

WISCONSIN

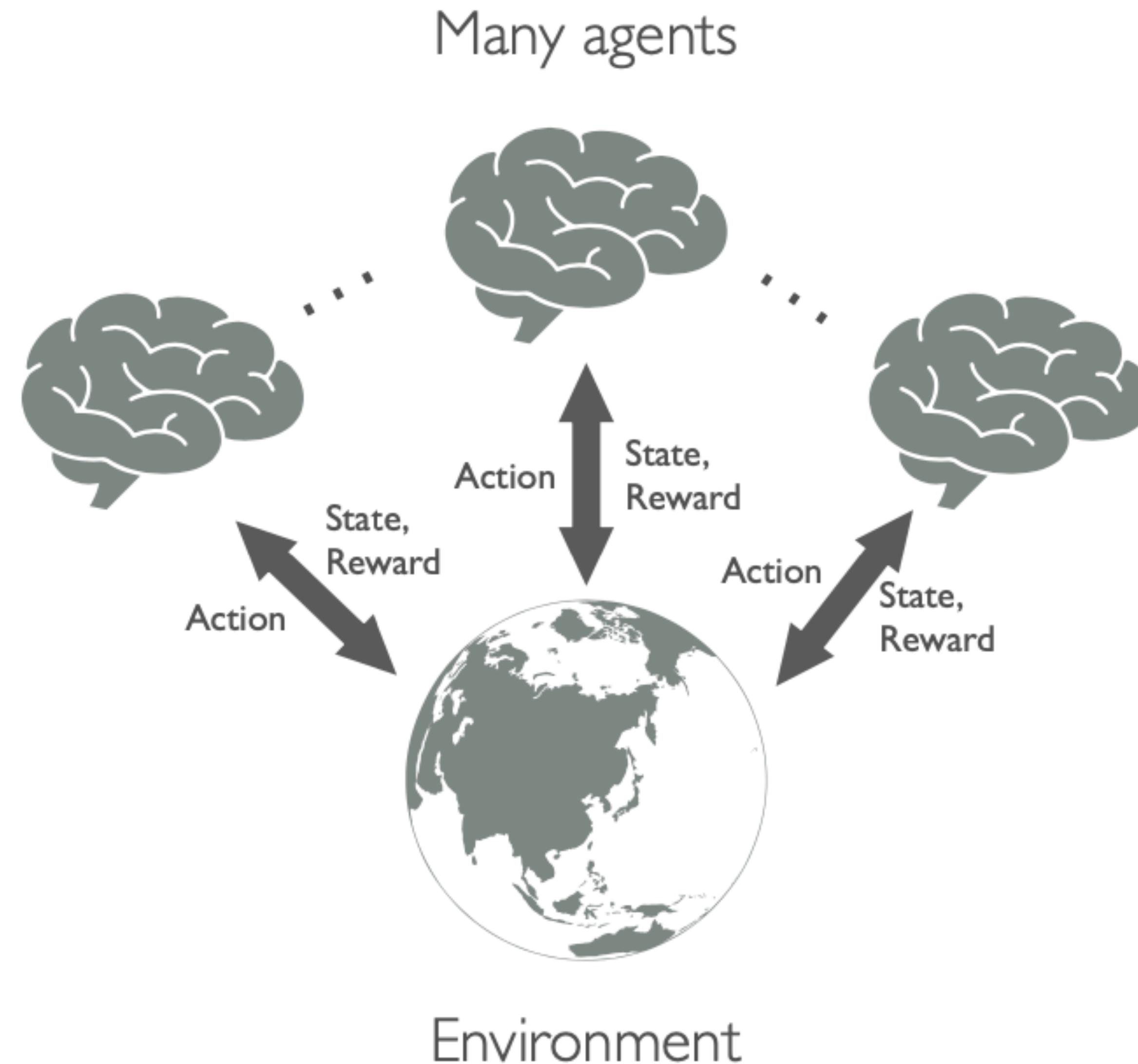
UNIVERSITY OF WISCONSIN-MADISON

Safe Multi-Agent Reinforcement Learning in Polynomial Time

Jeremy McMahan

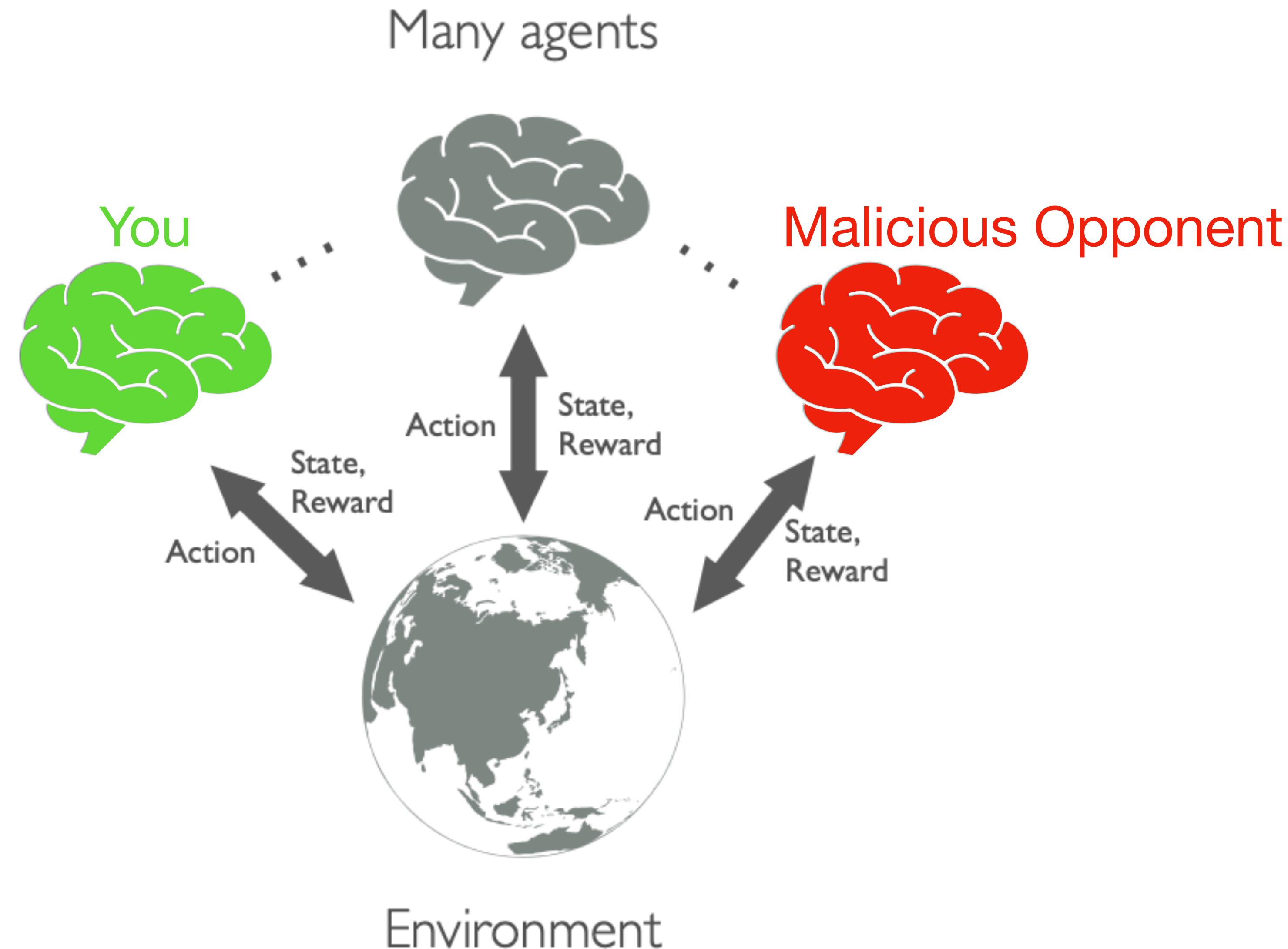
Safety Concerns

Safety Concerns

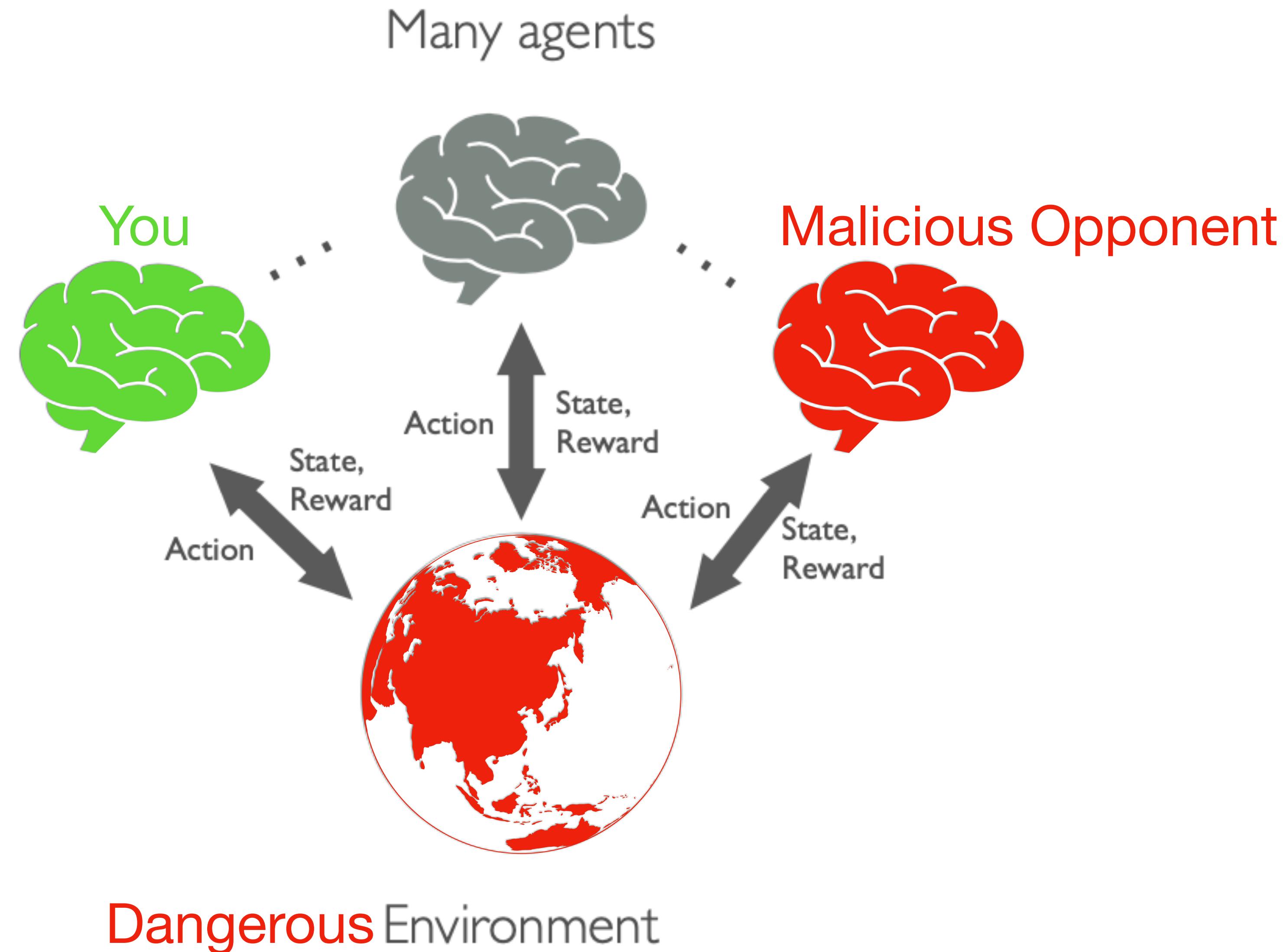


Safety Concerns

Safety Concerns



Safety Concerns



Safety Landscape

Safety Landscape

Safety from **Agents**:

Safety Landscape

Safety from **Agents**:
Adversarial MARL

Safety Landscape

Safety from **Agents**:
Adversarial MARL

Safety from **Environment**:

Safety Landscape

Safety from **Agents**:
Adversarial MARL

Safety from **Environment**:
Constrained MARL

Safety Landscape

Safety from **Agents**:
Adversarial MARL

Safety from **Environment**:
Constrained MARL

Safety Landscape

Safety from **Agents**:
Adversarial MARL

1. Manipulation Attacks

Safety from **Environment**:
Constrained MARL

Safety Landscape

Safety from **Agents**:
Adversarial MARL

1. Manipulation Attacks
2. Misinformation Attacks

Safety from **Environment**:
Constrained MARL

Safety Landscape

Safety from **Agents**:

Adversarial MARL

1. Manipulation Attacks
2. Misinformation Attacks

Safety from **Environment**:

Constrained MARL

1. Anytime Constraints

Safety Landscape

Safety from **Agents**:
Adversarial MARL

1. Manipulation Attacks
2. Misinformation Attacks

Safety from **Environment**:
Constrained MARL

1. Anytime Constraints
2. Single-Constraint FPTAS

Safety Landscape

Safety from **Agents**:
Adversarial MARL

1. Manipulation Attacks
2. Misinformation Attacks

Safety from **Environment**:
Constrained MARL

1. Anytime Constraints
2. Single-Constraint FPTAS
3. Multi-Constraint Bicriteria

Adversarial MARL

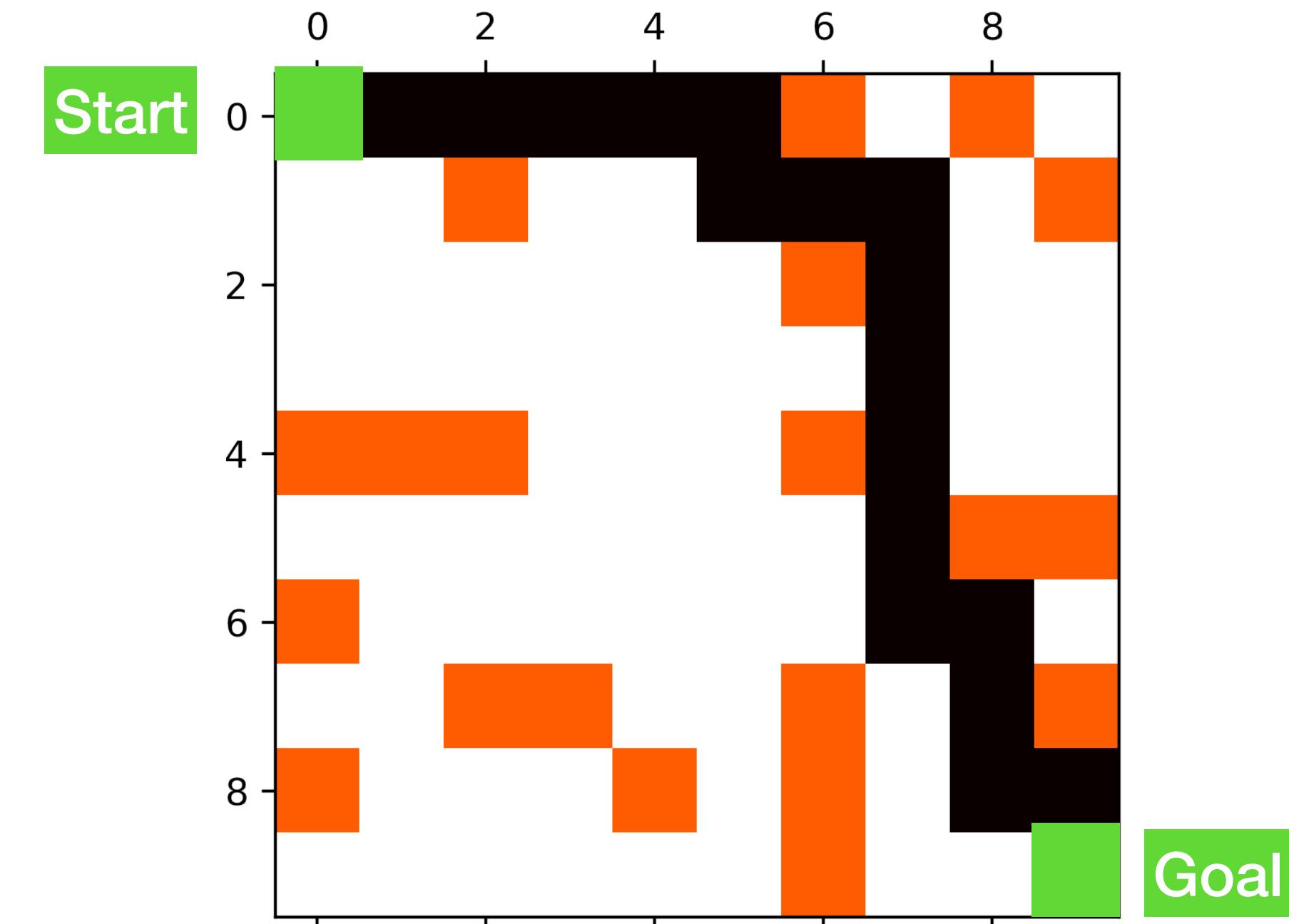
Manipulation Attacks

*AAAI 2024

Motivation

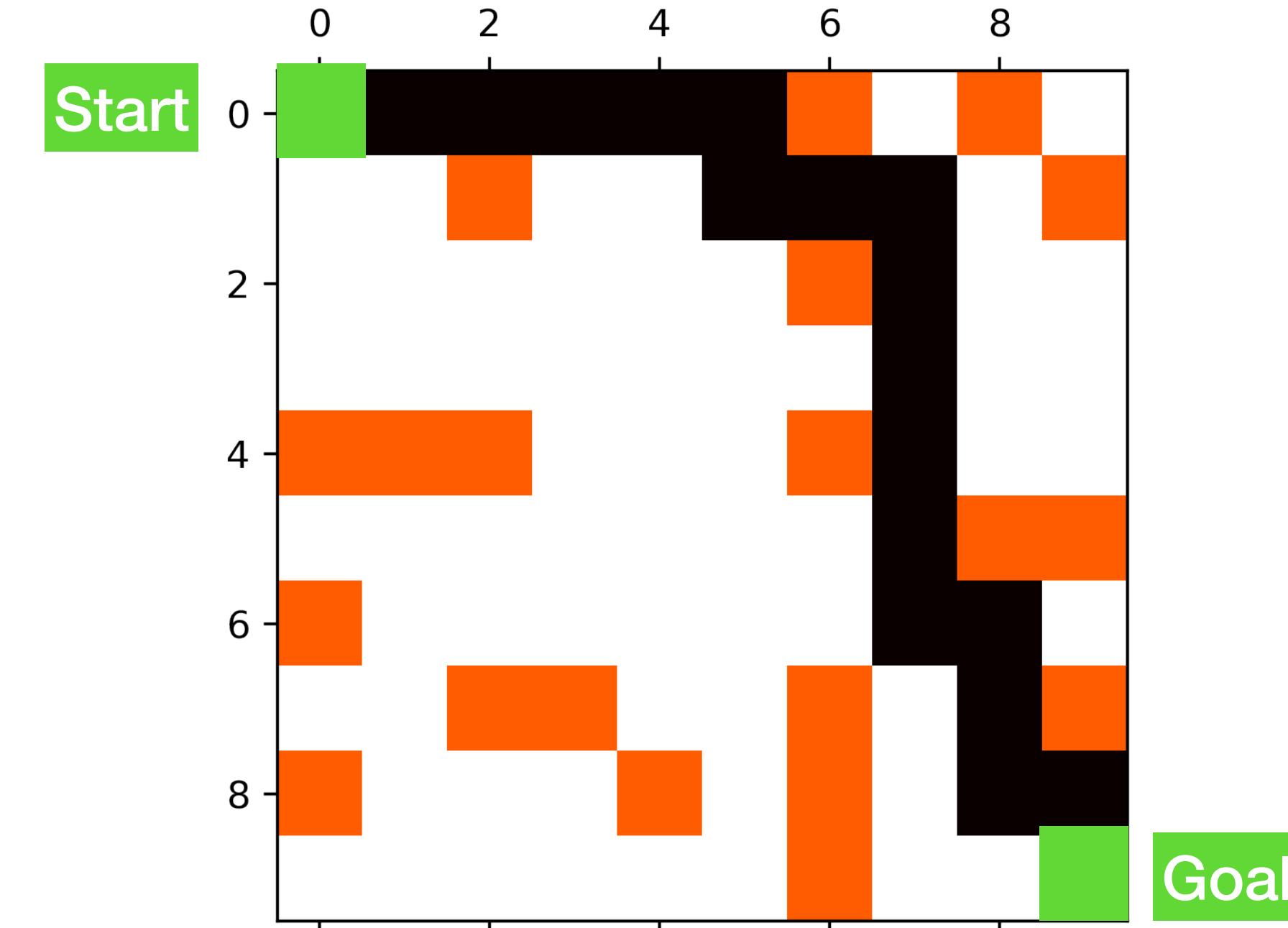
Motivation

