WISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

Safe Multi-Agent Reinforcement
Learning Iin Polynomial Time

Jeremy McMahan

Safety Concerns

Safety Concerns

Many agents

Actlon‘ State, E

Reward

Action
State,

Reward

State,
Reward
Action

Environment

Safety Concerns

Many agents

Actlon‘ State, E

Reward

Action
State,

Reward

State,
Reward
Action

Environment

Safety Concerns

Many agents

@ ., Malicious Opponent
Actzlon‘State @

Reward

Action
State,

Reward

State,
Reward
Action

Environment

Safety Concerns

Many agents

You @ ., Malicious Opponent
@ Actlontsmte

Reward

State,
Reward
Action S

Action
State,

Reward

Dangerous Environment

Safety Landscape

Safety Landscape

Safety from Agents:

Safety Landscape

Safety from Agents:
Aaversarial MARL

Safety Landscape

Safety from Agents: Safety from Environment:
Aaversarial MARL

Safety Landscape

Safety from Agents: Safety from Environment:
Aadversarial MARL Constrained MARL

Safety Landscape

Safety from Agents: Safety from Environment:
Aadversarial MARL Constrained MARL

Safety Landscape

Safety from Agents: Safety from Environment:
Aadversarial MARL Constrained MARL

1. Manipulation Attacks

Safety Landscape

Safety from Agents: Safety from Environment:
Aadversarial MARL Constrained MARL

1. Manipulation Attacks

2. Misinformation Attacks

Safety Landscape

Safety from Agents: Safety from Environment:
Adversarial MARL Constrained MARL
1. Manipulation Attacks 1. Anytime Constraints

2. Misinformation Attacks

Safety Landscape

Safety from Agents: Safety from Environment:
Adversarial MARL Constrained MARL
1. Manipulation Attacks 1. Anytime Constraints

2. Misinformation Attacks 2. Single-Constraint FPTAS

Safety Landscape

Safety from Agents:
Aadversarial MARL

1. Manipulation Attacks

2. Misinformation Attacks

Safety from Environment:
Constrained MARL

1. Anytime Constraints

2. Single-Constraint FPTAS

3. Multi-Constraint Bicriteria

Adversarial MARL

Manipulation Attacks

"AAAl 2024

Motivation

Motivation

Optimal *

Motivation

Optimal 7* Attacked ™

Motivation

Optimal * Attacked 7* Robust

0 2 4 6 8

Attack Surfaces

Attack §u rfaces

Attack §u rfaces

|
-

Attack §u rfaces

Attack §u rfaces

O

Observation Attackim®,,

Attack §u rfaces

Attack §u rfaces

|
-

Attack §u rfaces

Attack §u rfaces

|
-

O
al

® ® g Reward Attack

Attack §u rfaces

Attacker's Perspective

Attacker's Perspective

Attacker has its own reward g(s,, a,, r,) that depends on the victim's.

Attacker's Perspective

Attacker has its own reward g(s,, a,, r,) that depends on the victim's.

Definition 1 (Attack Problem). For any m, the attacker’s seeks a policy
v* € N that maximizes its expected reward from the victim-attacker-M
Interaction:

- _
NTU, UV t
V" € argmax Ey E Y g(se,ap,)| .
veN t—0)

Adversarial Decomposition

Adversarial Decomposition

Adversarial Decomposition

[

Knowledge: s, 0

Attack 0" € O

Knowledge: s, 0, a

Attack a” € A

In

-

v

- 7(0")

Adversarial Decomposition

&) &

Attacker MDP M :
: (o)

T R

Attack Results

Attack Results

Theorem: An optimal attack involving any combination of
attack surfaces can be computed in time poly(| M |, | & |).

Attack Results

Theorem: An optimal attack involving any combination of
attack surfaces can be computed in time poly(| M |, | & |).

First results beyond observation attacks!

The Defense Problem

The Defense Problem

| et (Vf’” : Vg’”) denote the victim's and attacker's value, respectively.

The Defense Problem

| et (Vf’” : Vg’”) denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy 7* that maxi-
mizes its expected reward from the victim-attacker-M interaction under the
worst-case attack:

m" € argmax min V"
rell VvEBR(m)

The Defense Problem

| et (Vf’” : Vg’”) denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy 7* that maxi-
mizes its expected reward from the victim-attacker-M interaction under the
worst-case attack:

m" € argmax min V"
rell VvEBR(m)

BR(rz) := arg max V>

veN

The Defense Problem

| et (Vf’” : Vg’”) denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy 7* that maxi-
mizes its expected reward from the victim-attacker-M interaction under the
worst-case attack:

m" € argmax min V"
rell VvEBR(m)

BR(rz) := arg max V>

veN

Defense = WSE in a meta game.

Bottlenecks

Bottlenecks

e \/SE need not exist.

Bottlenecks

e \/SE need not exist.

e \WSE are generally non-Markovian.

Bottlenecks

e \/SE need not exist.

e \WSE are generally non-Markovian.

Proposition: /he defense problem is as hard as solving
POMDPs. Thus, is NP-hard to even approximate.

Approach

Approach

Solution: ban observation attacks.

Approach

Solution: ban observation attacks.

Approach

Solution: ban observation attacks.

. /ero-sum:;

Approach

Solution: ban observation attacks.

. /ero-sum:;

Approach

Solution: ban observation attacks.

. /ero-sum:;

. General-sum:

Approach

Solution: ban observation attacks.

