-Q .r\&.';.\.‘o
},‘ NEURAL INFORMATION
WI N IN ® %t . PROCESSING SYSTEMS
NNNNNNNNNNNNNNNNNNNNNNNNNNNN #;Y' .
o

From Knapsacks to Self-Driving:
FPTAS Recipes for Constrained
Reinforcement Learning

Jeremy McMahan

Smithsonian Bandits

Knapsack Problem

o ube |]

Knapsack Problem

i |]

Knapsack Problem

[]

Knapsack Problem

Optimization Formulation

Optimization Formulation

IMNax E L;U;
re{0,1}7 ,

Fixed Order

Fixed Order

[]

Fixed Order

Stochastic Weights

Stochastic Weights

“ Albs + 31bs

Stochastic Weights

41bs + 31bs

LLET
e Ty
_\\i'\\“‘\’\"m e,
3 .

Constraints

Constraints

Expectation: L. szwz

Constraints

. i
Expectation: K, szwz <D
1=1 _

Chance: Pr|)» zw; < B| >95%
1=1

Constraints

. i
Expectation: K, szwz <D
1=1 _

Chance: Pr|)» zw; < B| >95%
1=1

Almost Sure: Pr|) zw < B| =1
1=1

Adaptive Policies

Adaptive Policies

X can adapt to realized weights

Adaptive Policies

X can adapt to realized weights

B =15

Adaptive Policies

X can adapt to realized weights

A
ZON

B =15

Adaptive Policies

X can adapt to realized weights

X1=1 B=15

N
ZON

Adaptive Policies

X can adapt to realized weights

X1=1 B=15

(NN

Adaptive Policies

X can adapt to realized weights

X1=1 B=15

A
VN

Adaptive Policies

X can adapt to realized weights

Context Dependence

Context Dependence

Context Dependence

x : context —» {0,1}

Constrained MDPs

'au
&

Constrained MDPs

Fﬁ'
%)

Constrained MDPs

Constrained MDPs

Constrained MDPs

Repeated H times

Formalism

Formalism

e States: S

Formalism

e States: S

e Actions: A

Formalism

e States: S

e Actions: A

» Rewards: r;(s, a)

Formalism

e States: S

e Actions: A

» Rewards: r;(s, a)

» Costs: ¢;(s,a)

Formalism

States: S
Actions: A
Rewards: r;(s, a)

Costs: ¢, (s, a)

Transition Probabilities: P,(s" | s, a) H=23

Formalism

States: S
Actions: A
Rewards: r;(s, a)

Costs: ¢, (s, a)

Transition Probabilities: P,(s" | s, a) H=23

Time Horizon: H

Policies

Policies

A policy is a plan of what action to take (usually) in each state.

Policies

A policy is a plan of what action to take (usually) in each state.

(s)) = a1 o 7(8,) =) 1

{10,1}

Policies

A policy is a plan of what action to take (usually) in each state.

(s)) = a1 o 7(8,) =) 1

{10,1}

H
Vis) =k, lz r(s,a) | sy = S]

h=1

ﬂ(Sl) — al,z

Reward = 10

ﬂ(Sz) — a2,1

Reward = -1

ﬂ(Sz) — a2,1

Reward = -1

Value

Vi(s)=10—1—1=8

Constrained RL

Constrained RL

~Washington

.

5-Sun Prairie >Watertown o E/;e“r;omonee

O O

Ct o/Madison
& 1 hr 24 min

o Fi | . ! o
5 Verona © Fitchburg 92 Tlles “ Waukesha

a-Qconomowoc

€

9 Oak Creek

Constrained RL

~Washington

5-Sun Prairie >Watertown o II;/;e“r;omonee

O O

O‘ o/Madison
& 1 hr 24 min

o Fitchburg ,ﬁ 92 miles f Waukesha o

a-Qconomowoc

Verona °

€l

9 Oak Creek

Constrained RL

~Washington

.

2% Sun Prairie >-Watertown \ E/;e“r;omonee

s

a-Qconomowoc

o/Madison

& 1 hr 24 min
o Fitchburg “==__ 92 miles f Waukesha ©

0

SV
©

Verona ©

—

9 Oak Creek

Constrained RL

~Washington
| 6-Sun Prairie >Watertown s-Menomonee
Falls
O o %.0conomowoc | ”
O‘ o/Madison |
; ' oo 1- nr 24 min f Waukesha ©
Verona o o Fitchburg ,, 92 Tﬂes W
90,
3 Oak Creek

SV
©

Why Deterministic Policies?

