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π(s1) = a1,2 π(s2) = a2,1
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The value of M under  is:  .π Vπ(s) = Eπ [
H

∑
h=1

rh(s, a) ∣ s0 = s]
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Vπ(s1) = 10 − 1 − 1 = 8
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π* = sup
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Vπ(s0)
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Disaster Relief with Autonomous Vehicles
• State Space is 

• Action Space is 

• New location is 

• Reward for finding people in need.

ℝ2

[−1,1]2

s + a
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• Playing an optimal policy for the ideal environment is not always optimal for the real 
environment!

• Strategies to compute robust policies are needed.

• Inspiration for field of adversarial RL.
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• Green Squares are obstacles.

• Yellow Squares are traversable.

• The agent starts at top left corner.

• The agent receives reward only at the bottom 
right corner. 

• An optimal (shortest path) policy for the agent is 
in purple.
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Check out Shubham’s full paper in 
Neurips22! 

Provable Defense against Backdoor 
Policies in Reinforcement Learning
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Abstract

A deep reinforcement learning (DRL) agent observes its states through observa-
tions, which may contain natural measurement errors or adversarial noises. Since
the observations deviate from the true states, they can mislead the agent into making
suboptimal actions. Several works have shown this vulnerability via adversarial
attacks, but existing approaches on improving the robustness of DRL under this
setting have limited success and lack for theoretical principles. We show that
naively applying existing techniques on improving robustness for classification
tasks, like adversarial training, is ineffective for many RL tasks. We propose the
state-adversarial Markov decision process (SA-MDP) to study the fundamental
properties of this problem, and develop a theoretically principled policy regulariza-
tion which can be applied to a large family of DRL algorithms, including proximal
policy optimization (PPO), deep deterministic policy gradient (DDPG) and deep Q
networks (DQN), for both discrete and continuous action control problems. We
significantly improve the robustness of PPO, DDPG and DQN agents under a
suite of strong white box adversarial attacks, including new attacks of our own.
Additionally, we find that a robust policy noticeably improves DRL performance
even without an adversary in a number of environments. Our code is available at
https://github.com/chenhongge/StateAdvDRL.

1 Introduction
With deep neural networks (DNNs) as powerful function approximators, deep reinforcement learning
(DRL) has achieved great success on many complex tasks [46, 35, 33, 65, 20] and even on some
safety-critical applications (e.g., autonomous driving [75, 57, 49]). Despite achieving super-human
level performance on many tasks, the existence of adversarial examples [70] in DNNs and many
successful attacks to DRL [27, 4, 36, 50, 82] motivate us to study robust DRL algorithms.

When an RL agent obtains its current state via observations, the observations may contain uncertainty
that naturally originates from unavoidable sensor errors or equipment inaccuracy. A policy not robust
to such uncertainty can lead to catastrophic failures (e.g., the navigation setting in Figure 1). To
ensure safety under the worst case uncertainty, we consider the adversarial setting where the state
observation is adversarially perturbed from s to ⌫(s), yet the underlying true environment state
s is unchanged. This setting is aligned with many adversarial attacks on state observations (e.g.,
[27, 36]) and cannot be characterized by existing tools such as partially observable Markov decision
process (POMDP), because the conditional observation probabilities in POMDP cannot capture the
adversarial (worst case) scenario. Studying the fundamental principles in this setting is crucial.

Before basic principles were developed, several early approaches [5, 40, 50] extended existing adver-
sarial defenses for supervised learning, e.g., adversarial training [32, 39, 88] to improve robustness

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.
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Abstract

To understand the security threats to reinforcement
learning (RL) algorithms, this paper studies poison-
ing attacks to manipulate any order-optimal learn-
ing algorithm towards a targeted policy in episodic
RL and examines the potential damage of two nat-
ural types of poisoning attacks, i.e., the manipu-
lation of reward and action. We discover that the
effect of attacks crucially depend on whether the
rewards are bounded or unbounded. In bounded re-
ward settings, we show that only reward manipula-
tion or only action manipulation cannot guarantee a
successful attack. However, by combining reward
and action manipulation, the adversary can manipu-
late any order-optimal learning algorithm to follow

any targeted policy with Θ̃(
√
T ) total attack cost,

which is order-optimal, without any knowledge of
the underlying MDP. In contrast, in unbounded re-
ward settings, we show that reward manipulation
attacks are sufficient for an adversary to success-
fully manipulate any order-optimal learning algo-

rithm to follow any targeted policy using Õ(
√
T )

amount of contamination. Our results reveal useful
insights about what can or cannot be achieved by
poisoning attacks, and are set to spur more works
on the design of robust RL algorithms.