. /ero-sum:;

Rollback Algorithm

Special Case: Action Attacks

Rollback Algorithm

Special Case: Action Attacks

1. Victim determines Attacker’s best response to any action a:

BRh(Sv CL) — arg_max [gh(sa a, Th(sv CL)) -+ <Es’rvPh(s,aT) [Vh*—l—l,2(5/7 WZ—H(S/))H
at€A(s,a)

Rollback Algorithm

Special Case: Action Attacks

1. Victim determines Attacker’s best response to any action a:

BRh(Sv CL) — arg_max [gh(sa a, Th(sv CL)) -+ <13s’rvPh(s,aT) [Vh*—l—l,Z(S/a WZ—H(S/))H
at€A(s,a)

2. Victim picks a based on the worst-case best-response:

% _ . -‘- 43 / V>|< /
Vh,l(s) Ichlea:é}l(aTEglRI;ILl(s,a) [Th(sa i) T S NPh(s,aT) [h—|—1,1(S)H

Defense Results

Defense Results

Theorem: An optimal defense can be computed as the WS
of a meta game (POTBMG).

Defense Results

Theorem: An optimal defense can be computed as the WS
of a meta game (POTBMG).

Moreover, the defense is computable in polynomial time if
observation attacks are banned.

Defense Results

Theorem: An optimal defense can be computed as the WS
of a meta game (POTBMG).

Moreover, the defense is computable in polynomial time if
observation attacks are banned.

First results for the general defense problem!

Misinformation Attacks

"RLC 2024

Motivation

Motivation

More realistic attacker: information advantage instead of environment control

Motivation

More realistic attacker: information advantage instead of environment control

I

Motivation

More realistic attacker: information advantage instead of environment control

Rl
o

Motivation

More realistic attacker: information advantage instead of environment control

Rl
4—.;.—
R2

Motivation

More realistic attacker: information advantage instead of environment control

e

(RlaR) 2 (R19R29R)

Motivation

More realistic attacker: information advantage instead of environment control

e

(RlaR) 2 (RlaRzaR)

\

T

Motivation

More realistic attacker: information advantage instead of environment control

e

(RlaR) 2 (RlaRzaR)

N S

Motivation

More realistic attacker: information advantage instead of environment control

e

(RlaR) 2 (RlaRzaR)

Ny

%

(Rla R2)

Inception

Inception

Inception Problem

P2's best worst-case value

given P1's beliefs about R2T

Inception

Inception Problem

P2's best worst-case value

given P1's beliefs about R2T

Belief set: HS(R;)

Inception

Inception Problem

P2's best worst-case value

given P1's beliefs about RZT

Belief set: HS(R;) —— P2 is "rational"

Inception

Inception Problem

P2's best worst-case value

given P1's beliefs about R2T

Belief set: HS(R;) —— P2 is "rational"

MER) = { m, | 3R; €

3,(R)), (-, 1) € SOL(R,, é)}

o

Inception

Inception Problem

: T,
max max min V,
R; w5 ello myell]

s.t. II] = arg max min V"""
T € el (Ry)

Belief set: HS(RZT) —— P2 is "rational"

MR = {nz | 3R, € B(R)), (-, m,) € SOL(R,, é)}

Inception Approach

Inception Approach

Inception Approach

Inception Approach

Inception Approach

Prediction

|
f

—

Best Response

Inception Approach

Prediction

|
f

—

Best Response

Rational Belief

Inception Approach

Prediction Exploitation

|
f

— S| —p

Best Response Best Response

J Rational Belief

Inception Approach

Prediction Exploitation

|
f

— S| —p

Best Response Best Response

Rational Belief Linear Program

Inception Approach

Convincing Prediction Exploitation

|
f

— S| —p

Dom Strat Best Response Best Response

Rational Belief Linear Program

Inception Approach

Convincing Prediction Exploitation

|
f

— S| —p

Dom Strat Best Response Best Response

IDSE Rational Belief Linear Program

Inception Approach

Convincing Prediction Exploitation

|
f

—) S| m—p

Dom Strat Best Response Best Response

IDSE Rational Belief Linear Program

Repeat to find the best pure strategy inception!

Example: True Game

Example: True Game

I,e | 0,0

1,0 1] 0, €

Uuil0,5 10

D
S

Example: True Game

Example: True Game

L R
Ujlo0,5(1,0
D+ 1,¢e¢ 0,0
S | 1,010, €

f P1 Is rational, P2 gets O!

Example: True Game

f P1 Is rational, P2 gets O!

P2 fakes L

P2 fakes L

1. 0
0, 0

0, €

0, 5

1, €

1, 2¢},

D

S

P2 fakes L

1. 0
0, 0

0, 5

1, €

0, €

1, 2¢ |

P2 fakes L

0
0, 0

0, 5

1, €
1, 2¢ |

0, €

P2 fakes L

P2 fakes L

P2 fakes L

Worst-Case Best Response

P2 gets €/2 from (1/21/2) mix

P2 fakes L

Worst-Case Best Response

P2 gets €/2 from (1/21/2) mix
Solved by Nash LP!

P2 fakes R

P2 fakes R

L R
U0, 5| 1,/54e€
D|1,¢e| 02
S11,0| 0,¢

P2 fakes R

L R Unique NE
U105
D| 1, e| 0, 2e¢
S | 1,0 O, €

P2 fakes R

L R
U051, 54+¢
D|1l,e| 0 2
S | 1,0 O, ¢

P1 must play U!

P2 fakes R

L R
U+ 0,5 | 1, 5+e
D|1,e| 0,2
S | 1,0 O, ¢

P1 must play U!

P2 fakes R

“Inception Attack”

Exploitation

Exploitation

Assuming finite belief: I(R)) = {x,, ..., 7,)

Assuming finite belief: II(R)) = {,, ...