Why Deterministic Policies?

 Cheap [1]

Why Deterministic Policies?

 Cheap [1]

* Multi-agent coordination [2]

Why Deterministic Policies?

 Cheap [1]
* Multi-agent coordination [2]

* Trust-worthy [3]

Why Deterministic Policies?

B Lt! FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

Why Deterministic Policies?

LEl FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

e Predictable

Why Deterministic Policies?

LEl FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

e Predictable

Why Deterministic Policies?

LEl FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

e Predictable

* Optimal for modern constraints [4]

Modern Constraints

Modern Constraints

Expectation

Mo_dern Constraints

i |Y an| < B Expectation
h=1

Mo_dern Constraints

i |Y an| < B Expectation

3

Chance

Mo_dern Constraints

i |Y an| < B Expectation

_h=1 _

e 1 ¥

Zch > B <0 Chance

_h=1

Mo_dern Constraints

i |Y an| < B Expectation

_h=1 _

e 1 ¥

Zch > B <0 Chance

3

Almost Sure

<.
i =

Mo_dern Constraints

Y | <B Expectation

3

Zch > B <0 Chance

] ¥

B Almost Sure

Mo_dern Constraints

Y | <B Expectation

3

Zch > B <0 Chance

ChSB =3

Almost Sure

¥

Anytime

ES \
j{:(%/f;lg =3

Mo_dern Constraints

i |Y an| < B Expectation
h=1

£ ¥

) on>B| <0 Chance

_h=1 _

Almost Sure

C%,f;lg =3 l

Anytime

Cost Functions

Cost Functions

Expectation » Crr = Ey

Cost Functions

Expectation

Chance

Cost Functions

Expectation

Chance

Almost Sure

Cost Functions

Expectation

Chance

Almost Sure

Anytime

vVvVvV

- -
T E /
p— ‘LM Ch
Lh=1 _
- H
T
_h=1
H
.— INlaX E Ct
T
H-41 i1

Problem

NVl) S B
Ifgﬁi 44M {Z rh(sh,ah)} S.T. { M

— m deterministic

nkI \ S B
max 5, {Z Th(sh,ah)} S.t. {

— 7w deterministic

C is a general cost criteria

Can near-optimal deterministic policies be computed efficiently?

Challenges

Challenges

e Problem is NP-hard

Challenges

e Problem is NP-hard

* Feasibility is NP-hard for > 1 constraint

Challenges

e Problem is NP-hard

* Feasibility is NP-hard for > 1 constraint

« Approximate Feasibility NP-hard whend > S

Challenges

Problem is NP-hard

Feasibility is NP-hard for > 1 constraint

Approximate Feasibility NP-hard when d > S

Problem Is not continuous

Challenges

Problem is NP-hard

Feasibility is NP-hard for > 1 constraint

Approximate Feasibility NP-hard when d > S

Problem Is not continuous

Dynamic programming fails

Results

Results

Answer: Yes!

Results

Answer: Yes!

We design an additive and relative FPTAS for general cost
criteria, including expectation, almost-sure, and anytime.

Results

Answer: Yes!

We design an additive and relative FPTAS for general cost
criteria, including expectation, almost-sure, and anytime.

“We only exclude chance constraints which are provably inapproximable

Key: Feasibility Computation

Key: Feasibility Computation

Sufficient for efficient feasibility checking: efficient policy evaluation

Key: Feasibility Computation

Sufficient for efficient feasibility checking: efficient policy evaluation

Assumption [time-space recursive]: the cost of a policy is
computable recursively over both time and state space

Key: Feasibility Computation

Sufficient for efficient feasibility checking: efficient policy evaluation

Assumption [time-space recursive]: the cost of a policy is
computable recursively over both time and state space

*holds for expectation, almost sure, and anytime constraints

Definition 1 (TSR). We call a cost criterion C' time-recursive (TR) if for any cMDP M
and policy 7 € II”, 7’s cost decomposes recursively into C, = CT(sg). Here, CF.,(-) =0
and for any h € [H| and 7, € Hy,

Cg(Th) — Ch(sa a') T f ((Ph(s, ‘ Sy a)7 Cf7zr+1 (Thn a, 3,))3'ePh(s,a,))) (TR)

where s = s,(1,), a = m,(7), and f is a non-decreasing function’ computable in O(S)
time. For technical reasons, we also require that f(z) = oo whenever co € .

