efficiency

$$|\bar{S}| \leq SOAR \quad \text{and} \quad |\bar{A}| \leq S + O + A + R$$

Attacking RL *efficiently* reduces to RL!

\bar{M} has only polynomially larger state and action space than M .

Can we defend against attacks?

Defense

The Defense Problem

The Defense Problem

Let $(V_1^{\pi,\nu}, V_2^{\pi,\nu})$ denote the victim's and attacker's value, respectively.

The Defense Problem

Let $(V_1^{\pi,\nu}, V_2^{\pi,\nu})$ denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy π^* that maximizes its expected reward from the victim-attacker- M interaction under the worst-case attack:

$$\pi^* \in \arg \max_{\pi \in \Pi} \min_{\nu \in BR(\pi)} V_1^{\pi,\nu}.$$

The Defense Problem

Let $(V_1^{\pi,\nu}, V_2^{\pi,\nu})$ denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy π^* that maximizes its expected reward from the victim-attacker- M interaction under the worst-case attack:

$$\pi^* \in \arg \max_{\pi \in \Pi} \min_{\nu \in BR(\pi)} V_1^{\pi,\nu}.$$

$$BR(\pi) := \arg \max_{\nu \in N} V_2^{\pi,\nu}$$

The Defense Problem

Let $(V_1^{\pi,\nu}, V_2^{\pi,\nu})$ denote the victim's and attacker's value, respectively.

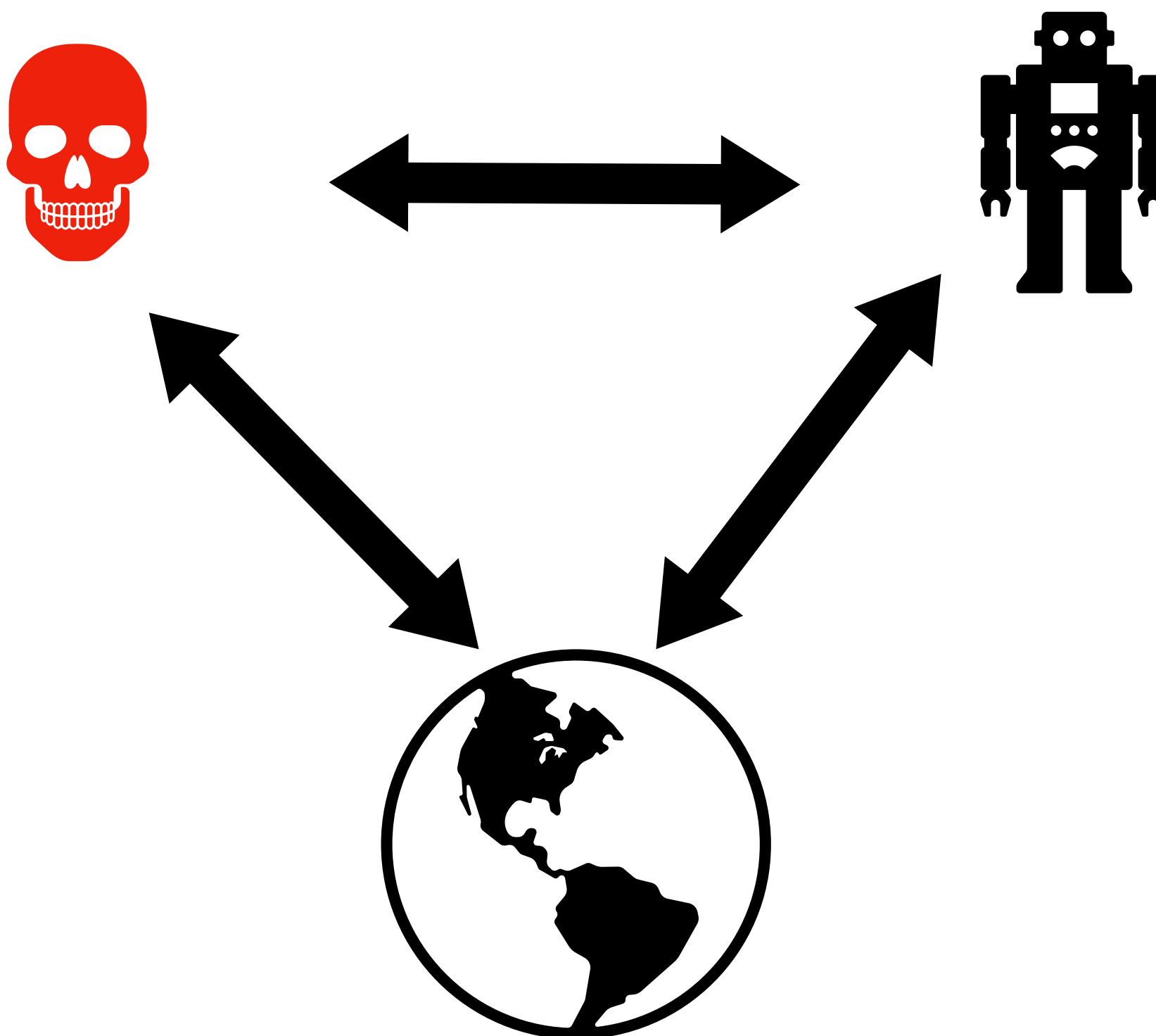
Definition 2 (Defense Problem). The victim seeks a policy π^* that maximizes its expected reward from the victim–attacker M interaction under the worst-case attack:

$$\pi^* \in \arg \max_{\pi \in \Pi} \min_{\nu \in BR(\pi)} V_1^{\pi,\nu}.$$

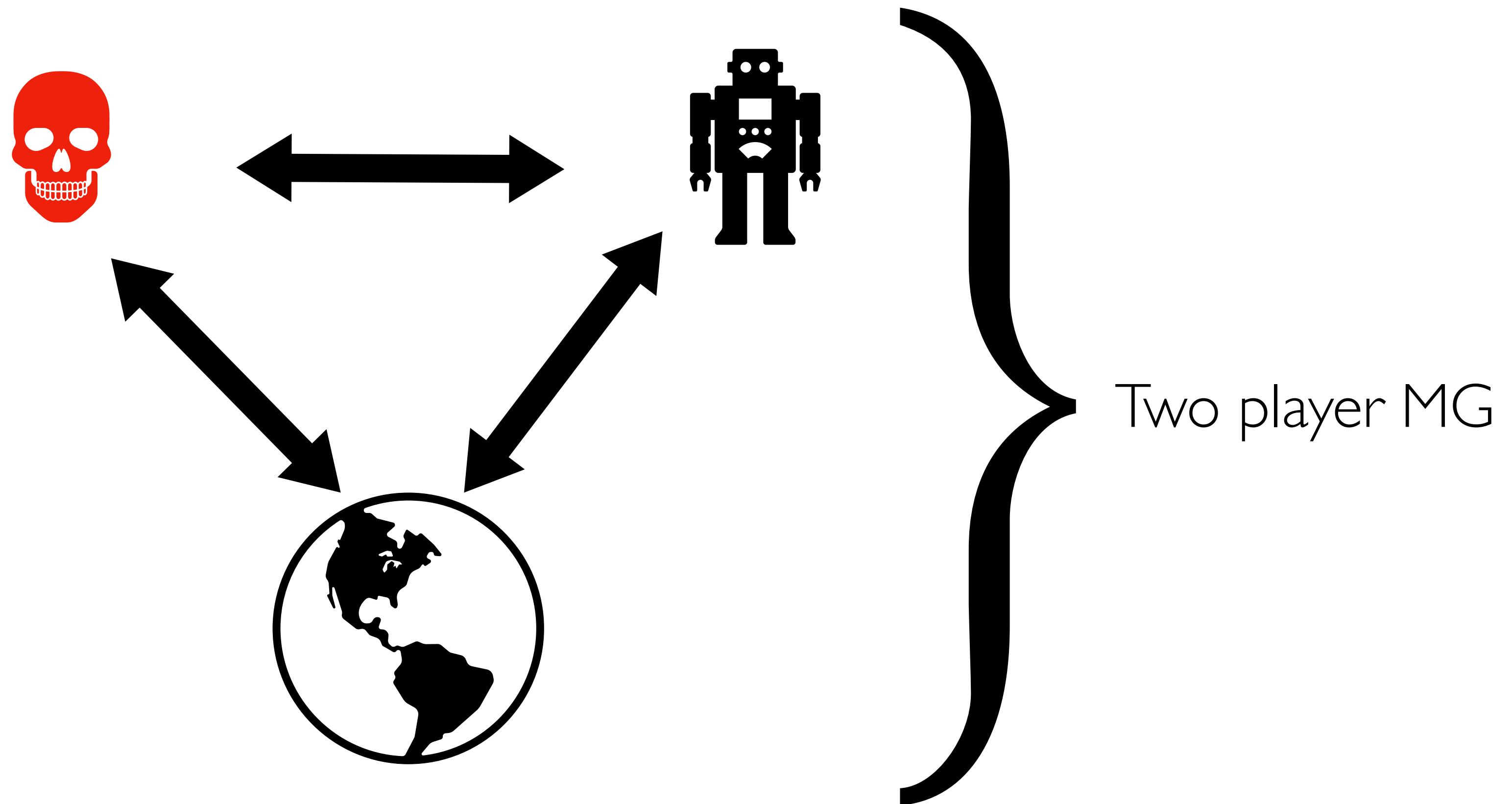
$$BR(\pi) := \arg \max_{\nu \in N} V_2^{\pi,\nu}$$