Complex

Exploitation

: i,
max min V,'"?
o €lly wi elll

s.t. II7 = arg max min
T e eIl (R))

1,72
Vi

Exploitation

Assuming finite belief: II(R)) = {,, ...

Complex
T Dualit
max min V, "3 y
o €lly wi elll
s.t. II] =arg max min V"""
T e eIl (R))

Exploitation

Assuming finite belief: 11 (RT) = {722, .. 71'2K

Complex

7T ’7T
max min V,'"?
o €1l wiell]

s.t. II7 = arg max

m €l o) eT18(RY)

min

1,72
Vi

Duality

)

Linear

S.t.

max 21w — o
yeR™ weRE acR

a+e By—e Aw>0 Vi€ ln]
1'y=1, y>0 w>0.

Exploitation

Assuming finite belief: I(R)) = {(x,, ..., 7,)

Complex Linear
R Dualit max 71w — a
%168)1_}[2 WITIIEI%}{ ‘/vQ T y yERm,wERK,QER
s.t. II] =arg max min V""" ’ st. a+e By—e Aw>0 Vi€ [n]
m1elly WQEHS(Rg) 1Ty — 1, Yy 2 0 w 2 0.

Solve a sequence of LPs for MG case!

Results

Results

Theorem: rationality enables the polynomial-time computation
of misinformation attacks that are optimal amongst the set of
dominant-mixture reward functions.

Results

Theorem: rationality enables the polynomial-time computation
of misinformation attacks that are optimal amongst the set of
dominant-mixture reward functions.

First efficient misinformation attacks on Markov games!

Constrained MARL

Anytime Constraints

AISTATS 2024

Motivation

Motivation

Motivation

vation

Chicago

Motivation

Motivation

IR e e,

i3 B8 s T
—

_omne

Y

Ay
o oL
T

Chica

Motivation

Motivation

Motivation

"f?’t‘,‘—::"."::;"‘:;’ e
A e S A R e SO T AP T ey

g —roe
Lo

Chic

.l e

B o '.-,7.']‘: o
Zon W aning oo 1A

Motivation

: .._ o _s_'_f,'fi'.‘ TR ey _—
Chicago

P, l Ccp < B] =1 Cannot 10U a gas tank!

h=1

h=1

Motivation

: .._ o _s_'_f,'fi'.‘ TR ey _—
Chicago

P, l Ccp < B] =1 Cannot 10U a gas tank!

h=1

h=1

Constrained Problem

Constrained Problem

Agent’s goal is to solve:

max It

Constrained Problem

- H
h=

_h=1

Agent’s goal is to solve:

Th(shaah)

s.t. [P},

Vt € [H], ZC}L

t

h=1

< B

Challenges

Challenges

1. Feasible policies non-Markovian

Challenges

1. Feasible policies non-Markovian

2. Optimization is NP-hard

Challenges

. Feasible policies non-Markovian

. Optimization is NP-hard

. Determining feasibility of > 2 constraints is NP-hard
—> Hardness of (value) Approximation

Reduction

Reduction

1. State-Cost
Augmentation

Reduction

1. State-Cost
Augmentation |

Reduction

1. State-Cost
Augmentation

Reduction

1. State-Cost
Augmentation

Reduction

1. State-Cost
Augmentation

Reduction

1. State-Cost
Augmentation

2. BFS Generate
Feasible Costs

Reduction

1. State-Cost
Augmentation

2. BFS Generate (50,0)
Feasible Costs @

Reduction

1. State-Cost
Augmentation

2. BFS Generate
Feasible Costs

Reduction

1. State-Cost
Augmentation

2. BFS Generate
Feasible Costs

Reduction

1. State-Cost
Augmentation

2. BFS Generate
Feasible Costs

Reduction

1. State-Cost
Augmentation

2. BFS Generate
Feasible Costs

Reduction

1. State-Cost
Augmentation

5 Sy Ap(s,0) Sht1

2. BFS Generate
Feasible Costs

Exact Results

Exact Results

cost precision < k = [S| < SH2"!

Exact Results

cost precision < k = [S| < SH2"!

v

Theorem (Fixed-Parameter Tractability): /7 the cost precision

k = O(log(SAH)), our algorithm outputs an optimal, anytime-
constrained policy in polynomial time.

Approximate Feasibility

Approximate Feasibility

Definition 1 (Approximate Feasibility). For any ¢ > 0, a policy 7 is e-
additive feasible if,

} k
Pl |Vk € [H], Y o< B+e| =1,
t=1

and e-relative feasible if,

k
Pl |Vk € [H], Y < B(l+e¢)| =1
t=1

Approximation

Approximation

1. Truncate

Approximation

1. Truncate (C, c) 'ﬁ'

Approximation

1. Truncate (@, c) lﬁl [B — Hc™™, B + 1]

Approximation

1. Truncate (@, c) lﬁl [B — Hc™™, B + 1]

2. {-Discretize

Approximation

1. Truncate (@, c) lﬁl [B — Hc™™, B + 1]

Approximation

1. Truncate (@, c) lﬁl [B — Hc™™, B + 1]

Approximation

1. Truncate (@, c) lﬁl [B — Hc™™, B + 1]

Approximation Results

Approximation Results

{ = — — c<CH :>Zch§B+e
h

Approximation Results

7 — ¢ < ¢ 7 — zh:ChSB—FG

v

Theorem (Approx): If d is constant and ¢ < poly(| M |), our algorithm

outputs an optimal-value, e-feasible policy in time poly(| M |, —)
€

*Guarantees are best-possible given hardness results.