We further say C'is time-space-recursive (TSR) if the f term above is equal to g;"“(1).
Here, ¢,"“(S + 1) =0 and for any t < S,

g (t) = o (B (Pu(t | 5,0), Chyy (mhya,1)) g5 (E 4+ 1)) (SR)

where « is a non-decreasing function, and both «, 8 are computable in O(1) time. We
also assume that a(-,00) = 0o, and 3 satisfies a(3(0,), z) = x to match f’s condition.

Reduction

Reduction

Packing (Primal)

.
max V),
relll

st. Oy <B

Reduction

Packing (Primal) Covering (Dual)
max Y * i, Cur

s.t. Oy <B s.t. Vi =>V"

Knapsack Algorithms

Knapsack Algorithms

Budget: K(i,0) ;== max(v; + K(2+1,b —w;), K(1 + 1,b))

Knapsack Algorithms

Budget: K(i,0) ;== max(v; + K(2+1,b —w;), K(1 + 1,b))

v

Demand: K(i,d) :==min(w; + K(i +1,d —v;), K(1 + 1,d))

State Augmentation

State Augmentation

State Augmentation

future value
demand

\ Vsi
ﬁjz % I’h(S, CZ) : u

Want: C7(s,v) = min C7 (73)

rellP
S.t. Vhﬂ-(Th) Z U

Action Augmentation

Action Augmentation

Vi (s,v) = (s, a +ZPh S| s,a)Vi (s vg) > v

Action Augmentation

Vi (s,v0) =ra(s,a) + Yy Pu(s' | 5,a) Vi (s ve) > 0

How to choose vy, ..., V¢?

Action Augmentation

Vi (s,v0) =ra(s,a) + Yy Pu(s' | 5,a) Vi (s ve) > 0

How to choose vy, ..., V¢? Try them all!

Ap(s,v) := {(a,v) c Ax V| ry(s,a)+ ZPh(s’ S, a)vy > v}

Algorithm

Solve:

Ch(s,0)

Algorithm

— min (s,a) + E P, (s
a,veAp(s,v)

Algorithm

Expectation Constraints

o N—

Solve: Cj(s,v)= min cu(s,a)+ Y Pu(s'|s,a)Cry (s ve)

a,veEAy(s,v)

Algorithm

Expectation Constraints

o N—

Solve: Cj(s,v)= min cu(s,a)+ Y Pu(s'|s,a)Cry (s ve)

a,veEAy(s,v)

Output: Vi =max{v eV | C{(sp,v) < B}

Issues

1. Too many states — rounding

Issues

1. Too many states — rounding

2. Too many actions — sub DP

Subproblem DP

Subproblem DP

rn(s, a)

Pu(1]s,a)vy + -

P,(S | s,a)vg

Subproblem DP

Th(S,CL) Ph(l ‘ Sv@)vl T Ph<S ‘ 37&)2]5

\——

Can choose each v; independently

Subproblem DP

rn(s, a)

Ph(l ‘ S, CZ)”Ul

Ph<S ‘ 5, &)”US

Can choose each v; independently

+ Space Recursion!

Subproblem DP

Th(S,Cl) Ph(l ‘ S,&)Ul T Ph<S ‘ 870’)US

\——

Can choose each v; independently

+ Space Recursion!

g(t,u) =min Py(t | s,a)Cr (t,v) + gt + 1, u+ Pyt | s,a)vy)

V€Y

Subproblem DP

Th(S,Cl) Ph(l ‘ S,&)Ul T Ph<S ‘ 870’)US

\——

Can choose each v; independently

+ Space Recursion!

g(t,u) = min Py(t | s,a)Cy . (t,v,) + g(t + 1,u + Py(t | s,a)v;)

V€Y

Partial sum

Subproblem DP

Th(S,Cl) Ph(l ‘ S,&)Ul T Ph<S ‘ 870’)US

\——

Can choose each v; independently

+ Space Recursion!

g(t,u) = min Py(t | s,a)Cy . (t,v,) + g(t + 1,u + Py(t | s,a)v;)

V€Y

Partial sum

Value check at end: g(S + 1, U) = X{u>v}

Approximation

Approximation

Round values down to the closest in V = {0,1,— , ...

1 =0

2

Approximation

2

Round values down to the closest in V = {0,1,— , ...

1 =0

e Main DP accumulates error over time

Approximation

2

Round values down to the closest in V = {0,1,— , ...