1 Introduction

Learning algorithms have been widely used in web services
[Zhao et al., 2018], conversational AI [Dhingra et al., 2016],
UAV coordination [Venugopal et al., 2021], medical trials
[Badanidiyuru et al., 2018; Rangi and Franceschetti, 2019],
and crowdsourcing systems [Rangi and Franceschetti, 2018].
The distributed nature of these applications makes these al-
gorithms prone to third party attacks. For example, in web
services decision making critically depends on reward col-
lection, and this is prone to attacks that can impact observa-
tions and monitoring, delay or temper rewards, produce link
failures, and generally modify or delete information through
hijacking of communication links [Agarwal et al., 2016;
Cardenas et al., 2008]. Making these systems secure re-
quires an understanding of the regime where the systems

may be vulnerable, and designing ways to mitigate these at-
tacks. This paper focuses on the former aspect, namely un-
derstanding of the regime where the systems can be attacked,
in episodic Reinforcement Learning (RL).

We consider a man in the middle (MITM) attack. In this
attack, there are three entities: the environment, the learner
(RL algorithm), and the adversary. The learner interacts with
the environment for T episodes, and each episode has H
steps. In episode t ≤ T at step h ≤ H , the learner ob-
serves the state st(h) ∈ S of the environment, selects an
action at(h) ∈ A, the environment then generates a reward
rt(st(h), at(h)) and changes its state based on an underlying
Markov Decision Process (MDP), and attempts to communi-
cate the new state to the learner. However, an adversary acts
as a “man in the middle” between the learner and the envi-
ronment. It can observe and may manipulate the action at(h)
to aot (h) ∈ A which will generate reward rt(st(h), aot (h))
corresponding to the manipulated action. Additionally, the
adversary may also intercept the reward rt(st(h), aot (h)) by
adding contamination noise ϵt,h(st(h), at(h)). With both at-
tacks, the learner ends up observing the contaminated reward
rot (st(h), at(h)) = rt(st(h), aot (h)) + ϵt,h(st(h), at(h)).
The cost of attack is measured as the amount of contami-
nation

∑

t,h |ϵt,h(st(h), at(h))| and number of action ma-

nipulations
∑

t,h 1(at(h) ̸= aot (h)), respectively. Notably,

with the wide application of RL today, MITM attack is a
realistic concern to the vulnerability of RL algorithms and
is thus important to understand. For instance, RL-based
UAV coordination to reduce poaching activities in conser-
vation areas is naturally subject to poachers’ poisoning at-
tacks, which can falsify the reward feedback (i.e., reward ma-
nipulation) and executed actions (i.e., action manipulation)
[Venugopal et al., 2021]; similarly, RL algorithms for recom-
mender systems are subject to attacks from hackers or com-
petitors [Zhao et al., 2018].

Reward poisoning attack is a special case of the MITM
attack where aot (h) = at(h), and has been widely stud-
ied in both RL and Multi-Armed Bandits (MAB) settings
[Jun et al., 2018; Rakhsha et al., 2020; Rangi et al., 2022].
Likewise, action manipulation attack is another special case
of the MITM attack where ϵt,h(st(h), at(h)) = 0, and has
been previously studied for MAB setting [Liu and Lai, 2020].
Another variant of action manipulation attack, recently stud-
ied in RL [Rakhsha et al., 2020], is manipulation of the tran-

[Training-time] Action and Reward Attacks
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failures, and generally modify or delete information through
hijacking of communication links [Agarwal et al., 2016;
Cardenas et al., 2008]. Making these systems secure re-
quires an understanding of the regime where the systems

may be vulnerable, and designing ways to mitigate these at-
tacks. This paper focuses on the former aspect, namely un-
derstanding of the regime where the systems can be attacked,
in episodic Reinforcement Learning (RL).