Optimal π^*

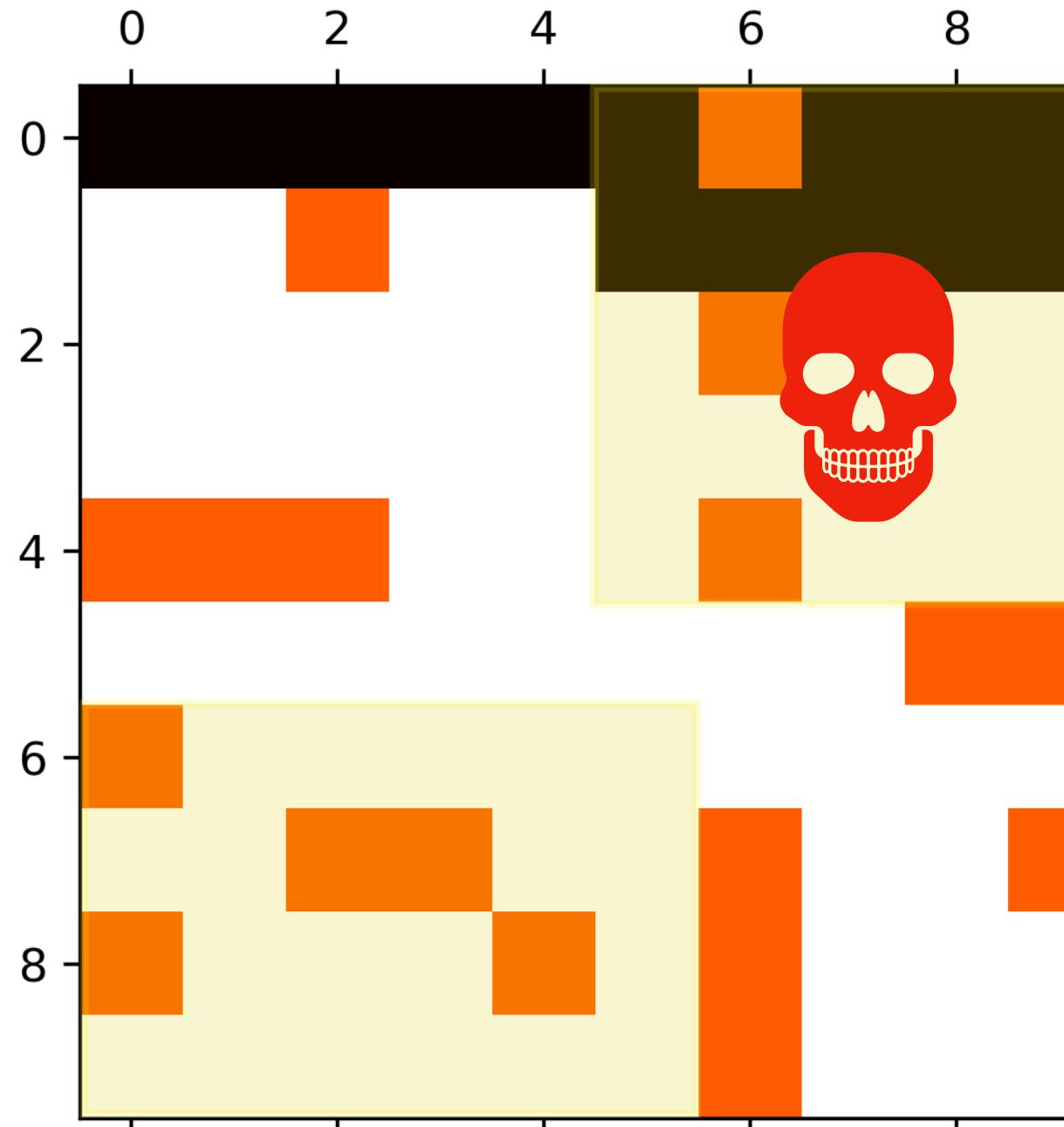


Motivation

Optimal π^*

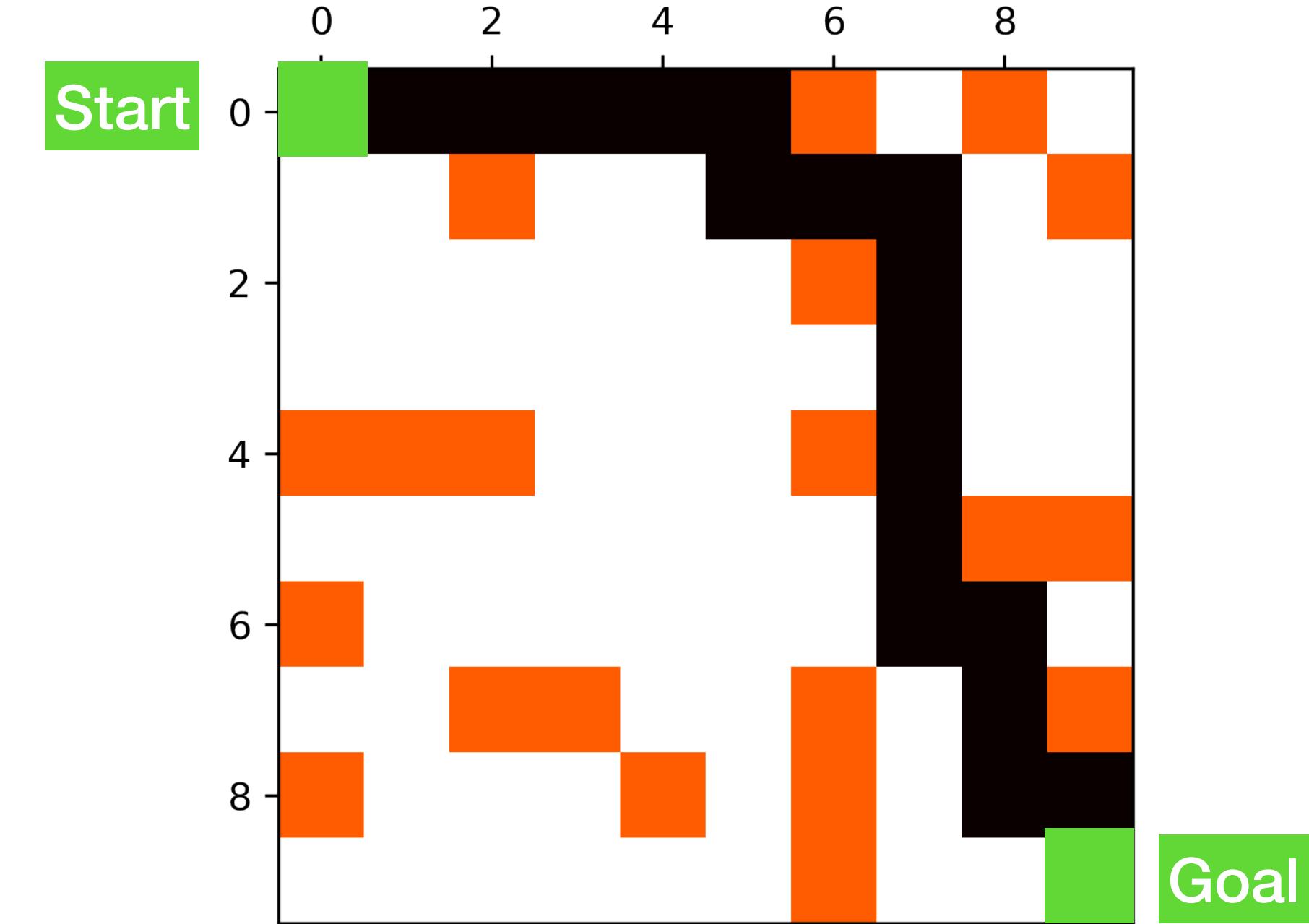


Attacked π^*

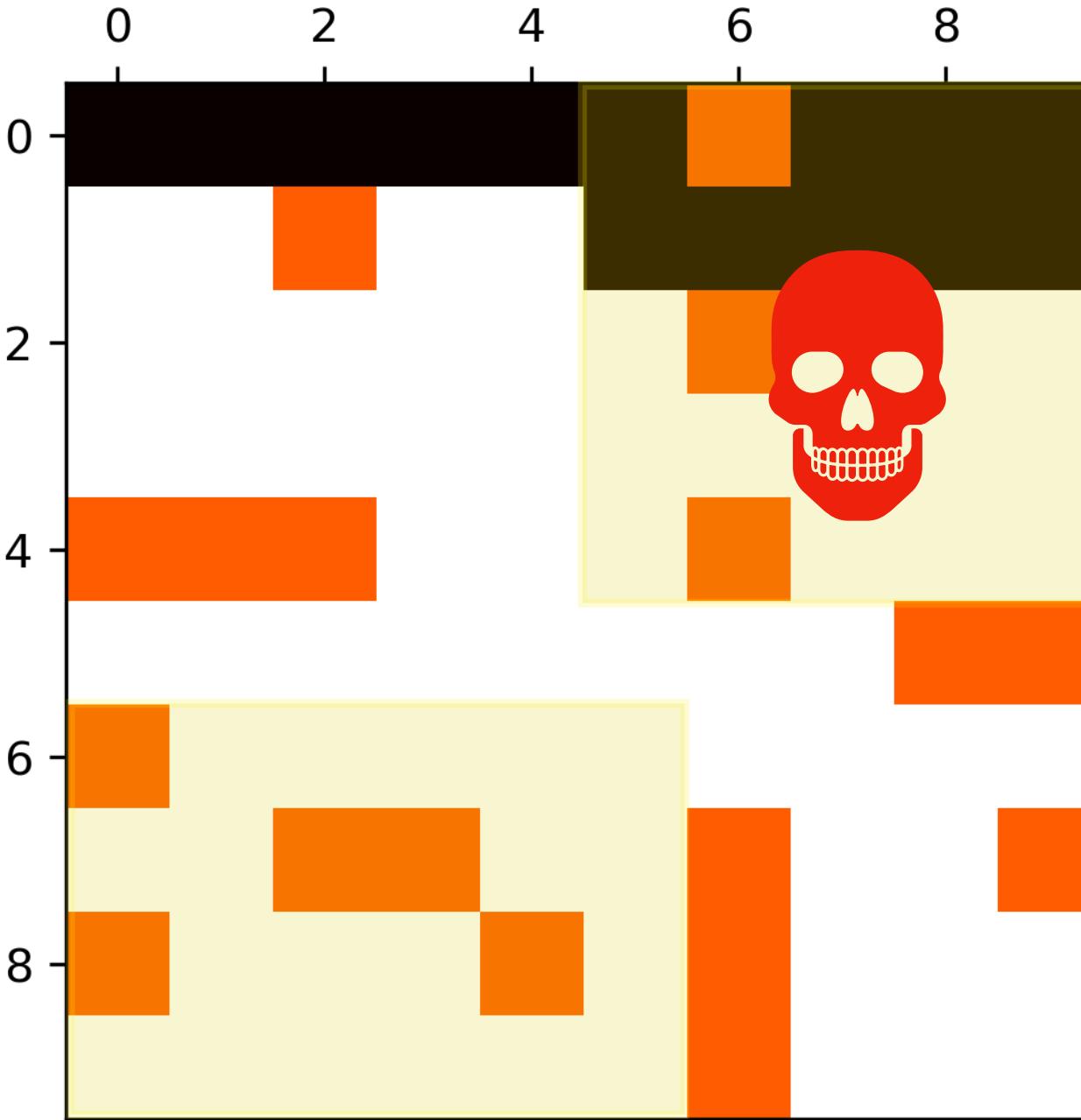


Motivation

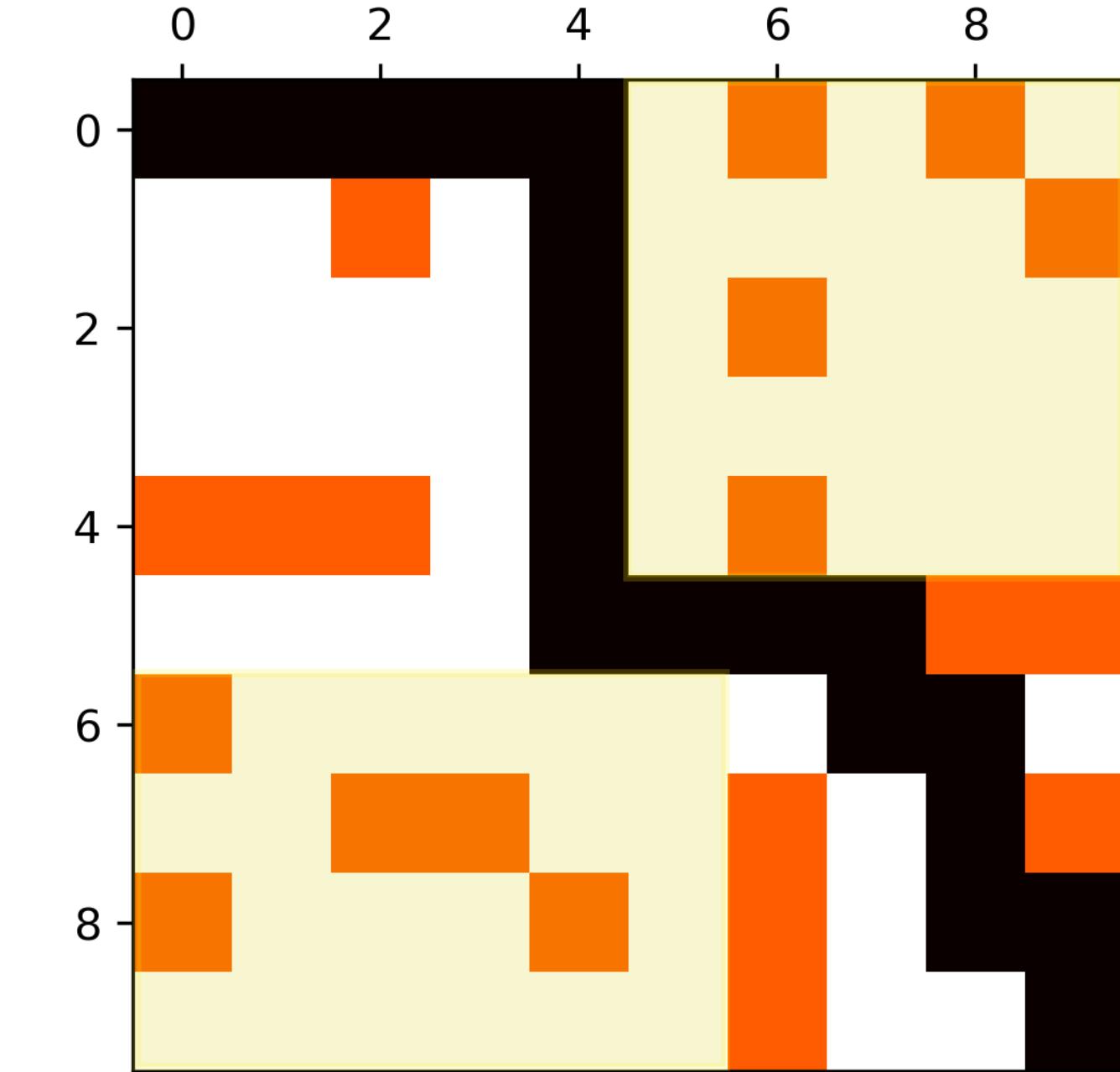
Optimal π^*



Attacked π^*

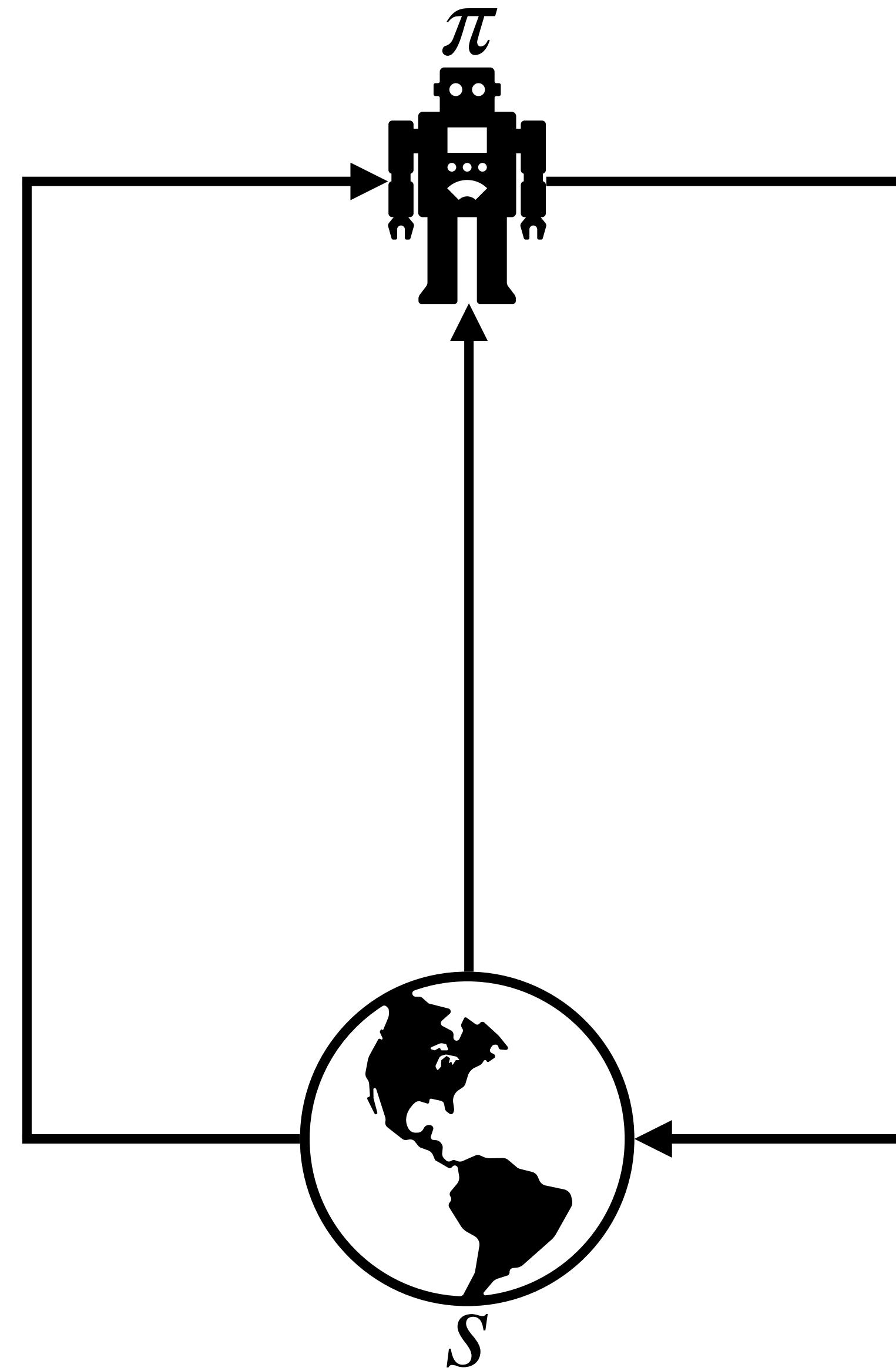


Robust $\hat{\pi}$

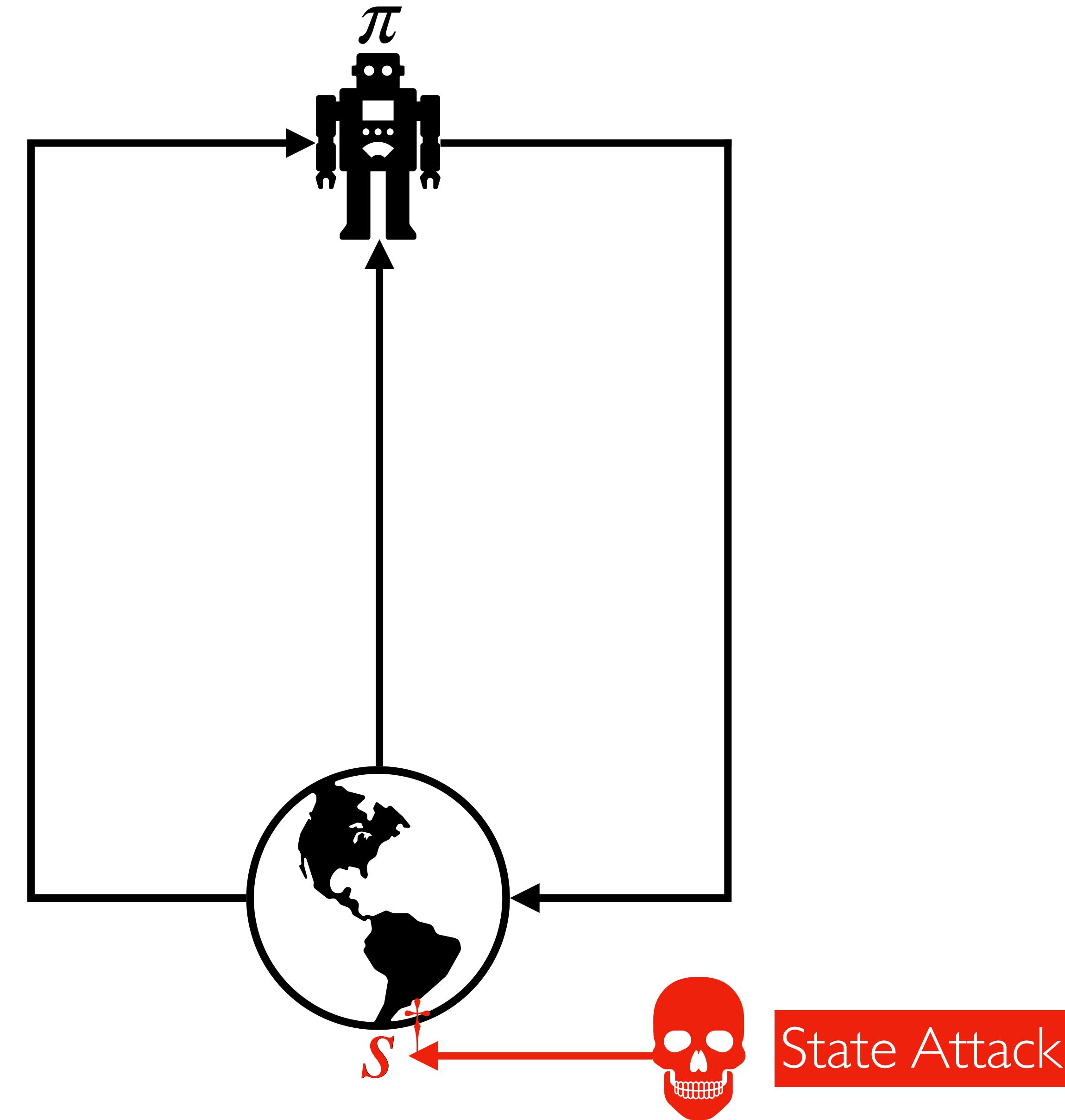