Approximation Results

€ €
_ ~ |
— c < CH — Eh c,b < B+ ¢

v

Theorem (Approx): If d is constant and ¢ < poly(| M |), our algorithm

é:

outputs an optimal-value, e-feasible policy in time poly(| M |, —)
€

First poly-time algorithm for anytime and almost sure constraints!

*Guarantees are best-possible given hardness results.

Single-Constraint FPTAS

“NeurlPS 2024

Motivation

Motivation

1. Previous approach cannot guarantee
feasibility

Motivation

1. Previous approach cannot guarantee
feasibility

2. Only works for anytime constraints

Motivation

1. Previous approach cannot guarantee
feasibility

2. Only works for anytime constraints

Packing Form

Packing Form

) CT. < B
nyj >
I??ﬁ{ i [E Th(Sh,CLh)] S.T. {

h=1

Packing Form

" Cl, < B
nkj o~
I?ear}[{ "M [Z Th(shvah)] S.1. {

I 7 deterministic

Packing Form

H 7T
STl S I
I??ﬁ{ vy [E Th(Sh,CLh)] S.T. { M

7 deterministic

H
Expectation: C;, := [}, lz ch]

Packing Form

7 deterministic

H 7T
STl S I
I??ﬁ{ vy [E Th(Sh,CLh)] S.T. { M

H
Expectation: C;, := [}, lz ch]
h=1

[

- . T e
Anytime: C,, '= max max Z Cy,
t P[] >0 1

Duality

Packing (Primal)

-
max V),
TellP

st. Oy <D

Packing (Primal)

max V7,
rellP M
st. Oy <D

v

Optimum value, but
approximate cost

Packing (Primal)

«___max V),
v TellP

st. Oy <D

v

Optimum value, but
approximate cost

Duality

Packing (Primal) Covering (Dual)
K Vi] C'y
ve— s Vil -
st. CT, < B s.t. Vi >V*

v

Optimum value, but
approximate cost

Packing (Primal)

«___max V),
v TellP

st. Oy <D

v

Optimum value, but
approximate cost

Covering (Dual)

min C7
relll M
s.t. Vi >V~

v

Optimum cost, but
approximate value

Packing (Primal)

«___max V),
v TellP

st. Oy <D

v

Optimum value, but
approximate cost

Covering (Dual)

min C7
relll M
s.t. Vi >V~

v

Optimum cost, but
approximate value

Feasible!

Value-Demand Augmentation

Value-Demand Augmentation

Intuition: Build M satisfying,

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min CT(73)
relllP

S.t. Vhﬂ-(Th) 2 U

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min CT(73)

mell? * Dual = C*(SO V)

St Vh Th >

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min CT(73)
relllP

S.t. Vhﬂ-(Th) 2 U

Value-Demand Augmentation

Intuition: Build M satisfying,

Cr(s,v) = 71J_f]ém}D C7 (p)

St Vhﬂ- Th >

S =8 x VYV — all possible values

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min C7 (1)

relll

S.t. Vhﬂ- Th >

S =8 x VYV — all possible values

Invariant: v < VZ(S, V)

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min C7 (1)

relll

S.t. Vhﬂ- Th 2

S =8 x VYV — all possible values

Invariant: v < VZ(S, V) =r(s,a) + Z P,(s"| s, a)VZH(S’, vos) PE

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min C7 (1)

relll

S.t. Vhﬂ- Th 2

S =8 x VYV — all possible values

Invariant: v < VZ(S, V) =r(s,a) + Z P,(s"| s, a)VZH(S’, vos) PE

An(s,v) = {(a,v) c Ax V| ry(s,a)+ ZPh(s’ S, a) vy > v}

Outer Algorithm

Outer Algorithm

1. Solve:

Outer Algorithm

Anytime Constraints

1. Solve: Cr(s,v) = Hj\iI%) ch(s,a) +mz}x62(s’,v3/)
a,Vc Ap(S,v S

1. Solve:

Ch(s,0)

Outer Algorithm

a,vgéllhr% (s,a +Z (s] s,a)Ch (8, vg)

Expectation Constraints

Outer Algorithm

2. Qutput:

Outer Algorithm

1. Solve: Ci(s,v) = min cu(s,a)+ Z Pu(s" | s,a)Cr. 1 (s, vg)

a,VE.Ah(S,fU)

2. Output: Vi =max{v eV | C](sp,v) < B}

Outer Algorithm

1. Solve: Ci(s,v) = min cu(s,a)+ Z Pu(s" | s,a)Cr. 1 (s, vg)

a,VE.Ah(S,fU)

2. Output: Vi =max{v eV | C](sp,v) < B}

Feasible!

Outer Algorithm

1. Solve: Cr(s,v) = avglz\iﬁs > ch(s,a) + ZPh(S’ | 5,a)Ch (8, vs)

Exponential!

2. Output: Vi =max{v eV | C](sp,v) < B}

Feasible!