We consider a man in the middle (MITM) attack. In this
attack, there are three entities: the environment, the learner
(RL algorithm), and the adversary. The learner interacts with
the environment for T episodes, and each episode has H
steps. In episode t ≤ T at step h ≤ H , the learner ob-
serves the state st(h) ∈ S of the environment, selects an
action at(h) ∈ A, the environment then generates a reward
rt(st(h), at(h)) and changes its state based on an underlying
Markov Decision Process (MDP), and attempts to communi-
cate the new state to the learner. However, an adversary acts
as a “man in the middle” between the learner and the envi-
ronment. It can observe and may manipulate the action at(h)
to aot (h) ∈ A which will generate reward rt(st(h), aot (h))
corresponding to the manipulated action. Additionally, the
adversary may also intercept the reward rt(st(h), aot (h)) by
adding contamination noise ϵt,h(st(h), at(h)). With both at-
tacks, the learner ends up observing the contaminated reward
rot (st(h), at(h)) = rt(st(h), aot (h)) + ϵt,h(st(h), at(h)).
The cost of attack is measured as the amount of contami-
nation

∑

t,h |ϵt,h(st(h), at(h))| and number of action ma-

nipulations
∑

t,h 1(at(h) ̸= aot (h)), respectively. Notably,

with the wide application of RL today, MITM attack is a
realistic concern to the vulnerability of RL algorithms and
is thus important to understand. For instance, RL-based
UAV coordination to reduce poaching activities in conser-
vation areas is naturally subject to poachers’ poisoning at-
tacks, which can falsify the reward feedback (i.e., reward ma-
nipulation) and executed actions (i.e., action manipulation)
[Venugopal et al., 2021]; similarly, RL algorithms for recom-
mender systems are subject to attacks from hackers or com-
petitors [Zhao et al., 2018].

Reward poisoning attack is a special case of the MITM
attack where aot (h) = at(h), and has been widely stud-
ied in both RL and Multi-Armed Bandits (MAB) settings
[Jun et al., 2018; Rakhsha et al., 2020; Rangi et al., 2022].
Likewise, action manipulation attack is another special case
of the MITM attack where ϵt,h(st(h), at(h)) = 0, and has
been previously studied for MAB setting [Liu and Lai, 2020].
Another variant of action manipulation attack, recently stud-
ied in RL [Rakhsha et al., 2020], is manipulation of the tran-

[Training-time] Action and Reward Attacks

Defense Against Reward Poisoning Attacks in
Reinforcement Learning

Kiarash Banihashem
MPI-SWS

kbanihas@mpi-sws.org

Adish Singla
MPI-SWS

adishs@mpi-sws.org

Goran Radanovic
MPI-SWS

gradanovic@mpi-sws.org

Abstract

We study defense strategies against reward poisoning attacks in reinforcement
learning. As a threat model, we consider attacks that minimally alter rewards to
make the attacker’s target policy uniquely optimal under the poisoned rewards, with
the optimality gap specified by an attack parameter. Our goal is to design agents
that are robust against such attacks in terms of the worst-case utility w.r.t. the true,
unpoisoned, rewards while computing their policies under the poisoned rewards.
We propose an optimization framework for deriving optimal defense policies, both
when the attack parameter is known and unknown. Moreover, we show that defense
policies that are solutions to the proposed optimization problems have provable
performance guarantees. In particular, we provide the following bounds with
respect to the true, unpoisoned, rewards: a) lower bounds on the expected return of
the defense policies, and b) upper bounds on how suboptimal these defense policies
are compared to the attacker’s target policy. Using simulation-based experiments,
we demonstrate the effectiveness of our defense approach.

1 Introduction

One of the key challenges in designing trustworthy AI systems is ensuring that they are technically
robust and resilient to security threats [13]. Amongst many requirements that are important to satisfy
in order for an AI system to be deemed trustworthy is robustness to adversarial attacks [16].
Standard approaches to reinforcement learning (RL) [48] have shown to be susceptible to adversarial
attacks which manipulate the feedback that an agent receives from its environment, i.e., its input
data. These attacks broadly fall under two categories: a) test-time attacks, which manipulate an
agent’s input data at test-time without changing the agent’s policy [18, 26, 53], and b) training-time
attacks that manipulate an agent’s input data at training-time, thereby influencing the agent’s learned
policy [57, 31, 19, 43, 42, 59, 47]. In this paper, we focus on training-time attacks which specifically
modify rewards (aka reward poisoning) to force the agent into adopting a target policy [31, 42].
Prior work on reward poisoning attacks on RL primarily focuses on designing optimal attacks.
In this paper, we take a different perspective on targeted reward poisoning attacks, and focus on
designing defense strategies that are effective against such attacks. This is challenging, given that
the attacker is typically unconstrained in poisoning the rewards to force the target policy, while the
agent’s performance is measured under the true reward function, which is unknown. The key idea
that we exploit in our work is that the poisoning attacks have an underlying structure arising from the
attacker’s objective to minimize the cost of the attack needed to force the target policy. We therefore
ask the following question: Can we design an effective defense strategy against reward poisoning
attacks by exploiting the underlying structure of these attacks?
In this paper, we answer this question affirmatively. While an agent only has access to the poisoned
rewards, it can still infer some information about the true reward function, using the fact that
the attack exhibits some structure. By maximizing the worst-case utility over the set of plausible
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Abstract

