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From Knapsacks to Self-Driving:
FPTAS Recipes for Constrained
Reinforcement Learning

Jeremy McMahan
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Constraints

. i
Expectation: K, szwz <D
1=1 _

Chance: Pr|)» zw; < B| >95%
1=1

Almost Sure: Pr|) zw < B| =1
1=1
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Adaptive Policies

X can adapt to realized weights
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Context Dependence

x : context —» {0,1}




Constrained MDPs

'au
&



Constrained MDPs

Fﬁ'
%)



Constrained MDPs




Constrained MDPs




Constrained MDPs

Repeated H times



Formalism




Formalism

e States: S




Formalism

e States: S

e Actions: A




Formalism

e States: S

e Actions: A

» Rewards: r;(s, a)




Formalism

e States: S

e Actions: A

» Rewards: r;(s, a)

» Costs: ¢;(s,a)




Formalism

States: S
Actions: A
Rewards: r;(s, a)

Costs: ¢, (s, a)

Transition Probabilities: P,(s" | s, a) H=23



Formalism

States: S
Actions: A
Rewards: r;(s, a)

Costs: ¢, (s, a)

Transition Probabilities: P,(s" | s, a) H=23

Time Horizon: H
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Policies

A policy is a plan of what action to take (usually) in each state.

(s)) = a1 o 7(8,) = ) 1

{10,1}

H
Vis) =k, lz r(s,a) | sy = S]

h=1
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ﬂ(Sz) — a2,1

Reward = -1



Value

Vi(s)=10—1—1=8
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Why Deterministic Policies?

LEl FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

e Predictable

* Optimal for modern constraints [4]
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Can near-optimal deterministic policies be computed efficiently?
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Challenges

Problem is NP-hard

Feasibility is NP-hard for > 1 constraint

Approximate Feasibility NP-hard when d > S

Problem Is not continuous

Dynamic programming fails
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Results

Answer: Yes!

We design an additive and relative FPTAS for general cost
criteria, including expectation, almost-sure, and anytime.

“We only exclude chance constraints which are provably inapproximable
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Key: Feasibility Computation

Sufficient for efficient feasibility checking: efficient policy evaluation

Assumption [time-space recursive]: the cost of a policy is
computable recursively over both time and state space

*holds for expectation, almost sure, and anytime constraints



Definition 1 (TSR). We call a cost criterion C' time-recursive (TR) if for any cMDP M
and policy 7 € II”, 7’s cost decomposes recursively into C, = CT(sg). Here, CF.,(-) =0
and for any h € [H| and 7, € Hy,

Cg(Th) — Ch(sa a') T f ((Ph(s, ‘ Sy a)7 Cf7zr+1 (Thn a, 3,))3'ePh(s,a,)) ) (TR)

where s = s,(1,), a = m,(7), and f is a non-decreasing function’ computable in O(S)
time. For technical reasons, we also require that f(z) = oo whenever co € .

We further say C'is time-space-recursive (TSR) if the f term above is equal to g;"“(1).
Here, ¢,"“(S + 1) =0 and for any t < S,

g (t) = o (B (Pu(t | 5,0), Chyy (mhya,1)) g5 (E 4+ 1)) (SR)

where « is a non-decreasing function, and both «, 8 are computable in O(1) time. We
also assume that a(-,00) = 0o, and 3 satisfies a(3(0, ), z) = x to match f’s condition.
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Reduction

Packing (Primal) Covering (Dual)
max Y * i, Cur

s.t. Oy <B s.t. Vi =>V"
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Knapsack Algorithms

Budget: K(i,0) ;== max(v; + K(2+1,b —w;), K(1 + 1,b))

v

Demand: K(i,d) :==min(w; + K(i +1,d —v;), K(1 + 1,d))
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State Augmentation

future value
demand

\ Vsi
ﬁjz % I’h(S, CZ) : u

Want: C7(s,v) = min C7 (73)

rellP
S.t. Vhﬂ-(Th) Z U
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Action Augmentation

Vi (s,v0) =ra(s,a) + Yy Pu(s' | 5,a) Vi (s ve) > 0

How to choose vy, ..., V¢? Try them all!

Ap(s,v) := {(a,v) c Ax V| ry(s,a)+ ZPh(s’ S, a)vy > v}



Algorithm



Solve:

Ch(s,0)

Algorithm

—  min (s,a) + E P, (s
a,veAp(s,v)
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Algorithm

Expectation Constraints

o N—

Solve: Cj(s,v)= min cu(s,a)+ Y Pu(s'|s,a)Cry (s ve)

a,veEAy(s,v)

Output: Vi =max{v eV | C{(sp,v) < B}
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1. Too many states — rounding

2. Too many actions — sub DP
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Subproblem DP

Th(S,Cl) Ph(l ‘ S,&)Ul T Ph<S ‘ 870’)US

\——

Can choose each v; independently

+ Space Recursion!

g(t,u) = min Py(t | s,a)Cy . (t,v,) + g(t + 1,u + Py(t | s,a)v;)

V€Y

Partial sum

Value check at end: g(S + 1, U) = X{u>v}
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Approximation

Round values down to the closest In ‘7 {(),1,— ey }

1 =0 1 =0

e Main DP accumulates error over time

} Vi > (1 -6y

 Sub DP accumulates error over space

§=— = Vi>(l—-e)V
SH
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Iterative Rounding

» Must use a different rounding per & since values involve varying products

* Instead we use one consistent recursive rounding
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(Guarantees

The guarantees depend on the reward structure:

 Theorem 1 (Additive): If the reward range is bounded by
poly(|M|), we get an additive FPTAS.

 Theorem 2 (Relative): If the rewards are non-negative, we get a
relative FPTAS.

*These assumptions are necessary as well
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Conclusion

Answers three long-standing open questions.

Polynomial-time approximability is possible for:

® Almost-sure-constrained policies
® Anytime-constrained policies

® Deterministic, expectation-constrained policies

Open for nearly 25 years!
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Future Work

Are multiple constraints truly much harder?

» Are there special cases for which multiple constraints are
solvable?

» Like for the simplex method, is the smoothed complexity
or average case complexity small?



Thank you!
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Definition 8 (Relative Approx). Fix ¢ > 0. We define,

v

. | 1 logli ,man .
v]g e pmin (1 — 5) - "~ and k(v) d:fv(l —§)°*, (7)

def € H
where 0 = HED T Umin = PminTmin; and Vg = HT gz

Theorem 3 (Relative FPTAS). For € > 0, Algorithm 5 using Definition 8 given any
cMDP M and TSR criteria C either correctly outputs the instance is infeasible, or produces

a policy m satisfying VT > Vi (1 —€) in O(H"S°Alog (Tmae /Tmmpmm)3 /e?) time. Thus, it
s a relative-FPTAS for the class of cMDPs with non-negative rewards and TSR criteria.