Solving M Fast

Solving M Fast

Optimality Equations

C,(s,v) =](fguvr)l Ch(s, a +ZPh s'|s,a)C, (s, vy)

s.t. (s, a —|-th5 S, a)Vy > 0

Solving M Fast

Optimality Equations

m YA | s

ZPh |5, a)vs >

Solving M Fast

Optimality Equations

‘1}61%}% ZPh | 5,a)C, (5, vy)

Z Ds’ Vg Z ()

S/

Solving M Fast

Optimality Equations

min *
vepys Ws? Ch(sv US’)

S
E Ps’ Ug/ Z v
o

Solving M Fast

Optimality Equations

min W f (US’>

veys
S
E Ps’ Ug/ Z v
S/

Solving M Fast

Optimality Equations Knapsack Problem
min W Vo ' ey
vevs o Jg) min) wit;

> by > v - st. Y piwy > P

MC(s',p)

Solving M Fast

Optimality Equations Knapsack Problem
min , Vs ' .y
ma wy f(vs) min > w;r;

s’)
Z Ps Ug S.1. sz% > P
s’)

Solving M Fast

Optimality Equations Knapsack Problem

Solving M Fast

Optimality Equations Knapsack Problem

Solving M Fast

Optimality Equations

‘{Iel%}% W/ f(US/)
8/
Z Ps’ Ug/ 2 v
S/

f(U3/> _I_MC(

+1,p+

Knapsack Problem

min Ww;X;
re X"

Solving M Fast

Optimality Equations Knapsack Problem
min W Vo ' ey
vevs o Jg) min) wit;

flog) +MC +1,p+ Py vy)

Solving M Fast

Optimality Equations Knapsack Problem
min W Vo ' ey
vevs o Jg) min) wit;

MC(s',p) = min W f(vg) + MC(s"+1,p+ Dy Vg)

V1 c)

Round for approx

Solving M Fast

Optimality Equations Knapsack Problem
min W Vo ' ey
vevs o Jg) min) wit;

MC(s',p) = min Py(s' | 5,a)C, (5", vy) + MC(s' +1,p+ Py(s" | 5,a)vy)

V1 c)

Round for approx

Time-Space Rounding

Time-Space Rounding

Round v's down = cost goes down!

Time-Space Rounding

Round v's down = cost goes down! Feasible!

Time-Space Rounding

Round v's down = cost goes down! Feasible!

Rounding v's causes error over

Time-Space Rounding

Round v's down = cost goes down! Feasible!

Rounding v's causes error over » VP> V¢ —¢H

Time-Space Rounding

Round v's down = cost goes down! Feasible!

Rounding v's causes error over » VP> V¢ —¢H

Rounding p’s causes error over space

Time-Space Rounding

Round v's down = cost goes down! Feasible!

N

Rounding p’s causes error over space » V? > V¥ — ¢SH

Rounding v's causes error over

Time-Space Rounding

Round v's down = cost goes down! Feasible!

N

Rounding p’s causes error over space » V? > V¥ — ¢SH

Rounding v's causes error over

€ N
— — /T > V/* —
7 Ve >V €

Results

Results

Theorem (FPTAS): /f the rewards are poly-bounded, our algorithm

outputs a feasible policy with value V* — € in time poly(| M |, —)
€

*Guarantees are best-possible given hardness results.

Results

Theorem (FPTAS): /f the rewards are poly-bounded, our algorithm

outputs a feasible policy with value V* — € in time poly(| M |, —)
€

First ever poly-time algorithm for deterministic,
expectation-constrained policies!

*Guarantees are best-possible given hardness results.

Multi-Constraint Bicriteria

“ICML 2025

Motivation

Motivation

Full Problem

max V"
melllP
S.T. CT S Bl

C7 < B

C’ < By,

m —

Motivation

Full Problem

1N ax
rellP

S.1.

Vﬂ'

CT < B
C, < B

C’ < By,

m —

Expectation:

Chance:

Almost Sure:

Motivation

H
Expectation: [}, Zch] <B
Full Problem

|:h=1
max V7 H
mell
Chance: P7 c,>B| Lo
S.t. Cf < Bl Y [}; :|
Cy < B> .
. Almost Sure: [P}, [Z c, < B] =1
C* < B, h=1
[
Anytime: P [Vt, Z ¢, < B] =1
h=1

Can we create a framework that works for any combination of constraints?

Budget Augmentation

Budget Augmentation

Full Form

max V"
relll

S.T. (j?fS.Eﬁ
C3 < B

C' < B,

Budget Augmentation

Full Form Intuition: Build M satisfying,
V&4 —
rells Vi(s,b) = Hiax Vir ()
s.t. O] < By * WE: o <

C' < B,

m —

Budget Augmentation

Full Form Intuition: Build M satisfying,
V&4 —
rells Vi(s,b) = Hiax Vir ()
s.t. O] < By * WE: o <

v

Cp < B, Primal = V*(s, B)

Budget Augmentation

Full Form Intuition: Build M satisfying,
V&4 —
rells Vi(s,b) = Hiax Vir ()
s.t. O] < By * WE: o <
C™ < B,, Primal = V¥(sy, B)

Use previous approach but with rounding up!

Constraint Assumptions

Constraint Assumptions

1. Recursion:

Constraint Assumptions

1. Recursion: Cr(th) = cn(s,a) + fog(Pu(s' | s,a))Cr. 1 (s")

Constraint Assumptions

1. Recursion: Cr(th) = cn(s,a) + fog(Pu(s' | s,a))Cr. 1 (s")

Required for inner DP

1. Recursion:

Constraint Assumptions

EXp

AS

Ch(Th) = cn(s,a) + fog(Pa(s’ | 5,a))Chi () /

max

Required for inner DP

id

[x > 0]

Constraint Assumptions

1. Recursion: Cr(th) = cn(s,a) + fog(Pu(s' | s,a))Cr. 1 (s") / Z max

Required for inner DP

Constraint Assumptions

1. Recursion: Cr(th) = cn(s,a) + fog(Pu(s' | s,a))Cr. 1 (s") / Z max

Required for inner DP

2. 1-Lipschitz:

Constraint Assumptions

1. Recursion: Cr(th) = cn(s,a) + fog(Pu(s' | s,a))Cr. 1 (s") / Z max

Required for inner DP

2. 1-Lipschitz: f(z,round(y)) < f(z,y +{) < f(z,y) + /£

Constraint Assumptions

Exp| AS
1. Recursion: Cr(th) = cn(s,a) + fog(Pu(s' | s,a))Cr. 1 (s") f Z e
g | id ||[x > 0]

Required for inner DP

2. 1-Lipschitz: f(z,round(y)) < f(z,y +{) < f(z,y) + /£

Required for rounding error analysis

Results

Results

Theorem (Bicriteria): Our algorithm computes an optimal-value,

e-feasible policy in polynomial time, so long as the costs are
poly-bounded and satisfy the SR condition.