A deep reinforcement learning (DRL) agent observes its states through observa-
tions, which may contain natural measurement errors or adversarial noises. Since
the observations deviate from the true states, they can mislead the agent into making
suboptimal actions. Several works have shown this vulnerability via adversarial
attacks, but existing approaches on improving the robustness of DRL under this
setting have limited success and lack for theoretical principles. We show that
naively applying existing techniques on improving robustness for classification
tasks, like adversarial training, is ineffective for many RL tasks. We propose the
state-adversarial Markov decision process (SA-MDP) to study the fundamental
properties of this problem, and develop a theoretically principled policy regulariza-
tion which can be applied to a large family of DRL algorithms, including proximal
policy optimization (PPO), deep deterministic policy gradient (DDPG) and deep Q
networks (DQN), for both discrete and continuous action control problems. We
significantly improve the robustness of PPO, DDPG and DQN agents under a
suite of strong white box adversarial attacks, including new attacks of our own.
Additionally, we find that a robust policy noticeably improves DRL performance
even without an adversary in a number of environments. Our code is available at
https://github.com/chenhongge/StateAdvDRL.

1 Introduction
With deep neural networks (DNNs) as powerful function approximators, deep reinforcement learning
(DRL) has achieved great success on many complex tasks [46, 35, 33, 65, 20] and even on some
safety-critical applications (e.g., autonomous driving [75, 57, 49]). Despite achieving super-human
level performance on many tasks, the existence of adversarial examples [70] in DNNs and many
successful attacks to DRL [27, 4, 36, 50, 82] motivate us to study robust DRL algorithms.

When an RL agent obtains its current state via observations, the observations may contain uncertainty
that naturally originates from unavoidable sensor errors or equipment inaccuracy. A policy not robust
to such uncertainty can lead to catastrophic failures (e.g., the navigation setting in Figure 1). To
ensure safety under the worst case uncertainty, we consider the adversarial setting where the state
observation is adversarially perturbed from s to ⌫(s), yet the underlying true environment state
s is unchanged. This setting is aligned with many adversarial attacks on state observations (e.g.,
[27, 36]) and cannot be characterized by existing tools such as partially observable Markov decision
process (POMDP), because the conditional observation probabilities in POMDP cannot capture the
adversarial (worst case) scenario. Studying the fundamental principles in this setting is crucial.

Before basic principles were developed, several early approaches [5, 40, 50] extended existing adver-
sarial defenses for supervised learning, e.g., adversarial training [32, 39, 88] to improve robustness
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Abstract

To understand the security threats to reinforcement
learning (RL) algorithms, this paper studies poison-
ing attacks to manipulate any order-optimal learn-
ing algorithm towards a targeted policy in episodic
RL and examines the potential damage of two nat-
ural types of poisoning attacks, i.e., the manipu-
lation of reward and action. We discover that the
effect of attacks crucially depend on whether the
rewards are bounded or unbounded. In bounded re-
ward settings, we show that only reward manipula-
tion or only action manipulation cannot guarantee a
successful attack. However, by combining reward
and action manipulation, the adversary can manipu-
late any order-optimal learning algorithm to follow

any targeted policy with Θ̃(
√
T ) total attack cost,

which is order-optimal, without any knowledge of
the underlying MDP. In contrast, in unbounded re-
ward settings, we show that reward manipulation
attacks are sufficient for an adversary to success-
fully manipulate any order-optimal learning algo-

rithm to follow any targeted policy using Õ(
√
T )

amount of contamination. Our results reveal useful
insights about what can or cannot be achieved by
poisoning attacks, and are set to spur more works
on the design of robust RL algorithms.