Attack Surfaces

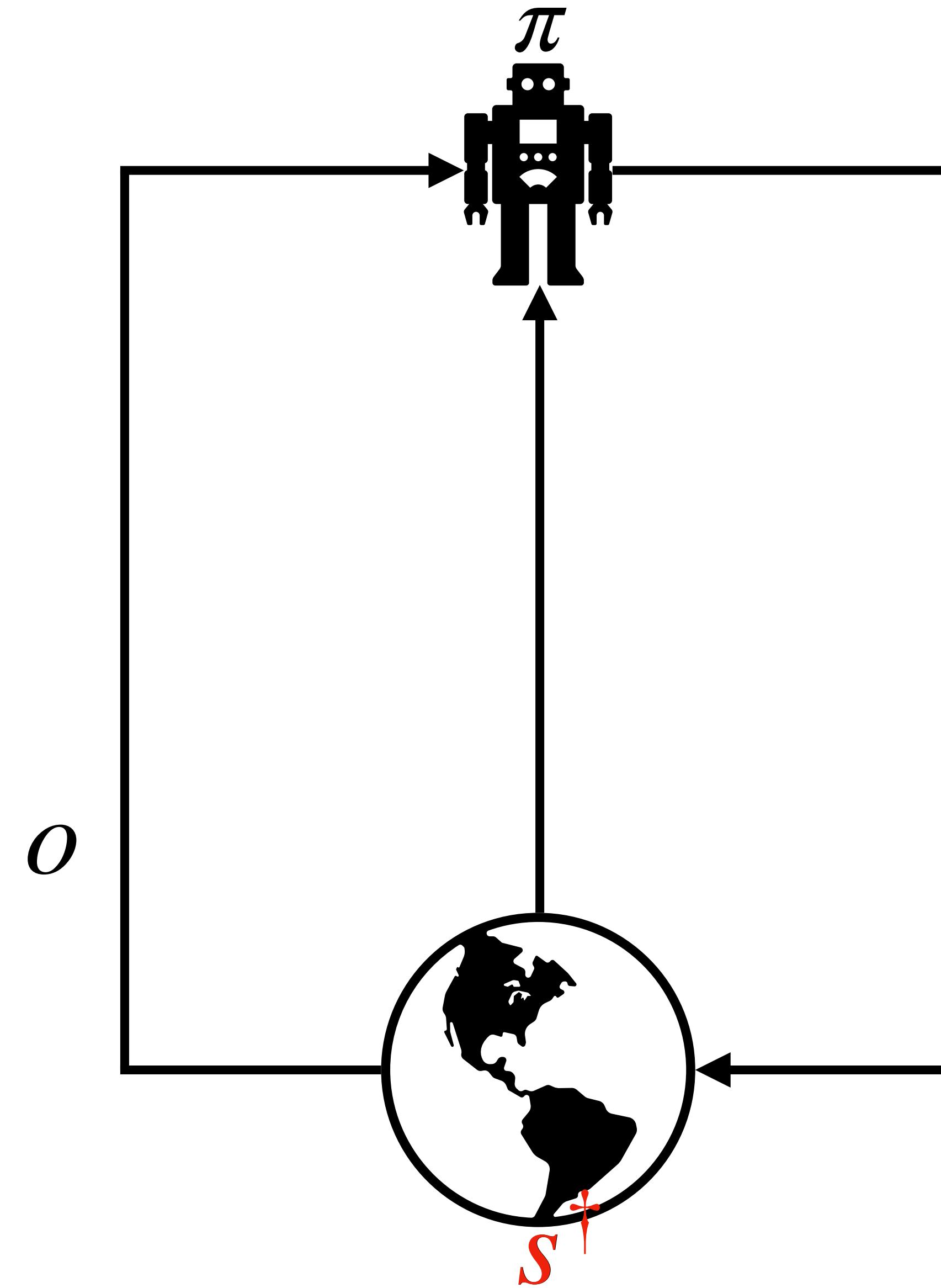
Attack Surfaces



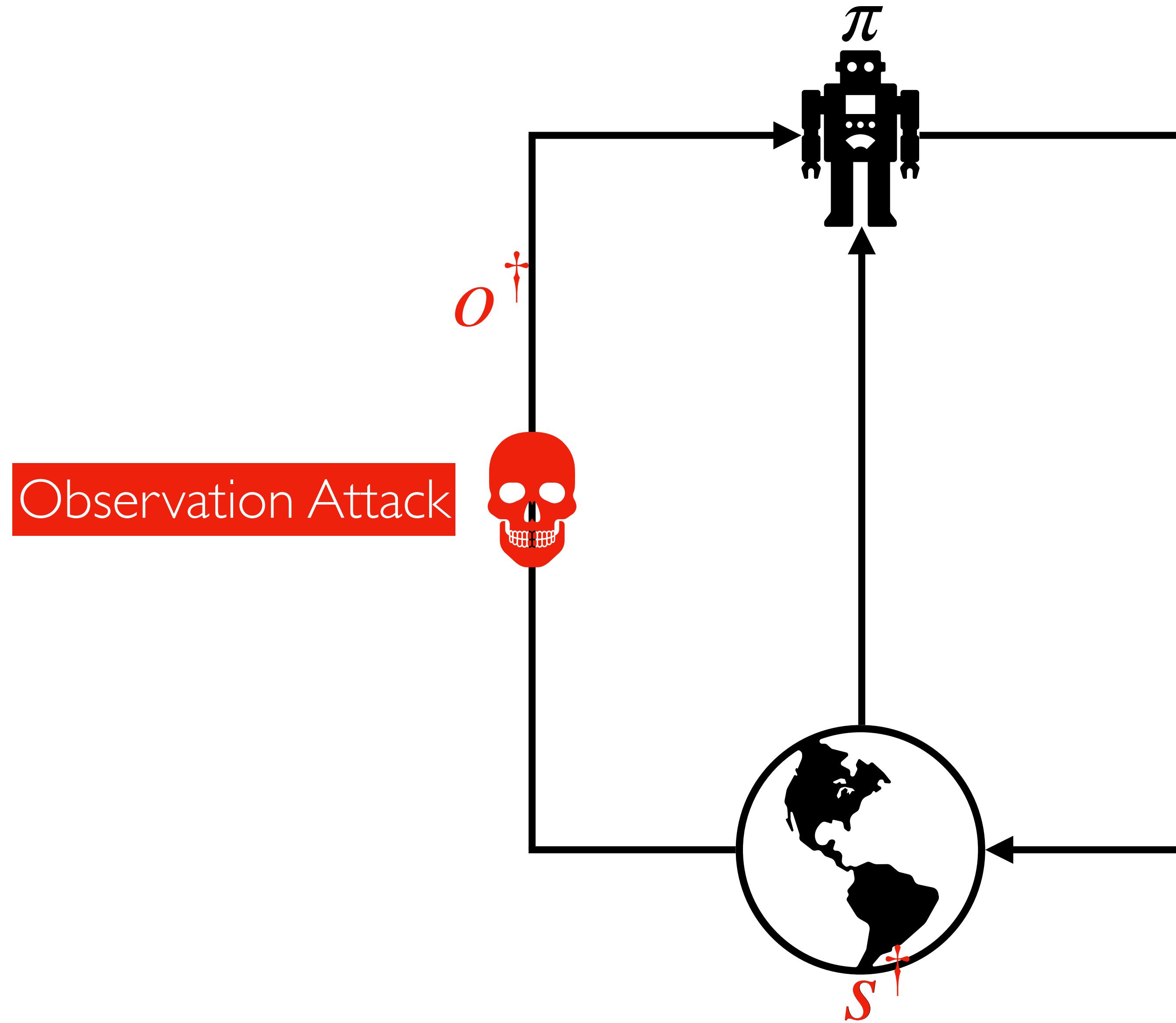
Attack Surfaces



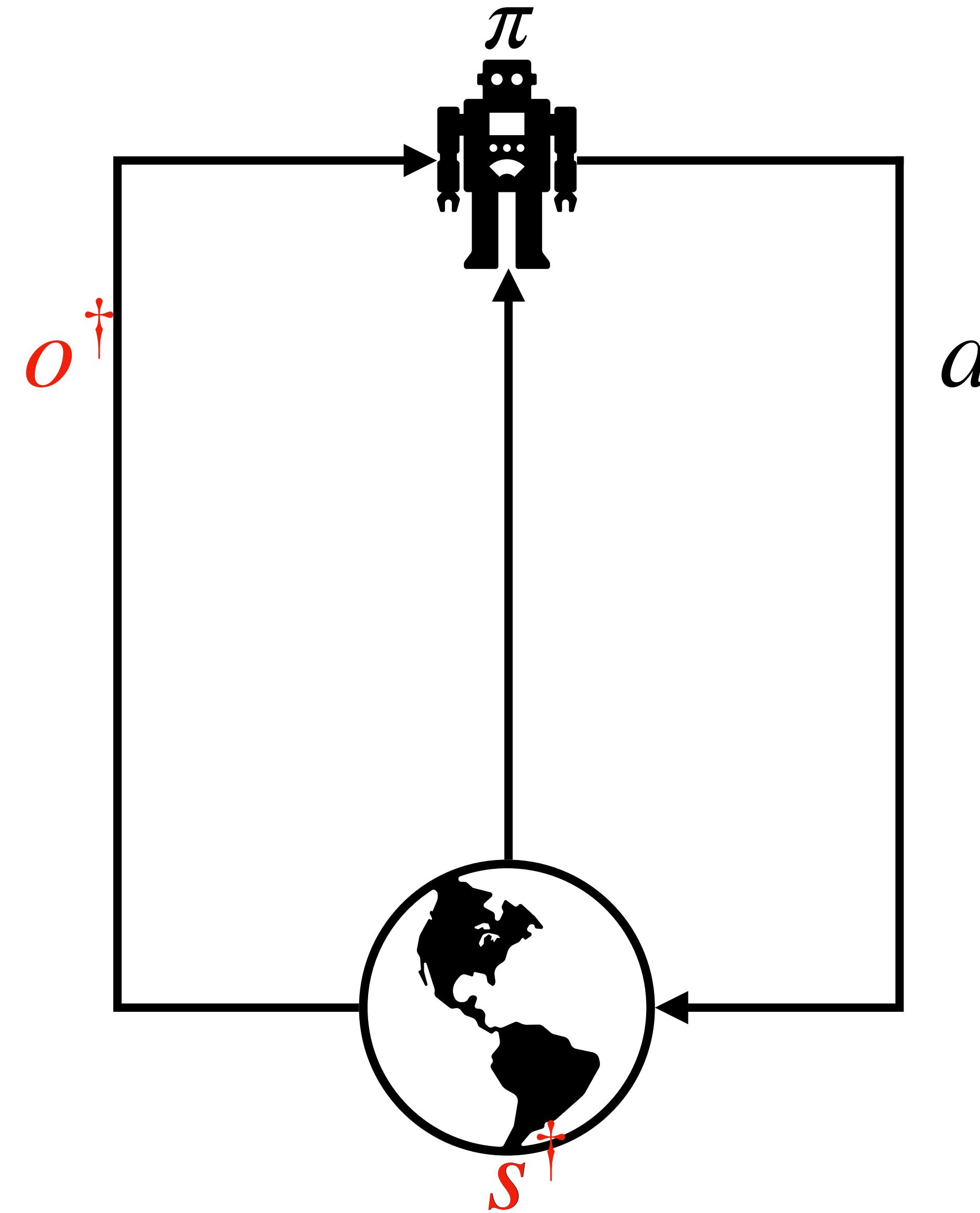
Attack Surfaces



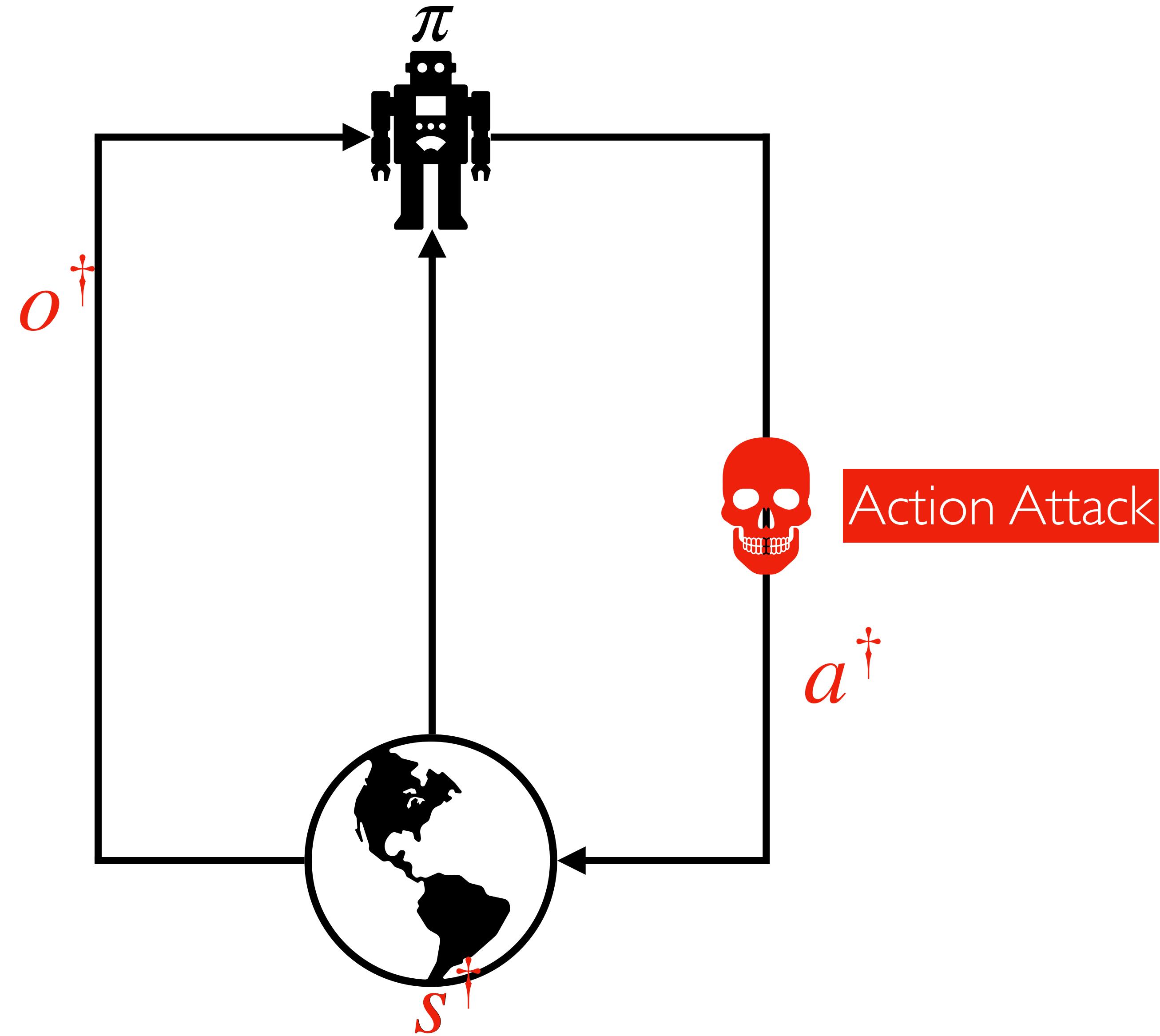
Attack Surfaces



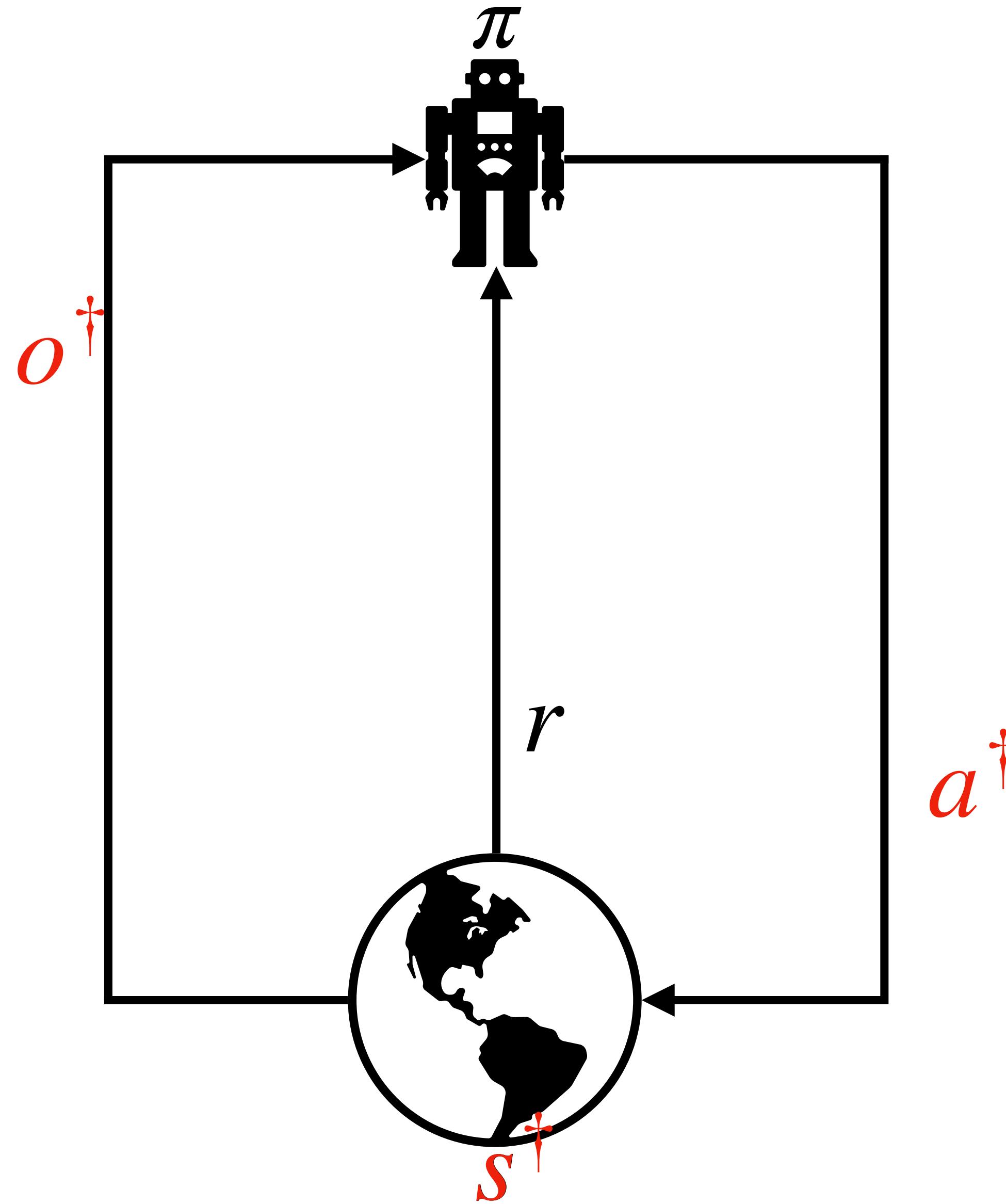
Attack Surfaces



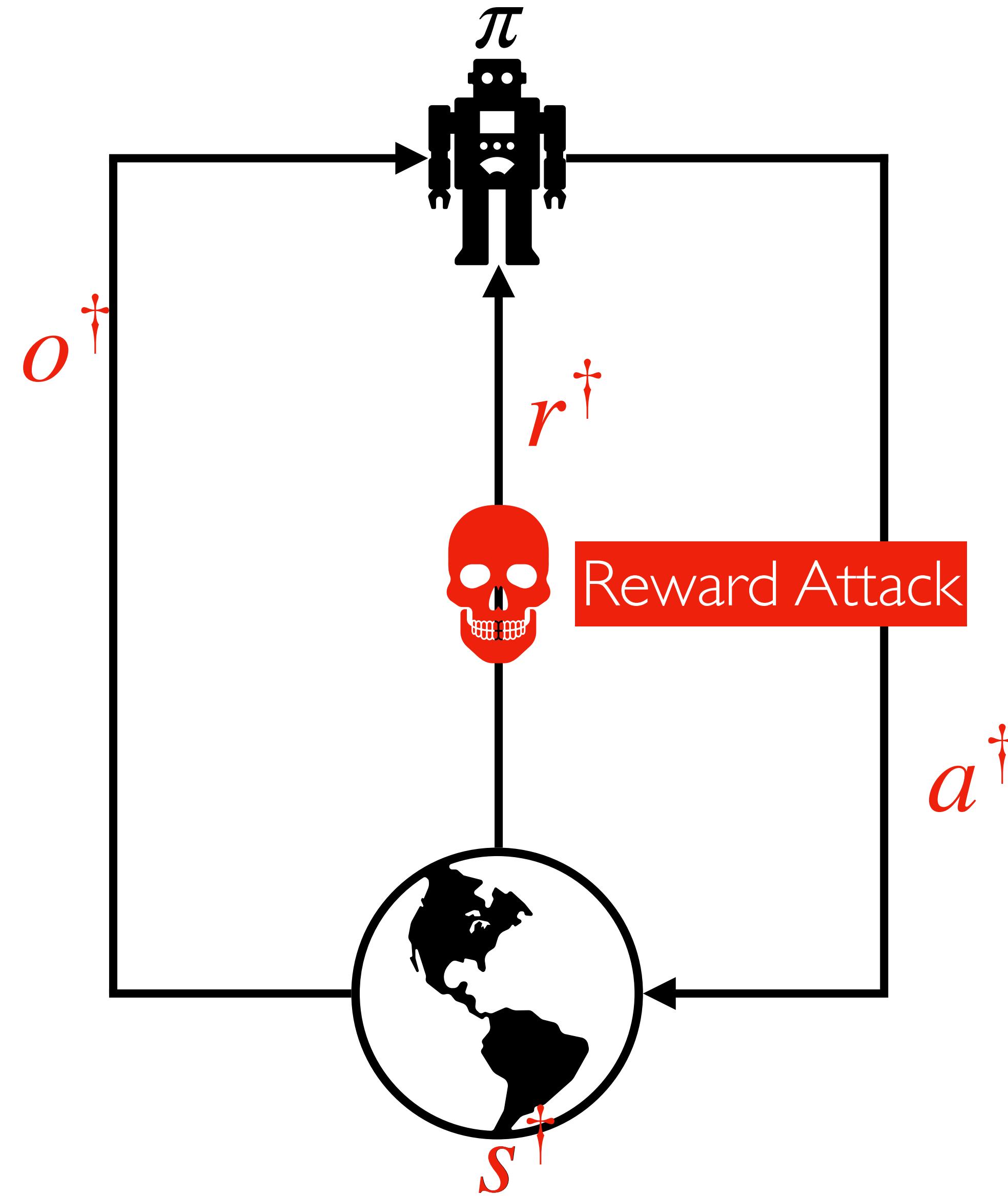
Attack Surfaces



