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Safety Landscape

Safety from Agents:
Aadversarial MARL

1. Manipulation Attacks

2. Misinformation Attacks

Safety from Environment:
Constrained MARL

1. Anytime Constraints

2. Single-Constraint FPTAS

3. Multi-Constraint Bicriteria
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Attacker's Perspective

Attacker has its own reward g(s,, a,, r,) that depends on the victim's.

Definition 1 (Attack Problem). For any m, the attacker’s seeks a policy
v* € N that maximizes its expected reward from the victim-attacker-M
Interaction:

- _
NTU, UV t
V" € argmax Ey E Y g(se,ap, )| .
veN t—0)
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Attack Results

Theorem: An optimal attack involving any combination of
attack surfaces can be computed in time poly(| M |, | & |).

First results beyond observation attacks!
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The Defense Problem

| et (Vf’” : Vg’” ) denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy 7* that maxi-
mizes its expected reward from the victim-attacker-M interaction under the
worst-case attack:

m" € argmax min V"
rell VvEBR(m)

BR(rz) := arg max V>

veN

Defense = WSE in a meta game.
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e \/SE need not exist.

e \WSE are generally non-Markovian.

Proposition: /he defense problem is as hard as solving
POMDPs. Thus, is NP-hard to even approximate.
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Rollback Algorithm

Special Case: Action Attacks

1. Victim determines Attacker’s best response to any action a:

BRh(Sv CL) — arg_max [gh(sa a, Th(sv CL)) -+ <13s’rvPh(s,aT) [Vh*—l—l,Z(S/a WZ—H(S/))H
at€A(s,a)

2. Victim picks a based on the worst-case best-response:

% _ . -‘- 43 / V>|< /
Vh,l(s) Ichlea:é}l( aTEglRI;ILl(s,a) [Th(sa i ) T S NPh(s,aT) [ h—|—1,1(S )H
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Defense Results

Theorem: An optimal defense can be computed as the WS
of a meta game (POTBMG).

Moreover, the defense is computable in polynomial time if
observation attacks are banned.

First results for the general defense problem!
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Inception Problem

P2's best worst-case value

given P1's beliefs about R2T

Belief set: HS(R; ) —— P2 is "rational"

MER) = { m, | 3R; €

3,(R)), (-, 1) € SOL(R,, é)}

o




Inception

Inception Problem

: T,
max max min V,
R; w5 ello myell]

s.t. II] = arg max min V"""
T € el (Ry)

Belief set: HS(RZT ) —— P2 is "rational"

MR = {nz | 3R, € B(R)), (-, m,) € SOL(R,, é)}
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Convincing Prediction Exploitation

|
f

—) S| m—p

Dom Strat Best Response Best Response

IDSE Rational Belief Linear Program

Repeat to find the best pure strategy inception!
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P2 fakes L

Worst-Case Best Response

P2 gets €/2 from (1/21/2) mix
Solved by Nash LP!




P2 fakes R



P2 fakes R

L R
U0, 5| 1,/54e€
D|1,¢e| 02
S11,0| 0,¢




P2 fakes R

L R Unique NE
U105
D| 1, e| 0, 2e¢
S | 1,0 O, €




P2 fakes R

L R
U051, 54+¢
D|1l,e| 0 2
S | 1,0 O, ¢

P1 must play U!



P2 fakes R

L R
U+ 0,5 | 1, 5+e
D|1,e| 0,2
S | 1,0 O, ¢

P1 must play U!



P2 fakes R

“Inception Attack”
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Exploitation

Assuming finite belief: 11 (RT) = {722, .. 71'2K

Complex

7T ’7T
max min V,'"?
o €1l wiell]

s.t. II7 = arg max

m €l o) eT18(RY)

min

1,72
Vi

Duality

)

Linear

S.t.

max 21w — o
yeR™ weRE acR

a+e By—e Aw>0 Vi€ ln]
1'y=1, y>0 w>0.




Exploitation

Assuming finite belief: I(R)) = {(x,, ..., 7, )

Complex Linear
R Dualit max 71w — a
%168)1_}[2 WITIIEI%}{ ‘/vQ T y yERm,wERK,QER
s.t. II] =arg max min V""" ’ st. a+e By—e Aw>0 Vi€ [n]
m1elly WQEHS(Rg) 1Ty — 1, Yy 2 0 w 2 0.

Solve a sequence of LPs for MG case!
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Results

Theorem: rationality enables the polynomial-time computation
of misinformation attacks that are optimal amongst the set of
dominant-mixture reward functions.