Reduction to MARL

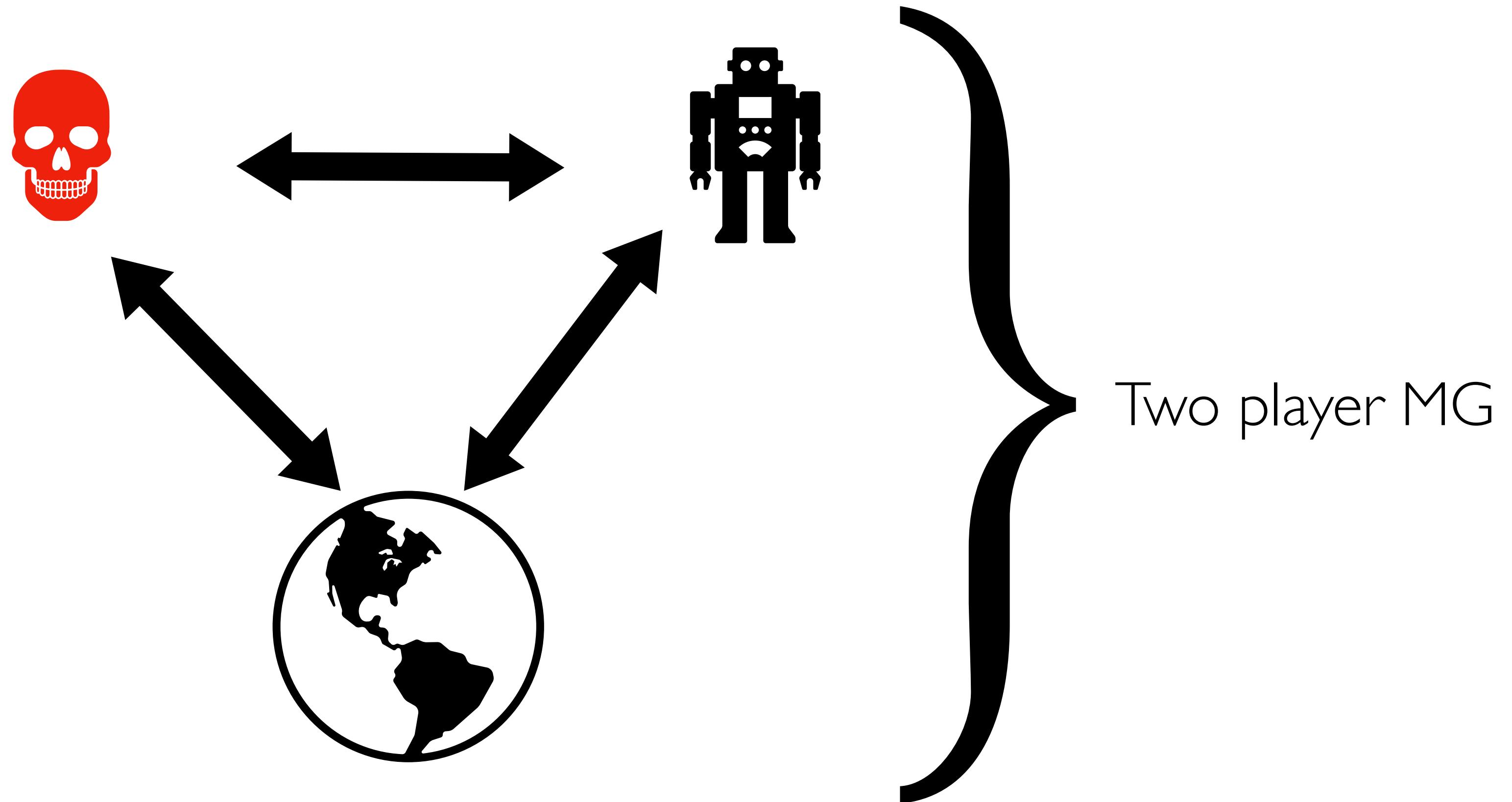
Reduction to MARL



Reduction to MARL



Reduction to MARL



Defense corresponds to a Weak Stackelberg Equilibrium (WSE).

Challenges

Challenges

- WSE need not exist.

Challenges

- WSE need not exist.
- WSE are generally non-Markovian!

Challenges

- WSE need not exist.
- WSE are generally non-Markovian!

Proposition: The defense problem is as hard as solving POMDPs.

Thus, the defense problem is NP-hard to even approximate.

Special Structure: Sequential Play

Special Structure: Sequential Play

Key: restrict observation attacks.

Special Structure: Sequential Play

Key: restrict observation attacks.

P2

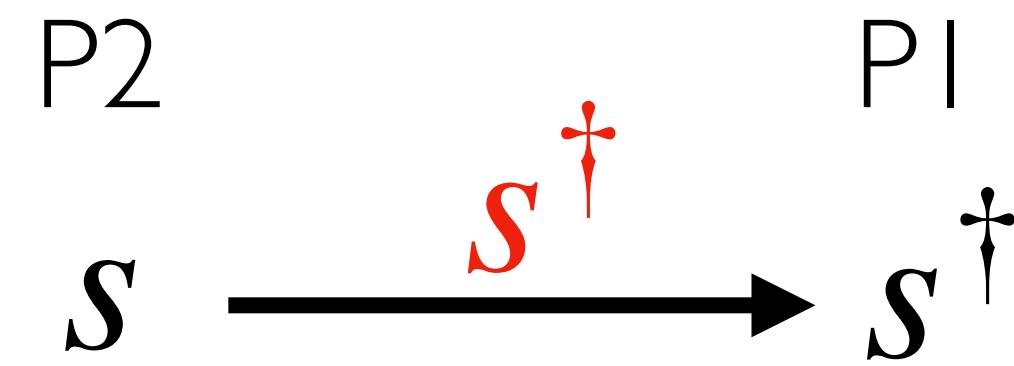
s

Special Structure: Sequential Play

Key: restrict observation attacks.