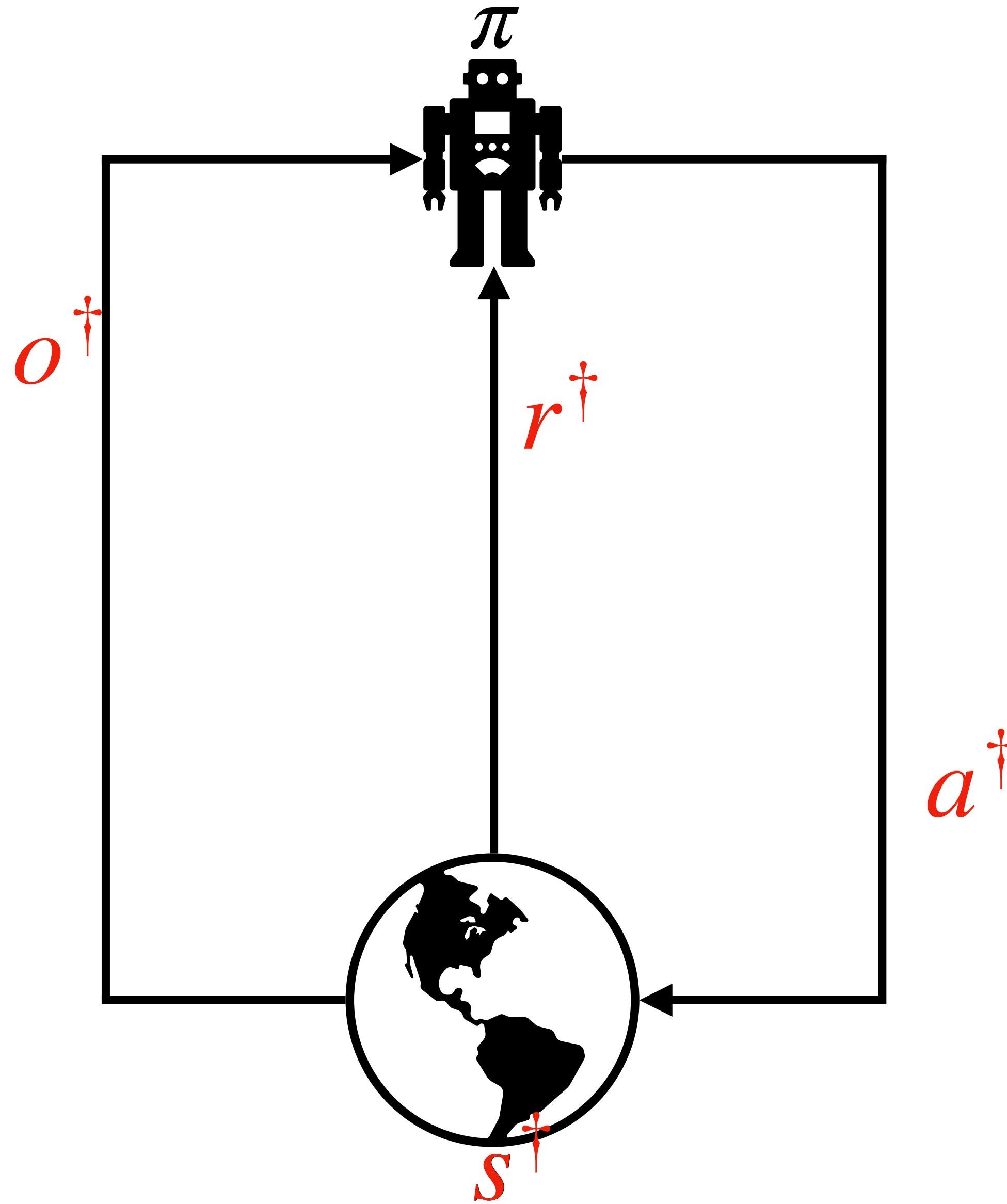
Attack Surfaces



Attack Surfaces



Attack Surfaces



Attacker's Perspective

Attacker's Perspective

Attacker has its own reward $g(s_t, a_t, r_t)$ that depends on the victim's.

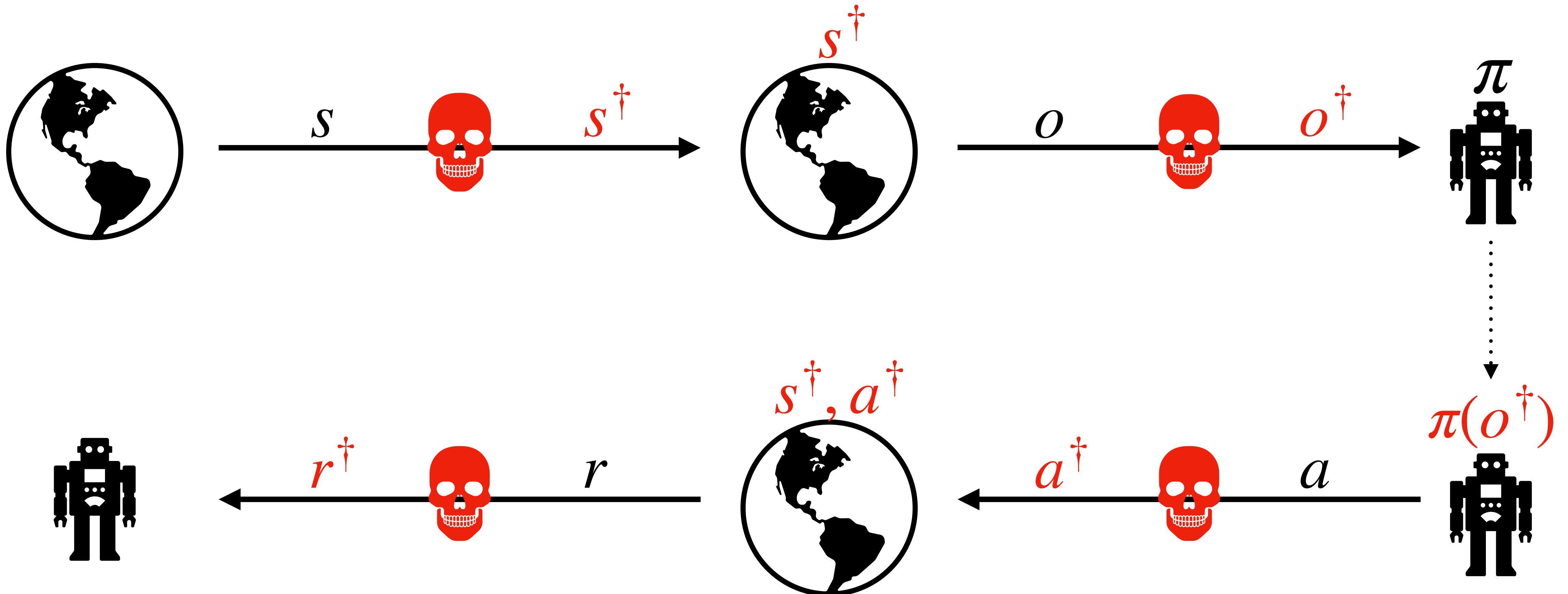
Attacker's Perspective

Attacker has its own reward $g(s_t, a_t, r_t)$ that depends on the victim's.