1 =0

e Main DP accumulates error over time

 Sub DP accumulates error over space

Approximation

2

Round values down to the closest in V = {0,1,— , ...

1 =0

e Main DP accumulates error over time }

 Sub DP accumulates error over space

Approximation

2 1 k

Round values down to the closest In ‘7 — {(),1,— Y ey }

e Main DP accumulates error over time

 Sub DP accumulates error over space

1 =0 1 =0

} Vi > (1 -6y

Approximation

Round values down to the closest In ‘7 {(),1,— ey }

1 =0 1 =0

e Main DP accumulates error over time

} Vi > (1 -6y

 Sub DP accumulates error over space

§=— = Vi>(l—-e)V
SH

Iterative Rounding

Iterative Rounding

» Must use a different rounding per & since values involve varying products

Iterative Rounding

» Must use a different rounding per & since values involve varying products

* Instead we use one consistent recursive rounding

(Guarantees

(Guarantees

The guarantees depend on the reward structure:

(Guarantees

The guarantees depend on the reward structure:

 Theorem 1 (Additive): If the reward range is bounded by
poly(|M|), we get an additive FPTAS.

(Guarantees

The guarantees depend on the reward structure:

 Theorem 1 (Additive): If the reward range is bounded by
poly(|M|), we get an additive FPTAS.

 Theorem 2 (Relative): If the rewards are non-negative, we get a
relative FPTAS.

(Guarantees

The guarantees depend on the reward structure:

 Theorem 1 (Additive): If the reward range is bounded by
poly(|M|), we get an additive FPTAS.

 Theorem 2 (Relative): If the rewards are non-negative, we get a
relative FPTAS.

*These assumptions are necessary as well

Conclusion

Conclusion

Answers three long-standing open questions.

Conclusion

Answers three long-standing open questions.

Polynomial-time approximability is possible for:

Conclusion

Answers three long-standing open questions.

Polynomial-time approximability is possible for:

® Almost-sure-constrained policies

Conclusion

Answers three long-standing open questions.

Polynomial-time approximability is possible for:

® Almost-sure-constrained policies

® Anytime-constrained policies

Conclusion

Answers three long-standing open questions.

Polynomial-time approximability is possible for:

® Almost-sure-constrained policies
® Anytime-constrained policies

® Deterministic, expectation-constrained policies

Conclusion

Answers three long-standing open questions.

Polynomial-time approximability is possible for:

® Almost-sure-constrained policies
® Anytime-constrained policies

® Deterministic, expectation-constrained policies

Open for nearly 25 years!

Future Work

Future Work

Are multiple constraints truly much harder?

Future Work

Are multiple constraints truly much harder?

» Are there special cases for which multiple constraints are
solvable?

Future Work

Are multiple constraints truly much harder?

» Are there special cases for which multiple constraints are
solvable?

» Like for the simplex method, is the smoothed complexity
or average case complexity small?

Thank you!

References

MATHEMATICS OF OPERATIONS RESEARCH

Vol. 25, No. 1, February 2000 Towards a formalization of teamwork with resource constraints
Printed in U.S. A.

CONSTRAINED DISCOUNTED MARKOV DECISION PROCESSES e iversity of Southern Catifomia, BarTlan University
AND HAMILTONIAN CYCLES Los Angeles, CA 90089 Ramat-Gan 52900, Israel
{paruchur,tambe fordon}@usc.edu sarit@macs.biu.ac.il

EUGENE A. FEINBERG

3 4

Stationary Deterministic Policies for Constrained MDPs with Multiple Rewards,
Costs, and Discount Factors Anytime-Constrained Reinforcement Learning

Dmitri Dolgov and Edmund Durfee
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109 Jeremy McMahan Xiaojin Zhu

{ddolgov, durfee}@umich.edu University of Wisconsin-Madison

Definition 8 (Relative Approx). Fix ¢ > 0. We define,

v

. | 1 logli ,man .
v]g e pmin (1 — 5) - "~ and k(v) d:fv(l —§)°*, (7)

def € H
where 0 = HED T Umin = PminTmin; and Vg = HT gz

Theorem 3 (Relative FPTAS). For € > 0, Algorithm 5 using Definition 8 given any
cMDP M and TSR criteria C either correctly outputs the instance is infeasible, or produces

a policy m satisfying VT > Vi (1 —€) in O(H"S°Alog (Tmae /Tmmpmm)3 /e?) time. Thus, it
s a relative-FPTAS for the class of cMDPs with non-negative rewards and TSR criteria.