First efficient misinformation attacks on Markov games!
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max It

Constrained Problem

- H
h=

_h=1

Agent’s goal is to solve:

Th(shaah)

s.t. [P},

Vt € [H], ZC}L

t

h=1

< B




Challenges



Challenges

1. Feasible policies non-Markovian



Challenges

1. Feasible policies non-Markovian

2. Optimization is NP-hard



Challenges

. Feasible policies non-Markovian

. Optimization is NP-hard

. Determining feasibility of > 2 constraints is NP-hard
—> Hardness of (value) Approximation
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Reduction

1. State-Cost
Augmentation

5 Sy Ap(s,0) Sht1

2. BFS Generate
Feasible Costs
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Exact Results

cost precision < k = [S| < SH2"!

v

Theorem (Fixed-Parameter Tractability): /7 the cost precision

k = O(log(SAH)), our algorithm outputs an optimal, anytime-
constrained policy in polynomial time.
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Approximate Feasibility

Definition 1 (Approximate Feasibility). For any ¢ > 0, a policy 7 is e-
additive feasible if,

} k
Pl |Vk € [H], Y o< B+e| =1,
t=1

and e-relative feasible if,

k
Pl |Vk € [H], Y < B(l+e¢)| =1
t=1
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Theorem (Approx): If d is constant and ¢ < poly(| M |), our algorithm
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€

*Guarantees are best-possible given hardness results.



Approximation Results

€ €
_ ~ |
— c < CH — Eh c,b < B+ ¢

v

Theorem (Approx): If d is constant and ¢ < poly(| M |), our algorithm

é:

outputs an optimal-value, e-feasible policy in time poly(| M |, —)
€

First poly-time algorithm for anytime and almost sure constraints!

*Guarantees are best-possible given hardness results.
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Packing Form

7 deterministic

H 7T
STl S I
I??ﬁ{ vy [ E Th(Sh,CLh)] S.T. { M

H
Expectation: C;, := [}, lz ch]
h=1

[

- . T e
Anytime: C,, '= max max Z Cy,
t P[] >0 1
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Packing (Primal)

«___max V),
v TellP

st. Oy <D

v

Optimum value, but
approximate cost

Covering (Dual)

min C7
relll M
s.t. Vi >V~

v

Optimum cost, but
approximate value

Feasible!
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Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min C7 (1)

relll

S.t. Vhﬂ- Th 2

S =8 x VYV — all possible values

Invariant: v < VZ(S, V) =r(s,a) + Z P,(s"| s, a)VZH(S’, vos) PE

An(s,v) = {(a,v) c Ax V| ry(s,a)+ ZPh(s’ S, a) vy > v}
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Outer Algorithm

Anytime Constraints

1. Solve: Cr(s,v) = Hj\iI% ) ch(s,a) +mz}x62(s’,v3/)
a,Vc Ap(S,v S



1. Solve:

Ch(s,0)

Outer Algorithm

a,vgéllhr% (s,a +Z (s ] s,a)Ch (8, vg)

Expectation Constraints



Outer Algorithm

2. Qutput:



Outer Algorithm

1. Solve: Ci(s,v) = min cu(s,a)+ Z Pu(s" | s,a)Cr. 1 (s, vg)

a,VE.Ah(S,fU)

2. Output: Vi =max{v eV | C](sp,v) < B}



Outer Algorithm

1. Solve: Ci(s,v) = min cu(s,a)+ Z Pu(s" | s,a)Cr. 1 (s, vg)

a,VE.Ah(S,fU)

2. Output: Vi =max{v eV | C](sp,v) < B}

Feasible!



Outer Algorithm

1. Solve: Cr(s,v) = avglz\iﬁs > ch(s,a) + ZPh(S’ | 5,a)Ch (8, vs)

Exponential!

2. Output: Vi =max{v eV | C](sp,v) < B}

Feasible!
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Optimality Equations

C,(s,v) = ](fguvr)l Ch(s, a +ZPh s'|s,a)C, (s, vy)

s.t. (s, a —|-th5 S, a)Vy > 0
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8/
Z Ps’ Ug/ 2 v
S/
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Solving M Fast

Optimality Equations Knapsack Problem
min W Vo ' ey
vevs o Jg) min ) wit;

MC(s',p) = min Py(s' | 5,a)C, (5", vy) + MC(s' +1,p+ Py(s" | 5,a)vy)

V1 c)

Round for approx
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Round v's down = cost goes down! Feasible!

N

Rounding p’s causes error over space » V? > V¥ — ¢SH

Rounding v's causes error over

€ N
— — /T > V/* —
7 Ve >V €
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Results

Theorem (FPTAS): /f the rewards are poly-bounded, our algorithm

outputs a feasible policy with value V* — € in time poly(| M |, —)
€

First ever poly-time algorithm for deterministic,
expectation-constrained policies!

*Guarantees are best-possible given hardness results.
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Motivation

H
Expectation: [}, Zch] <B
Full Problem

|:h=1
max V7 H
mell
Chance: P7 c,>B| Lo
S.t. Cf < Bl Y [}; :|
Cy < B> .
. Almost Sure: [P}, [Z c, < B] =1
C* < B, h=1
[
Anytime: P [Vt, Z ¢, < B] =1
h=1

Can we create a framework that works for any combination of constraints?
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Budget Augmentation

Full Form Intuition: Build M satisfying,
V&4 —
rells Vi(s,b) = Hiax Vir ()
s.t. O] < By * WE: o <
C™ < B,, Primal = V¥(sy, B)

Use previous approach but with rounding up!
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Constraint Assumptions

Exp| AS
1. Recursion: Cr(th) = cn(s,a) + fog(Pu(s' | s,a))Cr. 1 (s") f Z e
g | id ||[x > 0]

Required for inner DP

2. 1-Lipschitz: f(z,round(y)) < f(z,y +{) < f(z,y) + /£

Required for rounding error analysis
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Results

Theorem (Bicriteria): Our algorithm computes an optimal-value,

e-feasible policy in polynomial time, so long as the costs are
poly-bounded and satisfy the SR condition.