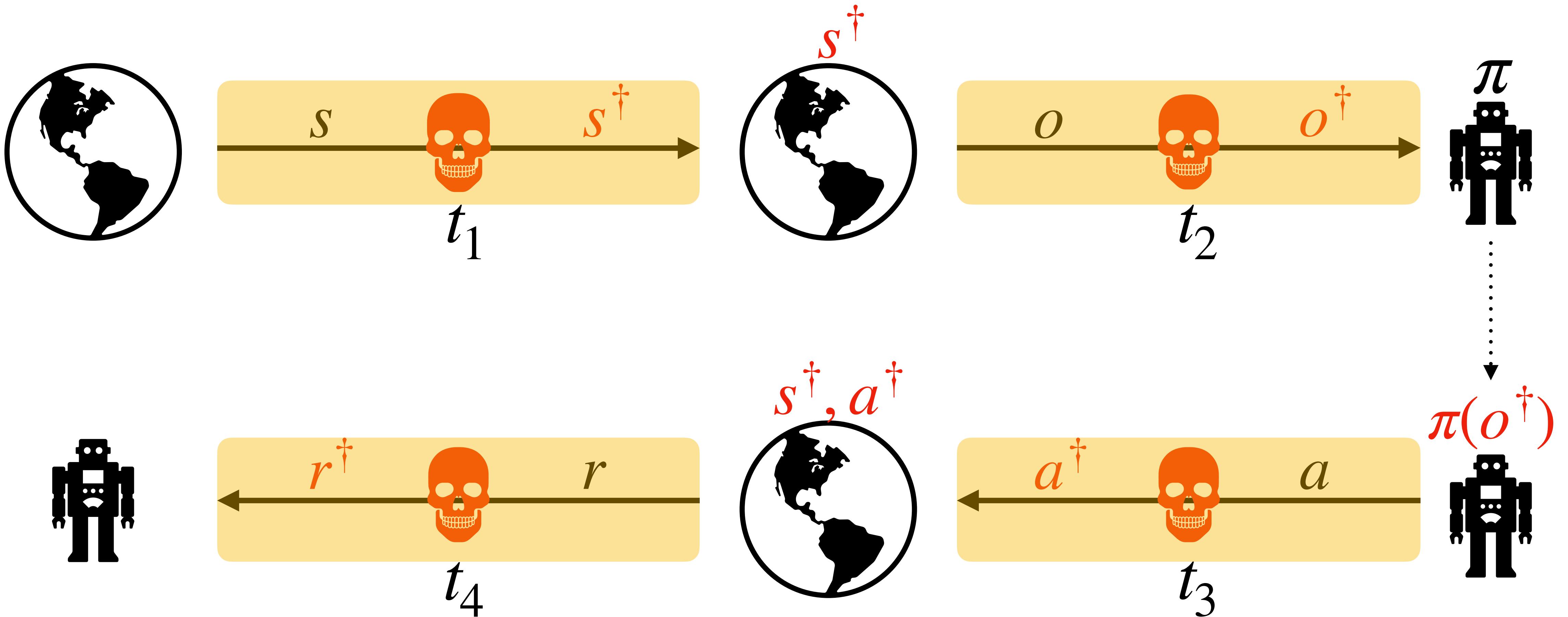
Definition 1 (Attack Problem). For any π , the attacker's seeks a policy $\nu^* \in N$ that maximizes its expected reward from the victim-attacker- M interaction:

$$\nu^* \in \arg \max_{\nu \in N} \mathbb{E}_M^{\pi, \nu} \left[\sum_{t=0}^{\infty} \gamma^t g(s_t, a_t, r_t) \right].$$

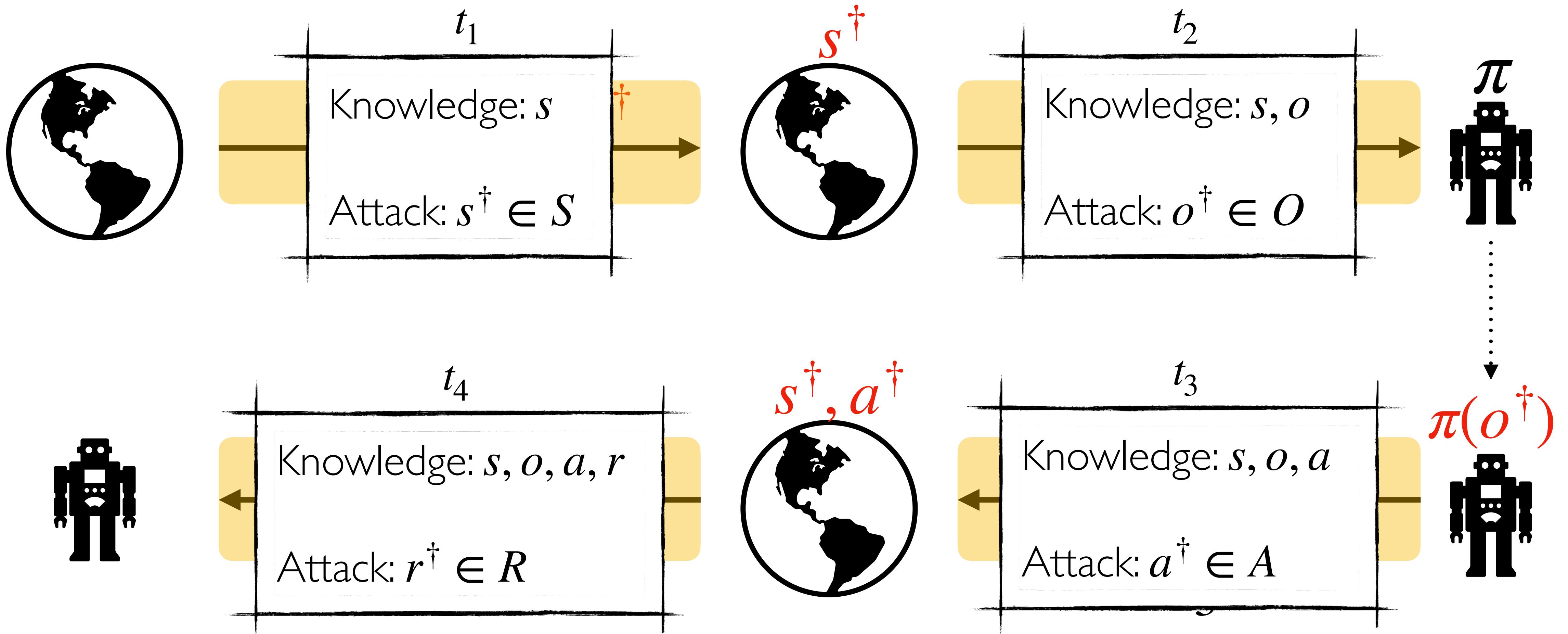
Adversarial Decomposition



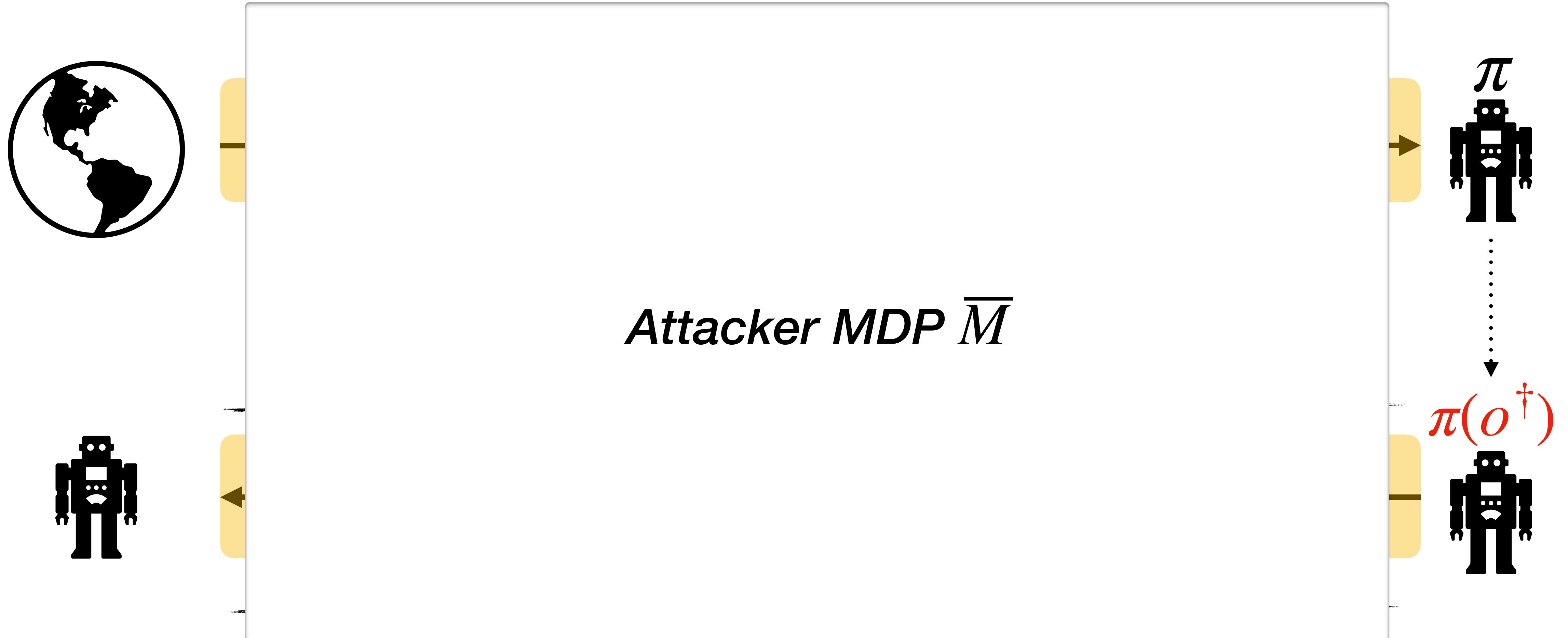
Adversarial Decomposition



Adversarial Decomposition



Adversarial Decomposition



Attack Results

Attack Results

Theorem: *An optimal attack involving any combination of attack surfaces can be computed in time $\text{poly}(|M|, |\pi|)$.*

Attack Results

Theorem: *An optimal attack involving any combination of attack surfaces can be computed in time $\text{poly}(|M|, |\pi|)$.*

First results beyond observation attacks!

The Defense Problem

The Defense Problem

Let $(V_1^{\pi,\nu}, V_2^{\pi,\nu})$ denote the victim's and attacker's value, respectively.

The Defense Problem

Let $(V_1^{\pi,\nu}, V_2^{\pi,\nu})$ denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy π^* that maximizes its expected reward from the victim-attacker- M interaction under the worst-case attack:

$$\pi^* \in \arg \max_{\pi \in \Pi} \min_{\nu \in BR(\pi)} V_1^{\pi,\nu}.$$

The Defense Problem

Let $(V_1^{\pi,\nu}, V_2^{\pi,\nu})$ denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy π^* that maximizes its expected reward from the victim-attacker- M interaction under the worst-case attack:

$$\pi^* \in \arg \max_{\pi \in \Pi} \min_{\nu \in BR(\pi)} V_1^{\pi,\nu}.$$

$$BR(\pi) := \arg \max_{\nu \in N} V_2^{\pi,\nu}$$

The Defense Problem

Let $(V_1^{\pi,\nu}, V_2^{\pi,\nu})$ denote the victim's and attacker's value, respectively.

Definition 2 (Defense Problem). The victim seeks a policy π^* that maximizes its expected reward from the victim-attacker- M interaction under the worst-case attack:

$$\pi^* \in \arg \max_{\pi \in \Pi} \min_{\nu \in BR(\pi)} V_1^{\pi,\nu}.$$

$$BR(\pi) := \arg \max_{\nu \in N} V_2^{\pi,\nu}$$

Defense = WSE in a meta game.

Bottlenecks

Bottlenecks

- WSE need not exist.

Bottlenecks

- WSE need not exist.
- WSE are generally non-Markovian.

Bottlenecks

- WSE need not exist.
- WSE are generally non-Markovian.

Proposition: *The defense problem is as hard as solving POMDPs. Thus, is NP-hard to even approximate.*

Approach

Approach

Solution: ban observation attacks.

Approach

Solution: ban observation attacks.