1 Introduction

Learning algorithms have been widely used in web services
[Zhao et al., 2018], conversational AI [Dhingra et al., 2016],
UAV coordination [Venugopal et al., 2021], medical trials
[Badanidiyuru et al., 2018; Rangi and Franceschetti, 2019],
and crowdsourcing systems [Rangi and Franceschetti, 2018].
The distributed nature of these applications makes these al-
gorithms prone to third party attacks. For example, in web
services decision making critically depends on reward col-
lection, and this is prone to attacks that can impact observa-
tions and monitoring, delay or temper rewards, produce link
failures, and generally modify or delete information through
hijacking of communication links [Agarwal et al., 2016;
Cardenas et al., 2008]. Making these systems secure re-
quires an understanding of the regime where the systems

may be vulnerable, and designing ways to mitigate these at-
tacks. This paper focuses on the former aspect, namely un-
derstanding of the regime where the systems can be attacked,
in episodic Reinforcement Learning (RL).

We consider a man in the middle (MITM) attack. In this
attack, there are three entities: the environment, the learner
(RL algorithm), and the adversary. The learner interacts with
the environment for T episodes, and each episode has H
steps. In episode t ≤ T at step h ≤ H , the learner ob-
serves the state st(h) ∈ S of the environment, selects an
action at(h) ∈ A, the environment then generates a reward
rt(st(h), at(h)) and changes its state based on an underlying
Markov Decision Process (MDP), and attempts to communi-
cate the new state to the learner. However, an adversary acts
as a “man in the middle” between the learner and the envi-
ronment. It can observe and may manipulate the action at(h)
to aot (h) ∈ A which will generate reward rt(st(h), aot (h))
corresponding to the manipulated action. Additionally, the
adversary may also intercept the reward rt(st(h), aot (h)) by
adding contamination noise ϵt,h(st(h), at(h)). With both at-
tacks, the learner ends up observing the contaminated reward
rot (st(h), at(h)) = rt(st(h), aot (h)) + ϵt,h(st(h), at(h)).
The cost of attack is measured as the amount of contami-
nation

∑

t,h |ϵt,h(st(h), at(h))| and number of action ma-

nipulations
∑

t,h 1(at(h) ̸= aot (h)), respectively. Notably,

with the wide application of RL today, MITM attack is a
realistic concern to the vulnerability of RL algorithms and
is thus important to understand. For instance, RL-based
UAV coordination to reduce poaching activities in conser-
vation areas is naturally subject to poachers’ poisoning at-
tacks, which can falsify the reward feedback (i.e., reward ma-
nipulation) and executed actions (i.e., action manipulation)
[Venugopal et al., 2021]; similarly, RL algorithms for recom-
mender systems are subject to attacks from hackers or com-
petitors [Zhao et al., 2018].

Reward poisoning attack is a special case of the MITM
attack where aot (h) = at(h), and has been widely stud-
ied in both RL and Multi-Armed Bandits (MAB) settings
[Jun et al., 2018; Rakhsha et al., 2020; Rangi et al., 2022].
Likewise, action manipulation attack is another special case
of the MITM attack where ϵt,h(st(h), at(h)) = 0, and has
been previously studied for MAB setting [Liu and Lai, 2020].
Another variant of action manipulation attack, recently stud-
ied in RL [Rakhsha et al., 2020], is manipulation of the tran-
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Abstract

We study defense strategies against reward poisoning attacks in reinforcement
learning. As a threat model, we consider attacks that minimally alter rewards to
make the attacker’s target policy uniquely optimal under the poisoned rewards, with
the optimality gap specified by an attack parameter. Our goal is to design agents
that are robust against such attacks in terms of the worst-case utility w.r.t. the true,
unpoisoned, rewards while computing their policies under the poisoned rewards.
We propose an optimization framework for deriving optimal defense policies, both
when the attack parameter is known and unknown. Moreover, we show that defense
policies that are solutions to the proposed optimization problems have provable
performance guarantees. In particular, we provide the following bounds with
respect to the true, unpoisoned, rewards: a) lower bounds on the expected return of
the defense policies, and b) upper bounds on how suboptimal these defense policies
are compared to the attacker’s target policy. Using simulation-based experiments,
we demonstrate the effectiveness of our defense approach.