*Guarantees are best-possible given hardness results.

Results

Theorem (Bicriteria): Our algorithm computes an optimal-value,

e-feasible policy in polynomial time, so long as the costs are
poly-bounded and satisfy the SR condition.

Includes all classical constraints!

*Guarantees are best-possible given hardness results.

Results

Theorem (Bicriteria): Our algorithm computes an optimal-value,

e-feasible policy in polynomial time, so long as the costs are
poly-bounded and satisfy the SR condition.

Includes all classical constraints!

First ever poly-time algorithm for chance
constraints and non-homogenous constraints!

*Guarantees are best-possible given hardness results.

Future Directions

. Beyond Worst-case Analysis for all works
(especially POMDPs for defense and anytime constraints)

. Submodular Constrained Reinforcement Learning

. Optimal learning under constraints.

Thank you!

Motivating Example

Motivating Example

Motivating Example

1. Robust to visual
noise (ash

Motivating Example

Robust to visual
noise (ash)

Robust to other
rescue vehicles

Motivating Example

Robust to visual
noise (ash)

Robust to other
rescue vehicles

Coordinate well
with teammates

Motivating Example

1. Effective fuel
mMmanagement

Robust to visual
noise (ash)

Robust to other
rescue vehicles

Coordinate well
with teammates

S B
gl 4

Motivating Example

Effective fuel
mMmanagement

Robust to visual
noise (ash)

- 2. Avoids dangerous
terrain (lava)

Robust to other
rescue vehicles

Coordinate well
with teammates

Motivating Example

1. Effective fuel
mManagement

Robust to visual
noise (ash)

- 2. Avoids dangerous
terrain (lava)

Robust to other

by iy <
B
o X - -
.
A R
> ‘v:f <
ti».-*‘;"_. P,
A S
- AT ,-. s
! ’1‘.}‘1"-’
A R g b RN
|w',x{ LY Ll
' I ey e T e
R
AP
o als " Y
A . (2
3 . e
- % | e
e 2508 ':,7“" .
| it ! AV
iy N 3 (4 hor
e
’ <¥ P
e o 9
SR 72 D
Lot oo el s N
s rw\‘,"l', S DEw
- = e o -
5 B et
2 ! o, - .
‘1#‘"‘,” r‘.g "4 T Y)
g g o)
R I AR -
4 .}:’ e e ¥
Q { «

3. Balances risks of

with teammates difficult terrain

'_' ,A;,»""

Framework Extensions

Framework Extensions

1. Multiple agents

Framework Extensions

1. Multiple agents

2. Infinite discounting

Framework Extensions

1. Multiple agents
2. Infinite discounting

3. Stochastic costs

Framework Extensions

1. Multiple agents
2. Infinite discounting
3. Stochastic costs

1. Discrete

Framework Extensions

1. Multiple agents

2. Infinite discounting

3. Stochastic costs
1. Discrete

2. Bounded Continuous

Framework Extensions

1. Multiple agents
2. Infinite discounting
3. Stochastic costs
1. Discrete
2. Bounded Continuous

4. Continuous States

Chance Constraints

Chance Constraints

1. Use Discretized M from anytime constraints section

Chance Constraints

1. Use Discretized M from anytime constraints section

k
2. Define Cji(s,e) =P" |3k,e+» ¢ > DB
t=nh

Chance Constraints

1. Use Discretized M from anytime constraints section

k
2. Define C7(s,¢) =P" |dk, ¢+ th > B satisfies,
t=h

C7(s,¢) = |c+ cn(s,a) > B| + ZPh(s’ | 5,a)Ch.1(s,€+ cn(s,a))

Chance Constraints

1. Use Discretized M from anytime constraints section

k
2. Define C7(s,¢) =P" |dk, ¢+ th > B satisfies,
t=h

Cr(s, @) =[e+cn(s,a) > B+) Pu(s' | s,a)Cr, (s, ¢+ cu(s, a))

N——

New ¢, ((s,C), a)

Action Space

Action Space

Policy Evaluation Equation: C}(s) = ¢,(s,a) + Z P,(s"|s,a)C7 (s

\)

v

Action Space

Policy Evaluation Equation: C}(s) = ¢,(s,a) + 2 P,(s"|s,a)C7 (s

\)

Same form as before!

v

Ap(s,b) = {(a,b) c AxR® | cy(s,a)+ ZP;L(S/ | s,a)by < b}

Budget Augmentation

Budget Augmentation

Intuition: Build M satisfying,

Budget Augmentation

Intuition: Build M satisfying,
VZ(S, b) =max V/(73,)

relll

S.T. C%KTh)f;b

Budget Augmentation

Intuition: Build M satisfying,
VZ(S,Z?) =max V, ()

mellP

* Primal = V¥(s,, B)

Budget Augmentation

Intuition: Build M satisfying,
VZ(S,I)) =max V, ()

eIl

* Primal = V¥(s,, B)

Budget Augmentation

Intuition: Build M satisfying,
VZ(S,I)) =max V, ()

eIl

* Primal = V¥(s,, B)

Budget Augmentation

Intuition: Build M satisfying,

VZ(S, b) = max Vi (1)
el * Primal = V¥(sy, B)

IFuture budgets
chosen by agent

Budget Augmentation

Intuition: Build M satisfying,
VZ(S,I)) =max V, ()

eIl

* Primal = V¥(s,, B)

Not Unique!