Includes all classical constraints!

First ever poly-time algorithm for chance
constraints and non-homogenous constraints!

*Guarantees are best-possible given hardness results.



Future Directions

. Beyond Worst-case Analysis for all works
(especially POMDPs for defense and anytime constraints)

. Submodular Constrained Reinforcement Learning

. Optimal learning under constraints.



Thank you!
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Framework Extensions

1. Multiple agents
2. Infinite discounting
3. Stochastic costs
1. Discrete
2. Bounded Continuous

4. Continuous States
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Chance Constraints

1. Use Discretized M from anytime constraints section

k
2. Define C7(s,¢) =P" |dk, ¢+ th > B satisfies,
t=h

Cr(s, @) =[e+cn(s,a) > B+ ) Pu(s' | s,a)Cr, (s, ¢+ cu(s, a))

N——

New ¢, ((s,C), a)
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Action Space

Policy Evaluation Equation: C}(s) = ¢,(s,a) + 2 P,(s"|s,a)C7 (s

\)

Same form as before!

v

Ap(s,b) = {(a,b) c AxR® | cy(s,a)+ ZP;L(S/ | s,a)by < b}
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Budget Augmentation

Intuition: Build M satisfying,
VZ(S,I)) =max V, ()

eIl

* Primal = V¥(s,, B)

Not Unique!

- -
I

Future budgets
chosen by agent

\ 4

Actions of form:
(a,by,bs, ..., by




Definition 1 (TSR). We call a cost criterion C' time-recursive (TR) if for any cMDP M
and policy 7 € II”, 7’s cost decomposes recursively into C, = CT(sg). Here, CF.,(-) =0
and for any h € [H| and 7, € Hy,

Cg(Th) — Ch(sa a') T f ((Ph(s, ‘ Sy a)7 Cf7zr+1 (Thn a, 3,))3'ePh(s,a,)) ) (TR)

where s = s,(1,), a = m,(7), and f is a non-decreasing function’ computable in O(S)
time. For technical reasons, we also require that f(z) = oo whenever co € .

We further say C'is time-space-recursive (TSR) if the f term above is equal to g;"“(1).
Here, ¢,"“(S + 1) =0 and for any t < S,

g (t) = o (B (Pu(t | 5,0), Chyy (mhya,1)) g5 (E 4+ 1)) (SR)

where « is a non-decreasing function, and both «, 8 are computable in O(1) time. We
also assume that a(-,00) = 0o, and 3 satisfies a(3(0, ), z) = x to match f’s condition.
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Generalization

Recursive cost optimization suffices for our algorithm

Assumption [time-space recursive]: the optimal cost is
computable recursively over both time and state space

*holds for expectation, almost sure, and anytime constraints
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Action Space

Policy Evaluation Equation: V/'(s) = r;(s,a) + Z P,(s"|s,a)V, (s)

\)
Guarantee demand by:

1. Vi, VE, (s) > v,

2. 1,(s,a) + Z P,(s/ | s, a)vsif >V

Ap(s,v) 1= {(a,v) c Ax V| ry(s, a)+ ZPh(s’ S, a) vy > v}
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Action-Space Dynamic Programming

min  Py(1]s,a)C, ., (1,w)) +--- + Pu(S | 5,a)C,, (S, vs)

veys

s.t.  Pu(l|s,a)vy+---+ Pu(S|s,a)vg > v—rp(s,a)

N —

Can choose each v; independently if track the partial demand

Partial demand

g(t,u) =min P,(t | s,a)C} 1 (t,v) + gt + 1, u+ Pu(t | s,a)v)

v+ EY

Value check at end: g(S + & u) = X{u>v}
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Why Deterministic Policies?

LEl FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

e Predictable

* Optimal for modern constraints [4]
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Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min C7 (1)

relll

S.t. Vhﬂ- Th 2

Future value Not Unique!
demand B

vﬁww< i

Future demands
chosen by agent

B :

V

5|

Actions of form:

v,
(A, Vi, Voy vvny Vg)
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Constraint Landscape

Put the formulas in here

Constraints Policies
Flexibility * EXpectation
Precision e Chance o Stochastic Predictable
* Almost Sure * Deterministic Cheap
Safety
* Anytime Coordination

Are any of the others ever value-approximable?
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General Formulation

7T 2 r, ~ R, (s,a)
'ﬁ' - —
c, ~ C(s,a)

Agent's goal:

max V”
T

H
s.t. constraints on Z Cy,

h=1