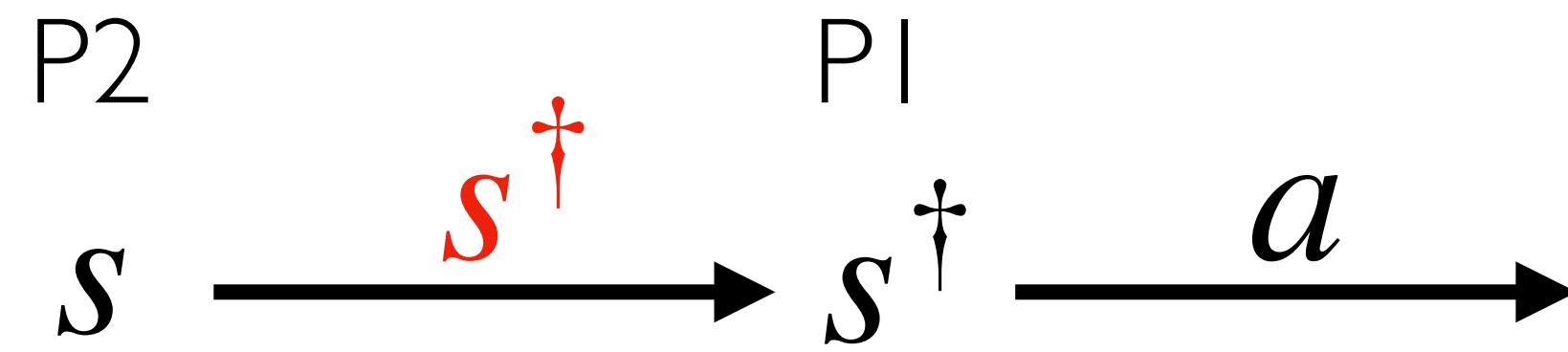
Special Structure: Sequential Play

Key: restrict observation attacks.



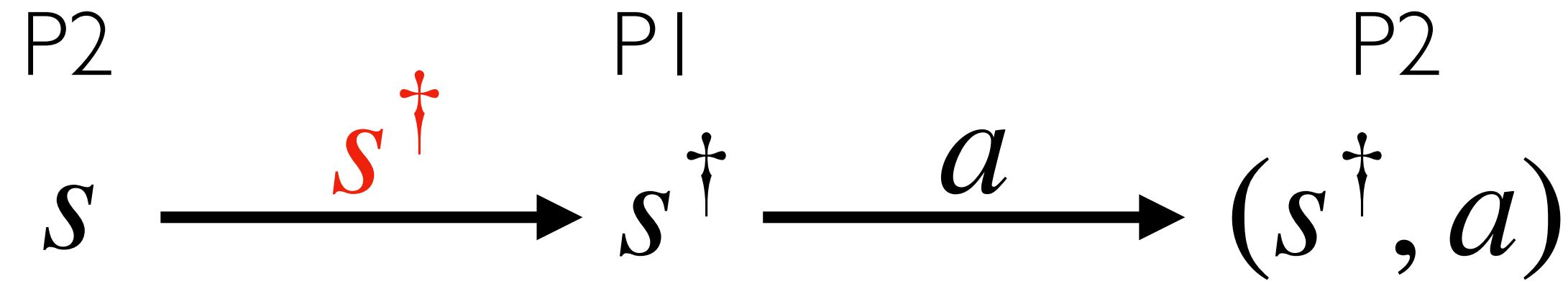
Special Structure: Sequential Play

Key: restrict observation attacks.



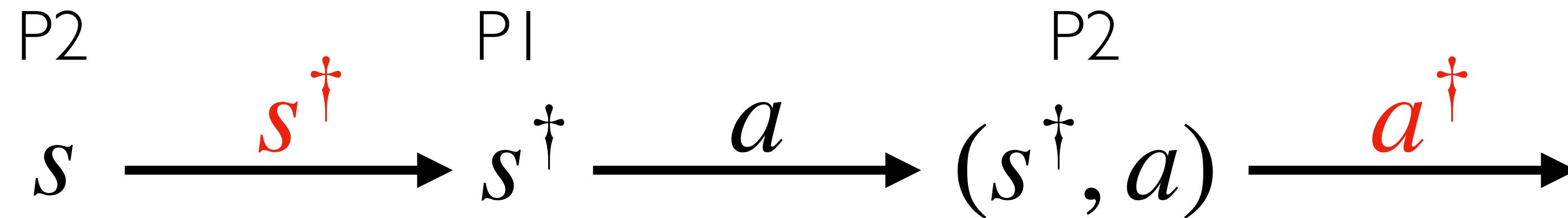
Special Structure: Sequential Play

Key: restrict observation attacks.



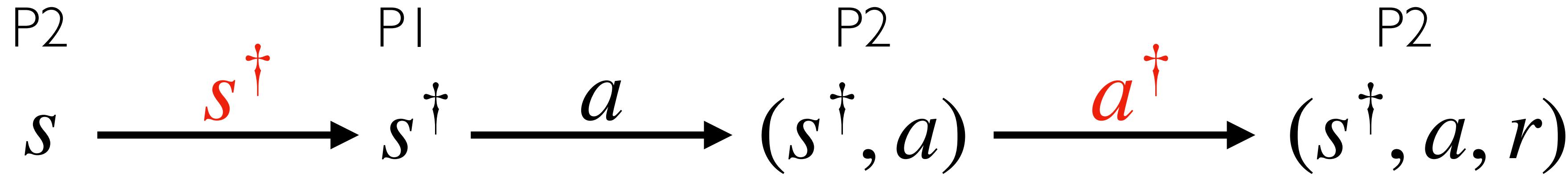
Special Structure: Sequential Play

Key: restrict observation attacks.