- -
I

Future budgets
chosen by agent

\ 4

Actions of form:
(a,by,bs, ..., by

Definition 1 (TSR). We call a cost criterion C' time-recursive (TR) if for any cMDP M
and policy 7 € II”, 7’s cost decomposes recursively into C, = CT(sg). Here, CF.,(-) =0
and for any h € [H| and 7, € Hy,

Cg(Th) — Ch(sa a') T f ((Ph(s, ‘ Sy a)7 Cf7zr+1 (Thn a, 3,))3'ePh(s,a,))) (TR)

where s = s,(1,), a = m,(7), and f is a non-decreasing function’ computable in O(S)
time. For technical reasons, we also require that f(z) = oo whenever co € .

We further say C'is time-space-recursive (TSR) if the f term above is equal to g;"“(1).
Here, ¢,"“(S + 1) =0 and for any t < S,

g (t) = o (B (Pu(t | 5,0), Chyy (mhya,1)) g5 (E 4+ 1)) (SR)

where « is a non-decreasing function, and both «, 8 are computable in O(1) time. We
also assume that a(-,00) = 0o, and 3 satisfies a(3(0,), z) = x to match f’s condition.

Generalization

Generalization

Recursive cost optimization suffices for our algorithm

Generalization

Recursive cost optimization suffices for our algorithm

Assumption [time-space recursive]: the optimal cost is
computable recursively over both time and state space

Generalization

Recursive cost optimization suffices for our algorithm

Assumption [time-space recursive]: the optimal cost is
computable recursively over both time and state space

*holds for expectation, almost sure, and anytime constraints

Action Space

Action Space

Policy Evaluation Equation: V/'(s) = r;(s,a) + Z P,(s"|s,a)V, (s)

\)

Action Space

Policy Evaluation Equation: V/'(s) = r;(s,a) + Z P,(s"|s,a)V, (s)

\)
Guarantee demand by:

Action Space

Policy Evaluation Equation: V/'(s) = r,(s,a) + Z P,(s"|s,a)V, (s)

\)
Guarantee demand by:

1. Vi, VE, (s) > v,

Action Space

Policy Evaluation Equation: V/'(s) = r,(s,a) + Z P,(s"|s,a)V, (s)

\)

Guarantee demand by:
1. Vi, V,ffH(sl-’) > V!

2. 1(s,a) + Z P,(s/ | s, a)Vg 2V
j

Action Space

Policy Evaluation Equation: V/'(s) = r;(s,a) + Z P,(s"|s,a)V, (s)

\)
Guarantee demand by:

1. Vi, VE, (s) > v,

2. 1,(s,a) + Z P,(s/ | s, a)vsif >V

Ap(s,v) 1= {(a,v) c Ax V| ry(s, a)+ ZPh(s’ S, a) vy > v}

Action-Space Dynamic Programming

Action-Space Dynamic Programming

min Py(1]s,a0)C, . (1,v1) +---+ Pu(S | 5,a)C,, (S, vs)

veys

s.t. Pu(l|s,a)vy+---+ Pp(S | s,a)vg > v—rp(s,a)

Action-Space Dynamic Programming

min Py(1]s,a)C, ., (1,w)) +--- + Pu(S | 5,a)C,, (S, vs)

veys

s.t. Pu(l|s,a)vy+---+ Pu(S|s,a)vg > v—rp(s,a)

Action-Space Dynamic Programming

min Py(1]s,a)C, ., (1,w)) +--- + Pu(S | 5,a)C,, (S, vs)

veys

s.t. Pu(l|s,a)vy+---+ Pu(S|s,a)vg > v—rp(s,a)

N —

Can choose each v; independently if track the partial demand

Action-Space Dynamic Programming

min Py(1]s,a)C, ., (1,w)) +--- + Pu(S | 5,a)C,, (S, vs)

veys

s.t. Pu(l|s,a)vy+---+ Pu(S|s,a)vg > v—rp(s,a)

N —

Can choose each v; independently if track the partial demand

Action-Space Dynamic Programming

min Py(1]s,a)C, ., (1,w)) +--- + Pu(S | 5,a)C,, (S, vs)

veys

s.t. Pu(l|s,a)vy+---+ Pu(S|s,a)vg > v—rp(s,a)

N —

Can choose each v; independently if track the partial demand

g(t,u) =min P,(t | 5,a)C} 1 (t,v) + gt + 1,u+ Pu(t | s,a)v)

v+ EY

Action-Space Dynamic Programming

min Py(1]s,a)C, ., (1,w)) +--- + Pu(S | 5,a)C,, (S, vs)

veys

s.t. Pu(l|s,a)vy+---+ Pu(S|s,a)vg > v—rp(s,a)

N —

Can choose each v; independently if track the partial demand

Partial demand

g(t,u) =min P,(t | s,a)C} 1 (t,v) + gt + 1, u+ Pu(t | s,a)v)

v+ EY

Action-Space Dynamic Programming

min Py(1]s,a)C, ., (1,w)) +--- + Pu(S | 5,a)C,, (S, vs)

veys

s.t. Pu(l|s,a)vy+---+ Pu(S|s,a)vg > v—rp(s,a)

N —

Can choose each v; independently if track the partial demand

Partial demand

g(t,u) =min P,(t | s,a)C} 1 (t,v) + gt + 1, u+ Pu(t | s,a)v)

v+ EY

Value check at end: g(S + & u) = X{u>v}

Why Deterministic Policies?