1 Introduction

One of the key challenges in designing trustworthy AI systems is ensuring that they are technically
robust and resilient to security threats [13]. Amongst many requirements that are important to satisfy
in order for an AI system to be deemed trustworthy is robustness to adversarial attacks [16].
Standard approaches to reinforcement learning (RL) [48] have shown to be susceptible to adversarial
attacks which manipulate the feedback that an agent receives from its environment, i.e., its input
data. These attacks broadly fall under two categories: a) test-time attacks, which manipulate an
agent’s input data at test-time without changing the agent’s policy [18, 26, 53], and b) training-time
attacks that manipulate an agent’s input data at training-time, thereby influencing the agent’s learned
policy [57, 31, 19, 43, 42, 59, 47]. In this paper, we focus on training-time attacks which specifically
modify rewards (aka reward poisoning) to force the agent into adopting a target policy [31, 42].
Prior work on reward poisoning attacks on RL primarily focuses on designing optimal attacks.
In this paper, we take a different perspective on targeted reward poisoning attacks, and focus on
designing defense strategies that are effective against such attacks. This is challenging, given that
the attacker is typically unconstrained in poisoning the rewards to force the target policy, while the
agent’s performance is measured under the true reward function, which is unknown. The key idea
that we exploit in our work is that the poisoning attacks have an underlying structure arising from the
attacker’s objective to minimize the cost of the attack needed to force the target policy. We therefore
ask the following question: Can we design an effective defense strategy against reward poisoning
attacks by exploiting the underlying structure of these attacks?
In this paper, we answer this question affirmatively. While an agent only has access to the poisoned
rewards, it can still infer some information about the true reward function, using the fact that
the attack exhibits some structure. By maximizing the worst-case utility over the set of plausible
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Definition 1 (Attack Problem). For any ⇡, the attacker’s seeks a policy
⌫⇤ 2 N that maximizes its expected reward from the victim-attacker-M
interaction:

⌫⇤ 2 argmax
⌫2N

E⇡,⌫
M

" 1X

t=0

�tg(st, at, rt)

#
.
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Optimal attacks can be computed using standard RL techniques! 
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   and   |S | ≤ SOAR |A | ≤ S + O + A + R
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The Defense Problem

Let  denote the victim's and attacker's value, respectively.(Vπ,ν
1 , Vπ,ν

2 )
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Definition 2 (Defense Problem). The victim seeks a policy ⇡⇤ that maxi-
mizes its expected reward from the victim-attacker-M interaction under the
worst-case attack:

⇡⇤ 2 argmax
⇡2⇧

min
⌫2BR(⇡)

V ⇡,⌫
1 .

BR(π) := arg max
ν∈N

Vπ,ν
2

Avoids Cat and Mouse Game!
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Reduction to MARL

Defense corresponds to a Weak Stackelberg Equilibrium (WSE).

Two player MG}
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Challenges

Proposition: The defense problem is as hard as solving POMDPs. 

Thus, the defense problem is NP-hard to even approximate.

• WSE need not exist.

• WSE are generally non-Markovian!
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Special Structure: Sequential Play

Game evolves like a turn-based Markov game .G

s
P2 P1

s†s† a (s†, a)
P2

(s†, a, r)
P2

a†

Key: restrict observation attacks.

r†



Meta Turn-based Markov Game
1.  records the player’s information at any subperiod:

2.  captures the actions available at any subperiod:

3. Transitions capture the evolution of information.

S̄

Ā
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Meta Turn-based Markov Game
1.  records the player’s information at any subperiod:

2.  captures the actions available at any subperiod:

3. Transitions capture the evolution of information.

S̄

Ā
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S1 = S and S2 = S [ (S [A) [ (S [A [R)
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A1 = A and A2(s) ✓ S, A2(s, a) ✓ A, A2(s, a, r) ✓ R

Proposition: Any WSE for  is an optimal defense policy.G
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Efficient Reduction to MARL

Zero-sum:

General-sum:

WSEDefense MPNE

WSEDefense MPNE+tiebreak

G
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V ⇤
h,1(s) = max

a2A
min

a†2BRh(s,a)

⇥
rh(s, a

†) + Es0⇠Ph(s,a†)

⇥
V ⇤
h+1,1(s

0)
⇤⇤

Special Case: Action Attacks

1. Victim determines Attacker’s best response to any action :a

2. Victim picks  based on the worst-case best-response:a
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Guarantees

1.  is zero-sum, orG

2.  has finite-horizon.G

Complete characterization: hard  observation attacks!⟺

Theorem: An optimal defense can be computed or learned in 
polynomial time if observation attacks are not permitted, and
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Conclusions

• Optimal attacks can be efficiently computed for all attack surfaces.

• The defense problem is NP-hard to even approximate.

• Absent observation attacks, optimal defenses can be efficiently computed.

Thank you!