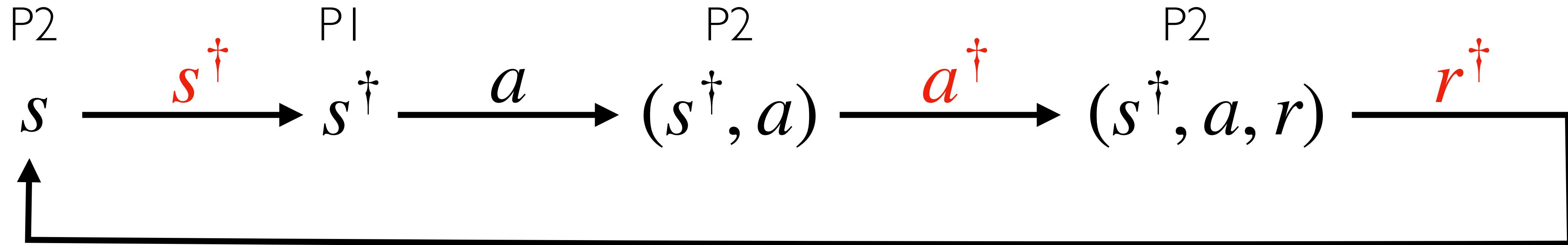
Special Structure: Sequential Play

Key: restrict observation attacks.



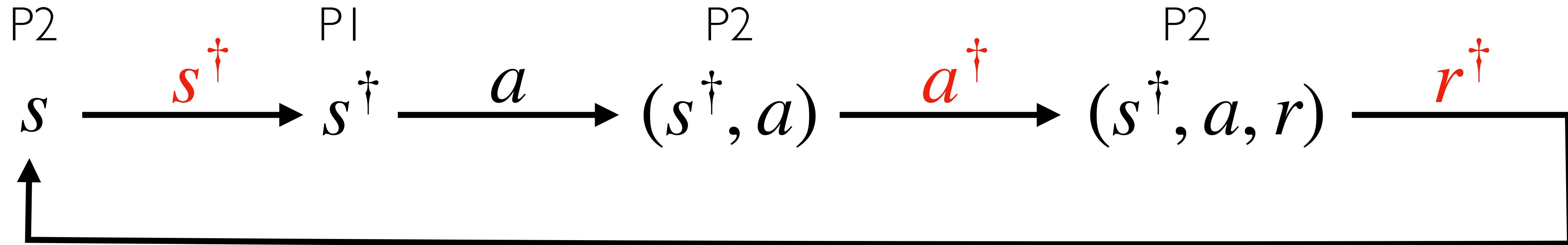
Special Structure: Sequential Play

Key: restrict observation attacks.



Special Structure: Sequential Play

Key: restrict observation attacks.



Game evolves like a *turn-based* Markov game \overline{G} .

Meta Turn-based Markov Game

- I. \bar{S} records the player's information at any subperiod:

$$\bar{\mathcal{S}}_1 = \mathcal{S} \quad \text{and} \quad \bar{\mathcal{S}}_2 = \mathcal{S} \cup (\mathcal{S} \cup \mathcal{A}) \cup (\mathcal{S} \cup \mathcal{A} \cup \mathcal{R})$$

2. \bar{A} captures the actions available at any subperiod:

$$\bar{\mathcal{A}}_1 = \mathcal{A} \quad \text{and} \quad \bar{\mathcal{A}}_2(s) \subseteq \mathcal{S}, \bar{\mathcal{A}}_2(s, a) \subseteq \mathcal{A}, \bar{\mathcal{A}}_2(s, a, r) \subseteq \mathbb{R}$$

3. Transitions capture the evolution of information.

Meta Turn-based Markov Game

1. \bar{S} records the player's information at any subperiod:

$$\bar{\mathcal{S}}_1 = \mathcal{S} \quad \text{and} \quad \bar{\mathcal{S}}_2 = \mathcal{S} \cup (\mathcal{S} \cup \mathcal{A}) \cup (\mathcal{S} \cup \mathcal{A} \cup \mathcal{R})$$

2. \bar{A} captures the actions available at any subperiod:

$$\bar{\mathcal{A}}_1 = \mathcal{A} \quad \text{and} \quad \bar{\mathcal{A}}_2(s) \subseteq \mathcal{S}, \quad \bar{\mathcal{A}}_2(s, a) \subseteq \mathcal{A}, \quad \bar{\mathcal{A}}_2(s, a, r) \subseteq \mathbb{R}$$

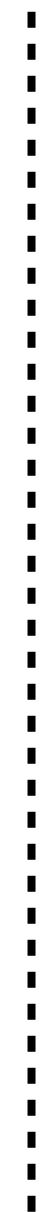
3. Transitions capture the evolution of information.

Proposition: Any WSE for \bar{G} is an optimal defense policy.

