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Disaster Relief with Autonomous Vehicles

2

e State Space is |
e Action Space Is (— 1,177
e New locationiss + a

 Reward for finding people In need.
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Performance of Optimal Policies

Unique optimal policy ™ is:

7Z->I<
t/S s 0 s_1
h | a0 a_
Hoat ac

Ihe optimal policy achieves value:

Vit =2(H — 1)
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Security [hreats to RL

* Playing an optimal policy for the ideal environment is not always optimal for the real
environment!

e Strategies to compute robust policies are needed.

* |nspiration for field of adversarial RL.
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I
Learn bad 7' Cause bad outcomes
Trojan

HYybrid: poison training to make
policy easily test-time attackable
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In Explaining and Harnessing Adversarial Examples, Goodfellow and his team added a small perturbation
to the image of a panda, as seen below. The result was surprising. Not only did the classifier mark the

panda as a gibbon, but did so with high confidence.

As you can see, a barely noticeable disturbance that appears normal to us can easily deceive an ML

model into predicting an incorrect class.

- ‘ “ ‘ ‘ ') \\ ‘ b. Q‘.\:X\(Q- ‘ .
.('.'. o' /"Ic ) ':‘ ;I .
s " ‘ . ".'.

“panda” “gibbon”

57.7% contidence 00.3% confidence
Source: Goodfellow et al, 2014
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Car Crashing

While the panda turned gibbon in the eyes of a machine is a harmless example of an adversarial attack,

there are other forms of danger we must watch out for.

For instance, adversarial examples can also be used to hijack the ML models behind autonomous

vehicles, causing them to misclassify ‘stop’ signs as ‘yield’, as seen below.

“Yield Sign”

Authentic Adversarial Adversarial
Input Perturbation Input

Source: Kumar et al, 2021
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Attack Surfaces

e State Attack: changes the state of M from s, to S:.
e Observation Attack: changes the agent's observation from o, to Of.
e Action Attack: changes the action M receives from a, to a;f.

e Reward Attack: changes the agent's reward from r, to r:.

R .

The attacker can manipulate any element of the interaction tuple (s, a, r
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Breakout
Game
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Check out Shubham’s full paper in
Neurips22!

Provable Defense against Backdoor

Policies in Reinforcement Learning
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True-State Attack

~ Attacker changes the environment's state to
w ; 1
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Optimal policies may be sensitive to noise or attacks.

Attacked 7™ Robust policy
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1 he Attack Problem

Attacker has its own reward g(s,, a,, r,) that depends on the victim's.

Definition 1 (Attack Problem). For any m, the attacker’s seeks a policy
v* € N that maximizes its expected reward from the victim-attacker-M
Interaction:

- _

NTU, UV t

V" € argmax Ey E Y g(se,ap, )| .
veN t—0)
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Attackers Perspective

Knowledge: s I

Attack: sT € S

Attack: o7

Attack a’ € A

Knowledge: s, 0

Knowledge: s, 0, a

N0,

Describes

MDP M
for the
attacker!
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Meta MDP

Attacker's interaction with 7 and M evolves according to MDP M.

|, § records the attacker's information at any subperiod:

S=SUSUO)USUOUA)USUOUAUR)
2. A captures the attacks available at any subperiod:

A(s) €S, A(s,0) € O, A(s,0,a) C A, A(s,0,a,7) CR

3. Transitions capture the evolution of information.

Proposition: Any optimal policy for M is an optimal attack policy.
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Reduction to RL

i -

Optimal attacks can be computed using standard RL techniques!

& &
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Computational Efficiency

| S| < SOAR and |A|<S+O0O+A+R

Attacking RL efficiently reduces to RL!

/I has only polynomially larger state and action space than M.



Can we defend against attacks!



Defense



1 he Defense Problem



1 he Defense Problem

Let (VI7", V") denote the victim's and attacker's value, respectively.



1 he Defense Problem

Let (VI7", V") denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy 7* that maxi-
mizes 1ts expected reward from the victim-attacker-M interaction under the
worst-case attack:

m" € argmax min V"
rell VvEBR(m)




1 he Defense Problem

Let (VI7", V") denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy 7* that maxi-
mizes 1ts expected reward from the victim-attacker-M interaction under the
worst-case attack:

m" € argmax min V"
rell VvEBR(m)

W

I R(r) := arg max ;

veN




1 he Defense Problem

Let (Vf’” : Vg’” ) denote the victim's and attacker's value, respectively.

Avolds Cat and Mouse Gamel

m" € argmax min V"
rell VvEBR(m)

W

I R(r) := arg max

veN
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Reduction to MARL

Defense corresponds to a Weak Stackelberg

Two player MG

—quilibrium (WSE).
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Challenges

e \WSE need not exist.

 WSE are generally non-Markovian!

Proposition: [ he defense problem is as hard as solving POMDPs.

Thus, the defense problem i1s NP-hard to even approximate.
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Special Structure: Sequential Play

Key: restrict observation attacks.

P2 P | P2 P2

S}L d CZT

’r ’r ’r r'
S —§ —>(S ,Cl)—’(S ,Cl,r)

Game evolves like a turn-based Markov game G.
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Meta lurn-based Markov Game

|, § records the player’s information at any subperiod:
Si=8 and S =SUSUAUSUAUR)
2. A captures the actions available at any subperiod:

A=A and Ay(s) CS, As(s,a) C A, Ay(s,a,7) CR

3. Transitions capture the evolution of information.

Proposition: Any WSE for G is an optimal defense policy.
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Rollback Algorithm

Special Case: Action Attacks

|.Victim determines Attacker's best response to any action a:

BRh(87 CL) — arg_max [gh(sa a, Th(sv CL)) -+ <1js’rvPh(s,aT) [Vh*—l—l,Z(S,a WZ—H(S/))H
at€A(s,a)

2.Victim picks a based on the worst-case best-response:

v* _ . -‘- 43 / V>|< /
h,l(s) Ichlea:é}l( aTEglRI;ILl(s,a) [Th(sa i ) T S NPh(s,aT) [ h—|—1,1(S )H
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Guarantees

Theorem: An optimal defense can be computed or learned in
polynomial time It observation attacks are not permitted, and

Complete characterization: hard <= observation attacks!

2. G has finite-horizon.
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Conclusions

[ hank you!

e Optimal attacks can be efficiently computed for all attack surfaces.
* [he defense problem is NP-hard to even approximate.

 Absent observation attacks, optimal defenses can be efficiently computed.