Why Deterministic Policies?

 Cheap [1]

Why Deterministic Policies?

 Cheap [1]

* Multi-agent coordination [2]

Why Deterministic Policies?

 Cheap [1]
* Multi-agent coordination [2]

* Trust-worthy [3]

Why Deterministic Policies?

B Lt! FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

Why Deterministic Policies?

LEl FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

e Predictable

Why Deterministic Policies?

LEl FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

e Predictable

Why Deterministic Policies?

LEl FAIE

 Cheap [1]

* Multi-agent coordination [2]

* Trust-worthy [3]

e Predictable

* Optimal for modern constraints [4]

Value-Demand Augmentation

Value-Demand Augmentation

Intuition: Build M satisfying,

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min CT(73)
relllP

S.t. Vhﬂ-(Th) 2 U

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min CT(73)

mell? * Dual = C*(SO V)

St Vh Th >

Value-Demand Augmentation

Intuition: Build M satisfying,

Cr(s,v) = 721% C7 (p)

St Vhﬂ- Th >

Future value
demand

Ro

Value-Demand Augmentation

Intuition: Build M satisfying,

Cr(s,v) = 721% C7 (p)

St Vhﬂ- Th >

Future value
demand

B o

Value-Demand Augmentation

Intuition: Build M satisfying,

Cr(s,v) = 721% C7 (p)

St Vhﬂ- Th >

Future value
demand

vﬁww<

Value-Demand Augmentation

Intuition: Build M satisfying,

Cr(s,v) = 721% C7 (p)

St Vhﬂ- Th >

Future value
demand

vﬁww<

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min C7 (1)

relll

S.t. Vhﬂ- Th >

Future value Not Un/que!
demand

vﬁwﬂa<

Sll

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min C7 (1)

relll

S.t. Vhﬂ- Th 2

Future value Not Unique!
demand B

vﬁww< i

Future demands
chosen by agent

V

5|

|
|
|
|
|
|
Vs, |
]

Value-Demand Augmentation

Intuition: Build M satisfying,

Ci(s,v) = min C7 (1)

relll

S.t. Vhﬂ- Th 2

Future value Not Unique!
demand B

vﬁww< i

Future demands
chosen by agent

B :

V

5|

Actions of form:

v,
(A, Vi, Voy vvny Vg)

Constraint Landscape

Put the formulas in here

Constraint Landscape

Put the formulas in here
Constraints

* EXpectation
 Chance

e Almost Sure

 Anytime

Constraint Landscape

Put the formulas in here
Constraints

Flexibility * EXpectation
 Chance

e Almost Sure

 Anytime

Constraint Landscape

Put the formulas in here
Constraints

Flexibility * EXpectation
Precision e Chance

e Almost Sure

 Anytime

Constraint Landscape

Put the formulas in here
Constraints

Flexibility * EXpectation

Precision e Chance

e Almost Sure
Safety {

 Anytime

Constraint Landscape

Put the formulas Iin here
Constraints Policies

Flexibility * EXpectation

Precision e Chance

e Almost Sure
Safety {

 Anytime

Constraint Landscape

Put the formulas Iin here
Constraints Policies

Flexibility * EXpectation

Precision e Chance e Stochastic

e Almost Sure
Safety

 Anytime

Constraint Landscape

Put the formulas Iin here
Constraints Policies

Flexibility * EXpectation
Precision e Chance e Stochastic

e Almost Sure e Deterministic
Safety

 Anytime

Constraint Landscape

Put the formulas Iin here
Constraints Policies

Flexibility * EXpectation
Precision e Chance o Stochastic Predictable

e Almost Sure e Deterministic
Safety

 Anytime

Constraint Landscape

Put the formulas Iin here
Constraints Policies

Flexibility * EXpectation
Precision e Chance o Stochastic Predictable

* Almost Sure e Deterministic Cheap
Safety

 Anytime

Constraint Landscape

Put the formulas Iin here
Constraints Policies

Flexibility * EXpectation
Precision e Chance o Stochastic Predictable

* Almost Sure e Deterministic Cheap
Safety

* Anytime Coordination

Constraint Landscape

Put the formulas Iin here
Constraints Policies

Flexibility * EXpectation
Precision e Chance o Stochastic Predictable

* Almost Sure e Deterministic Cheap
Safety

* Anytime Coordination

Constraint Landscape

Put the formulas in here

Constraints Policies
Flexibility * EXpectation
Precision e Chance o Stochastic Predictable
* Almost Sure e Deterministic Cheap
Safety
* Anytime Coordination

Are any of the others ever value-approximable?

Constraint Landscape

Put the formulas in here

Constraints Policies
Flexibility * EXpectation
Precision e Chance o Stochastic Predictable
* Almost Sure * Deterministic Cheap
Safety
* Anytime Coordination

Are any of the others ever value-approximable?

General Formulation

General Formulation

i

General Formulation

T \)
'ﬁl ; @ e
—— —
c, ~ C(s,a)

General Formulation

7T 2 r, ~ R, (s,a)
'ﬁ' - —
c, ~ C(s,a)

Agent's goal:

max V”
T

H
s.t. constraints on Z Cy,

h=1