Efficient Reduction to MARL

Efficient Reduction to MARL

\overline{G}

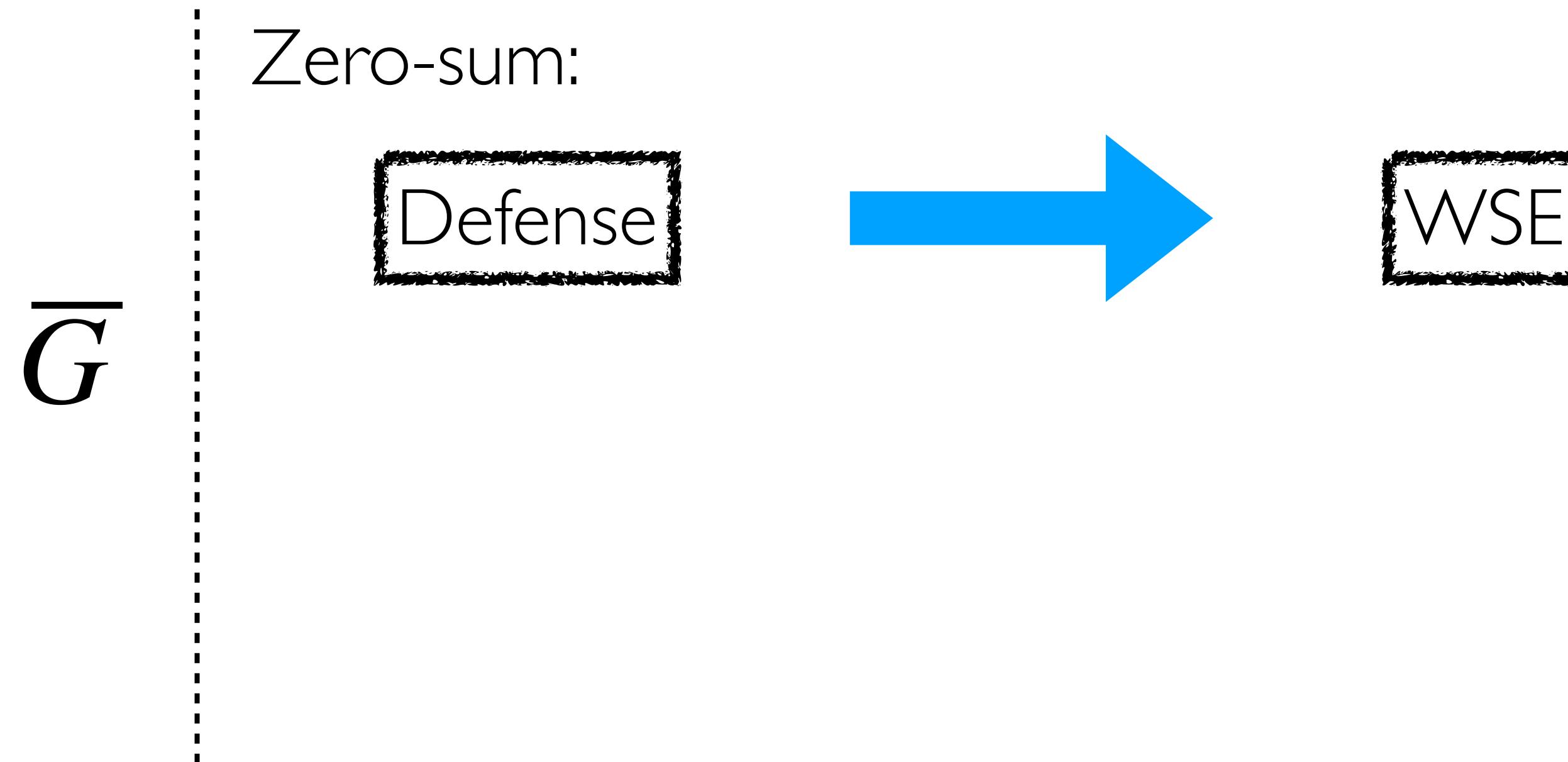


Efficient Reduction to MARL

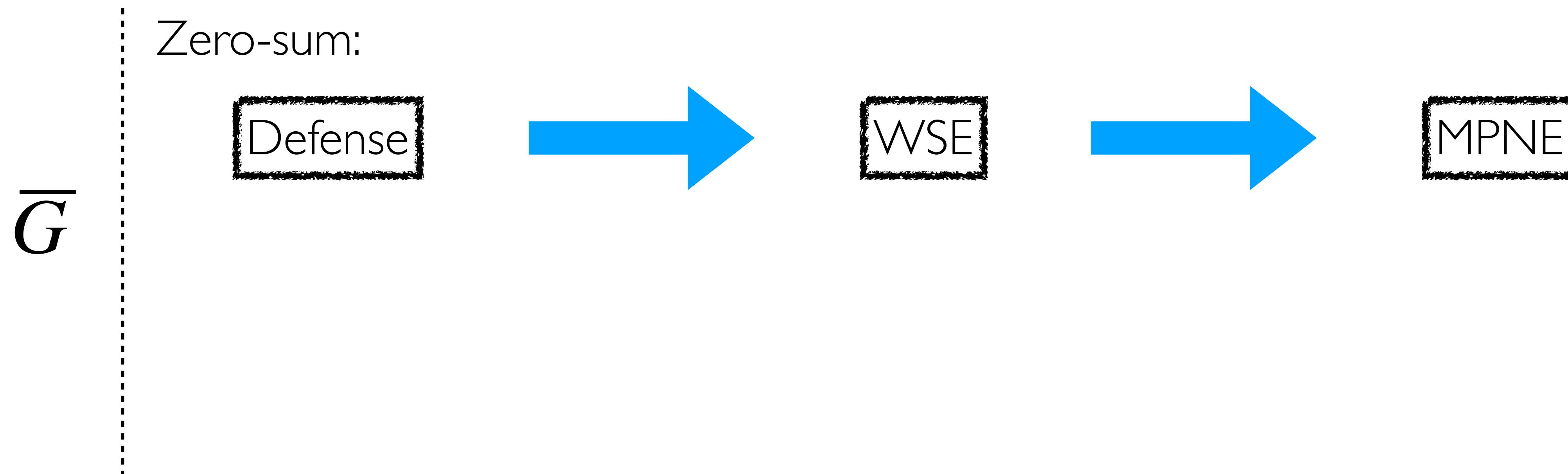
Zero-sum:

\overline{G}

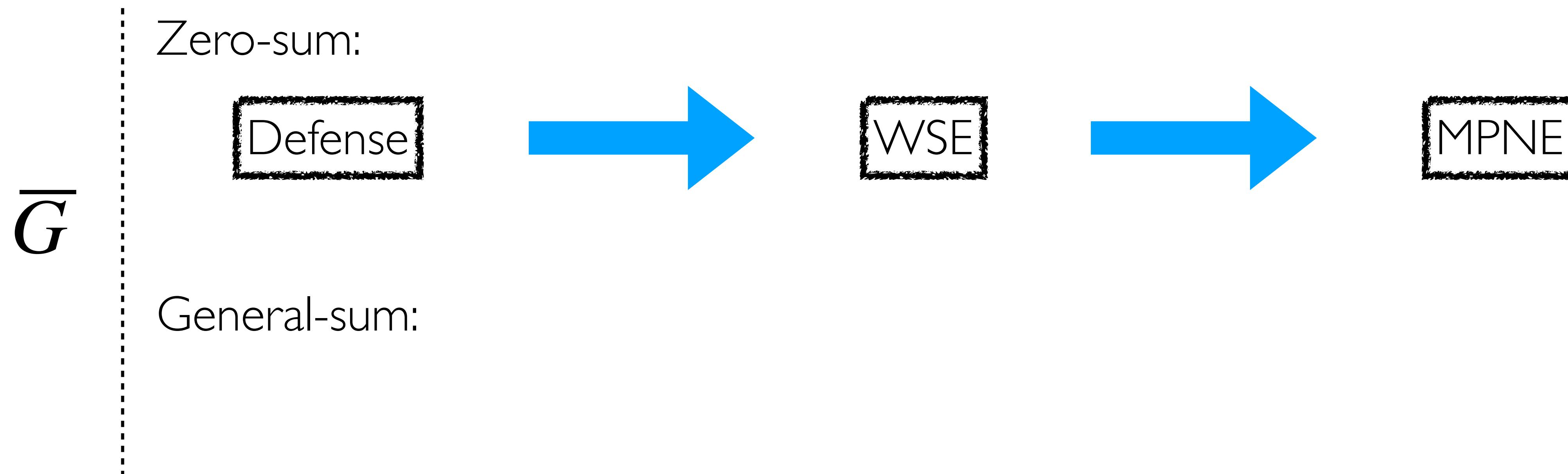
Efficient Reduction to MARL



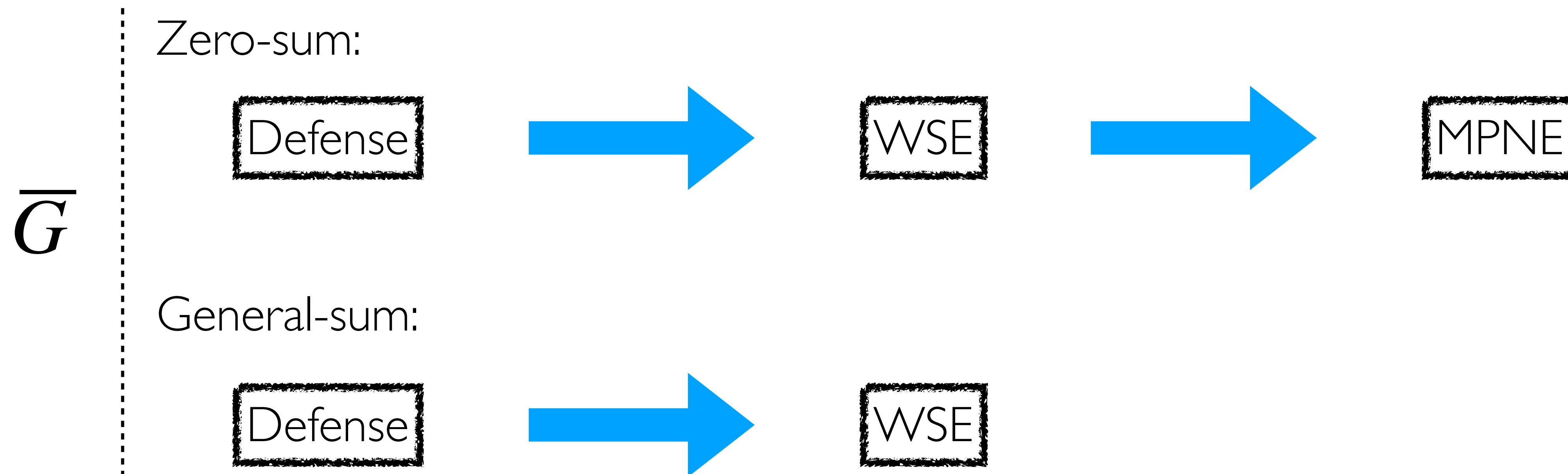
Efficient Reduction to MARL



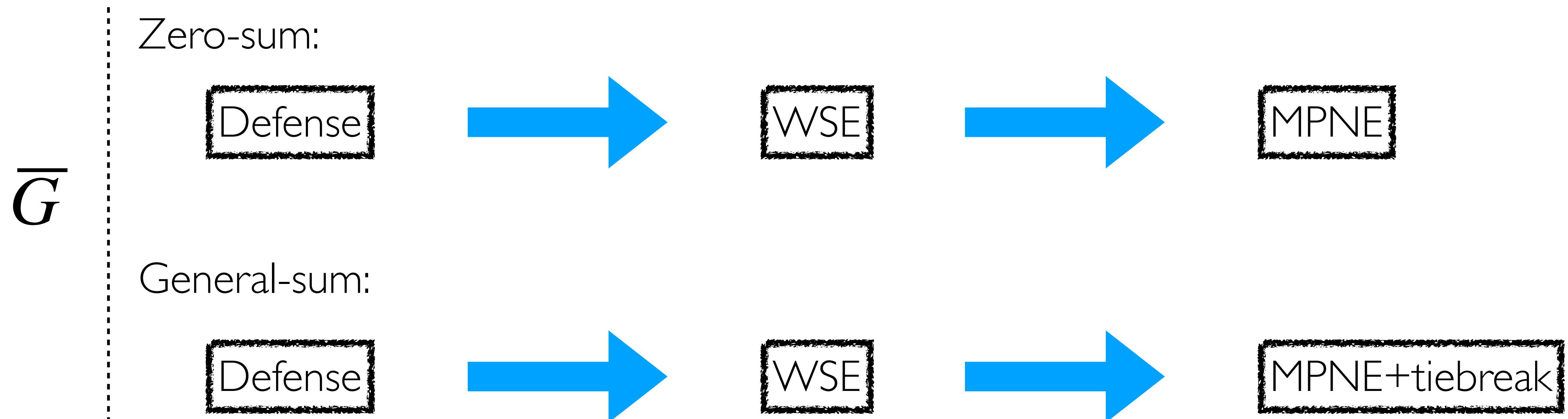
Efficient Reduction to MARL



Efficient Reduction to MARL



Efficient Reduction to MARL



Rollback Algorithm

Rollback Algorithm

Special Case: Action Attacks

Rollback Algorithm

Special Case: Action Attacks

I. Victim determines Attacker's best response to any action a :

$$BR_h(s, a) = \arg \max_{a^\dagger \in \overline{\mathcal{A}}(s, a)} [g_h(s, a, r_h(s, a)) + \mathbb{E}_{s' \sim P_h(s, a^\dagger)} [V_{h+1, 2}^*(s', \pi_{h+1}^*(s'))]]$$

Rollback Algorithm

Special Case: Action Attacks

1. Victim determines Attacker's best response to any action a :

$$BR_h(s, a) = \arg \max_{a^\dagger \in \overline{\mathcal{A}}(s, a)} [g_h(s, a, r_h(s, a)) + \mathbb{E}_{s' \sim P_h(s, a^\dagger)} [V_{h+1, 2}^*(s', \pi_{h+1}^*(s'))]]$$

2. Victim picks a based on the worst-case best-response:

$$V_{h, 1}^*(s) = \max_{a \in \mathcal{A}} \min_{a^\dagger \in BR_h(s, a)} [r_h(s, a^\dagger) + \mathbb{E}_{s' \sim P_h(s, a^\dagger)} [V_{h+1, 1}^*(s')]]$$

Guarantees

Guarantees

Theorem: An optimal defense can be computed or learned in polynomial time if observation attacks are not permitted, and

Guarantees

Theorem: An optimal defense can be computed or learned in polynomial time if observation attacks are not permitted, and

- I. \bar{G} is zero-sum, or

Guarantees

Theorem: An optimal defense can be computed or learned in polynomial time if observation attacks are not permitted, and

1. \bar{G} is zero-sum, or
2. \bar{G} has finite-horizon.

Guarantees

Theorem: An optimal defense can be computed or learned in polynomial time if observation attacks are not permitted, and

Complete characterization: hard \Leftrightarrow observation attacks!

2. \bar{G} has finite-horizon.

Conclusions

Conclusions

- Optimal attacks can be efficiently computed for all attack surfaces.

Conclusions

- Optimal attacks can be efficiently computed for all attack surfaces.
- The defense problem is NP-hard to even approximate.

Conclusions

- Optimal attacks can be efficiently computed for all attack surfaces.
- The defense problem is NP-hard to even approximate.
- Absent observation attacks, optimal defenses can be efficiently computed.

Conclusions

Thank you!

- Optimal attacks can be efficiently computed for all attack surfaces.
- The defense problem is NP-hard to even approximate.
- Absent observation attacks, optimal defenses can be efficiently computed.