\overline{G}

Approach

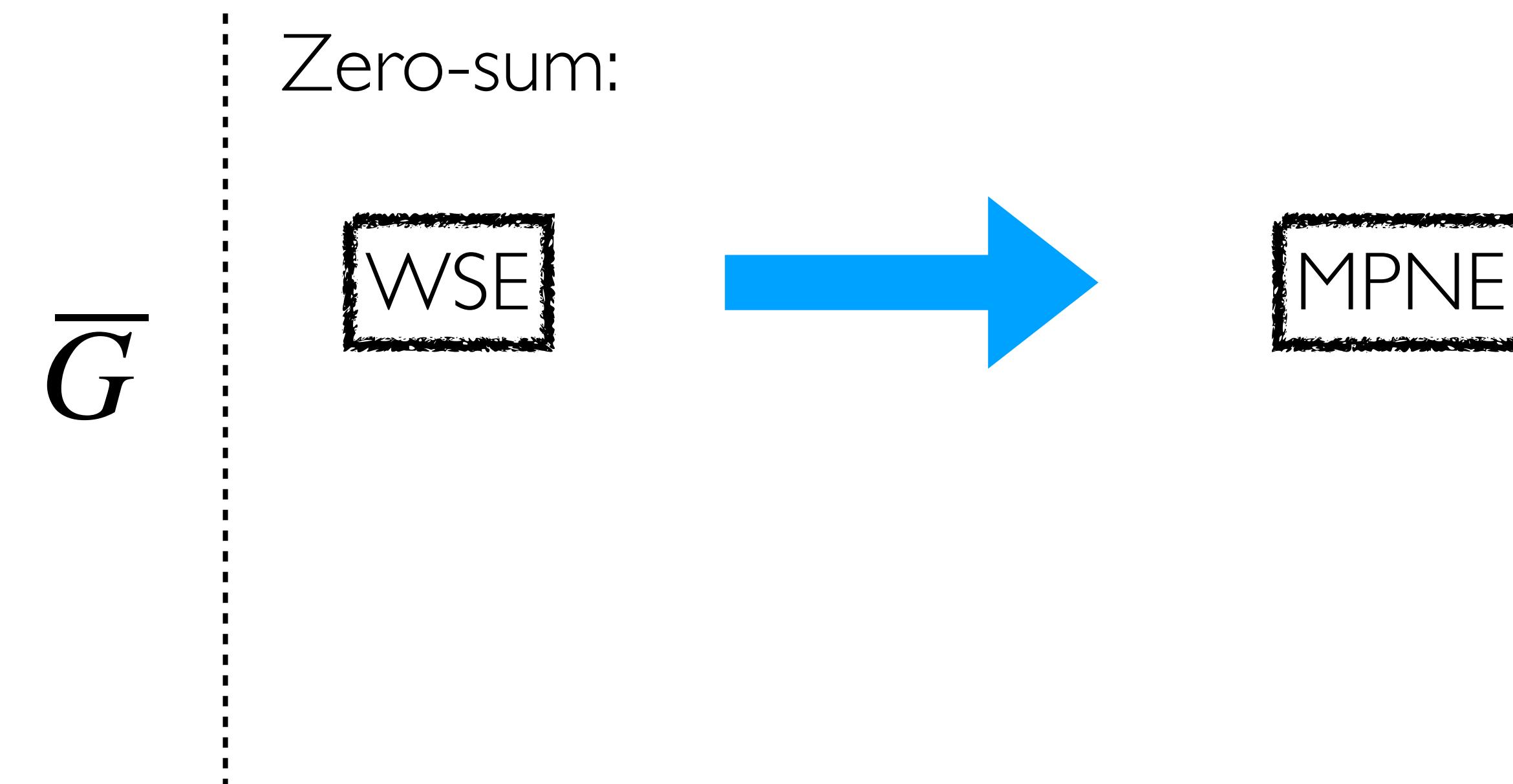
Solution: ban observation attacks.

\overline{G}

Zero-sum:

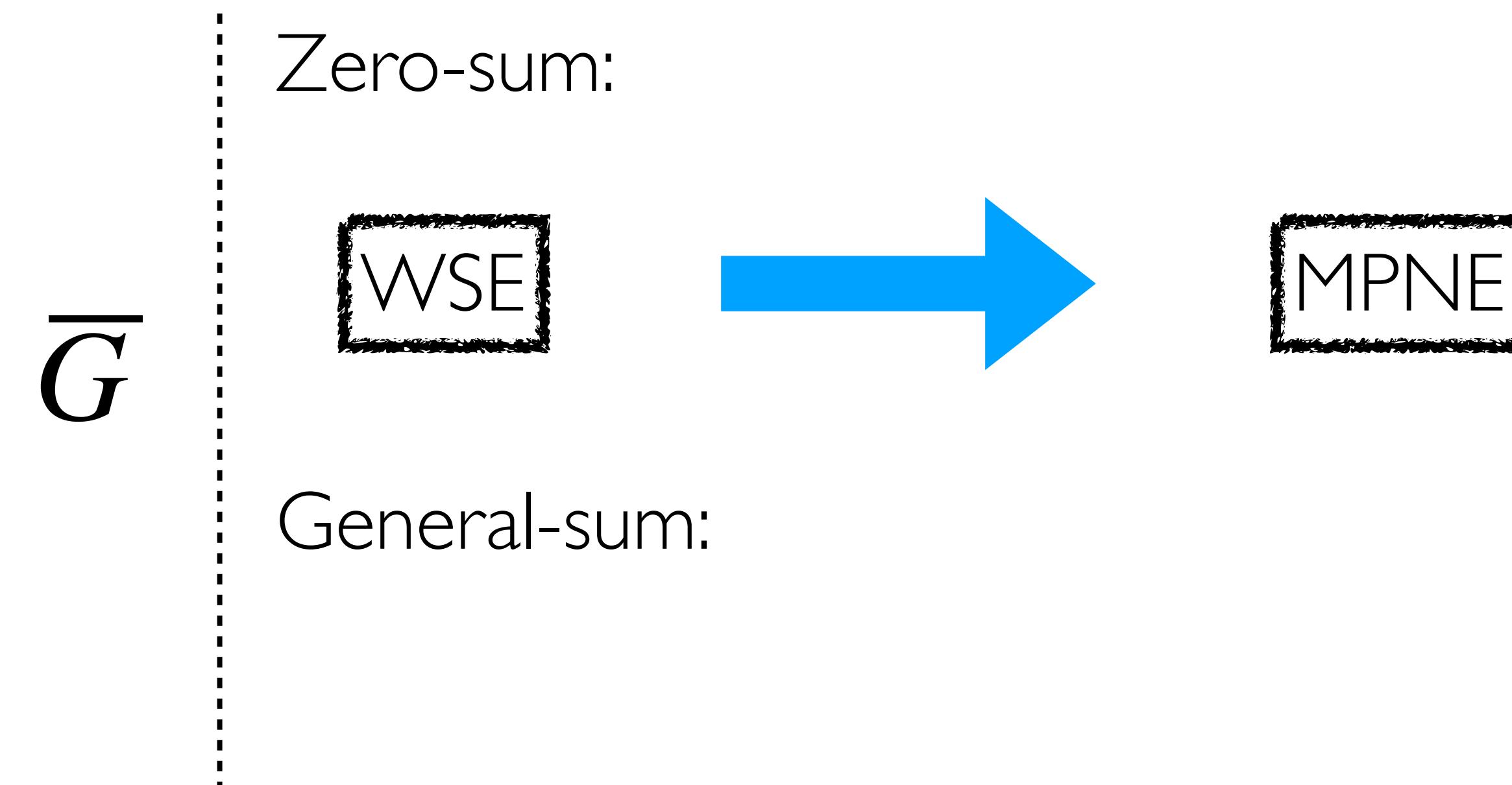
Approach

Solution: ban observation attacks.



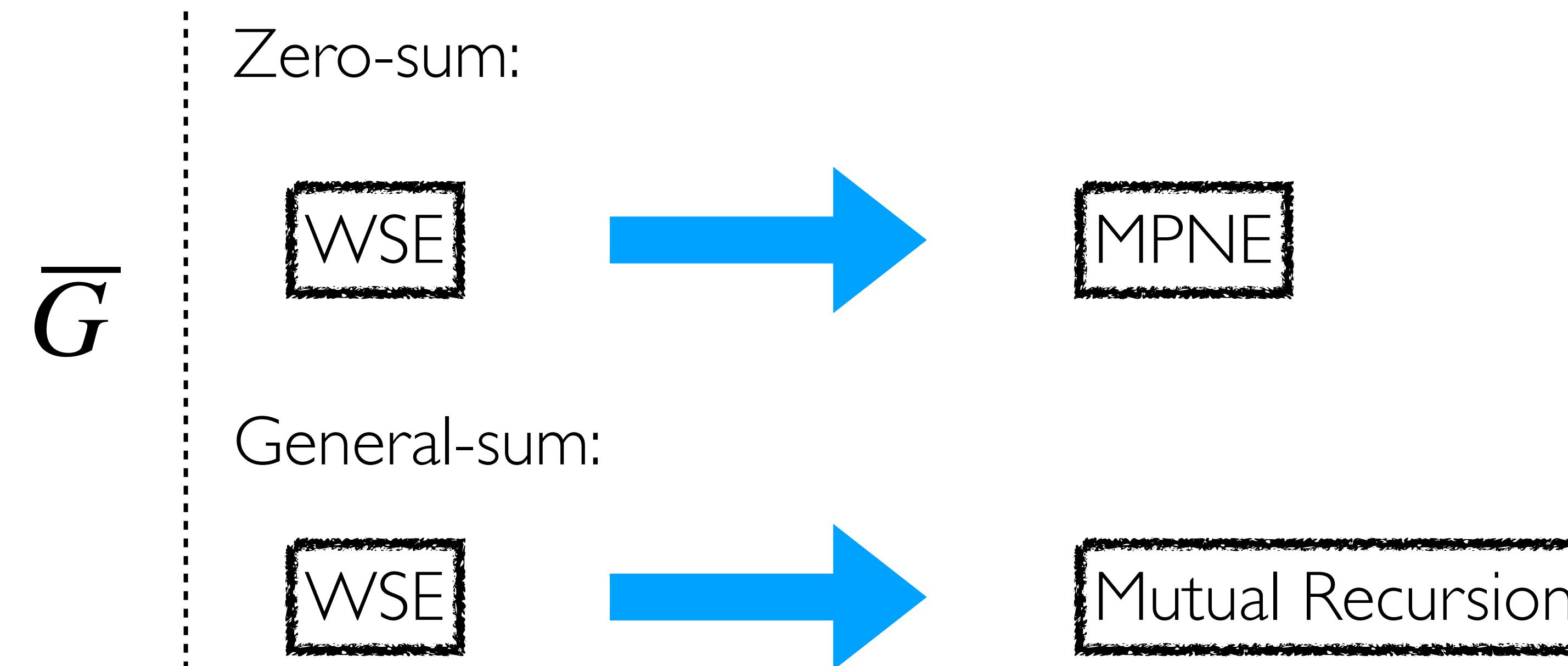
Approach

Solution: ban observation attacks.



Approach

Solution: ban observation attacks.



Rollback Algorithm

Special Case: Action Attacks

Rollback Algorithm

Special Case: Action Attacks

1. Victim determines Attacker's best response to any action a :

$$BR_h(s, a) = \arg \max_{a^\dagger \in \overline{\mathcal{A}}(s, a)} [g_h(s, a, r_h(s, a)) + \mathbb{E}_{s' \sim P_h(s, a^\dagger)} [V_{h+1, 2}^*(s', \pi_{h+1}^*(s'))]]$$

Rollback Algorithm

Special Case: Action Attacks

1. Victim determines Attacker's best response to any action a :

$$BR_h(s, a) = \arg \max_{a^\dagger \in \overline{\mathcal{A}}(s, a)} [g_h(s, a, r_h(s, a)) + \mathbb{E}_{s' \sim P_h(s, a^\dagger)} [V_{h+1, 2}^*(s', \pi_{h+1}^*(s'))]]$$

2. Victim picks a based on the worst-case best-response:

$$V_{h, 1}^*(s) = \max_{a \in \mathcal{A}} \min_{a^\dagger \in BR_h(s, a)} [r_h(s, a^\dagger) + \mathbb{E}_{s' \sim P_h(s, a^\dagger)} [V_{h+1, 1}^*(s')]]$$

Defense Results

Defense Results

Theorem: *An optimal defense can be **computed** as the WSE of a meta game (POTBMG).*

Defense Results

Theorem: *An optimal defense can be **computed** as the WSE of a meta game (POTBMG).*

*Moreover, the defense is computable in **polynomial time** if observation attacks are banned.*

Defense Results

Theorem: *An optimal defense can be **computed** as the WSE of a meta game (POTBMG).*

*Moreover, the defense is computable in **polynomial time** if observation attacks are banned.*

First results for the general defense problem!

Misinformation Attacks

**RLC 2024*

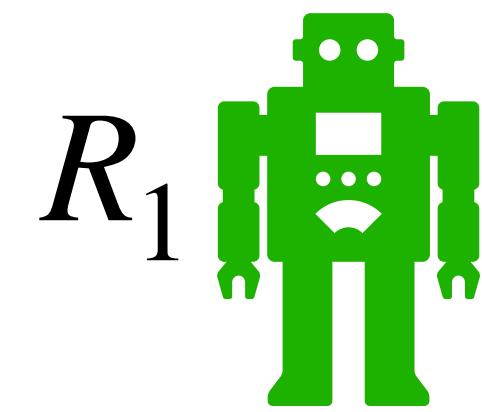
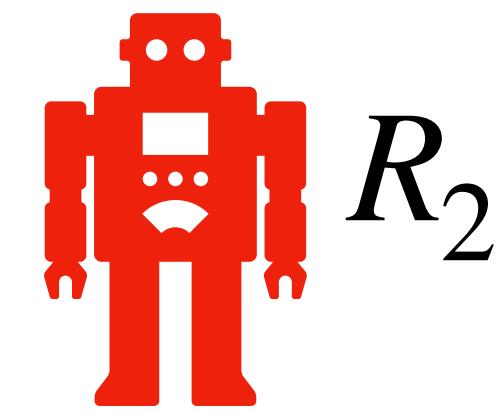
Motivation

Motivation

More **realistic** attacker: information advantage instead of environment control

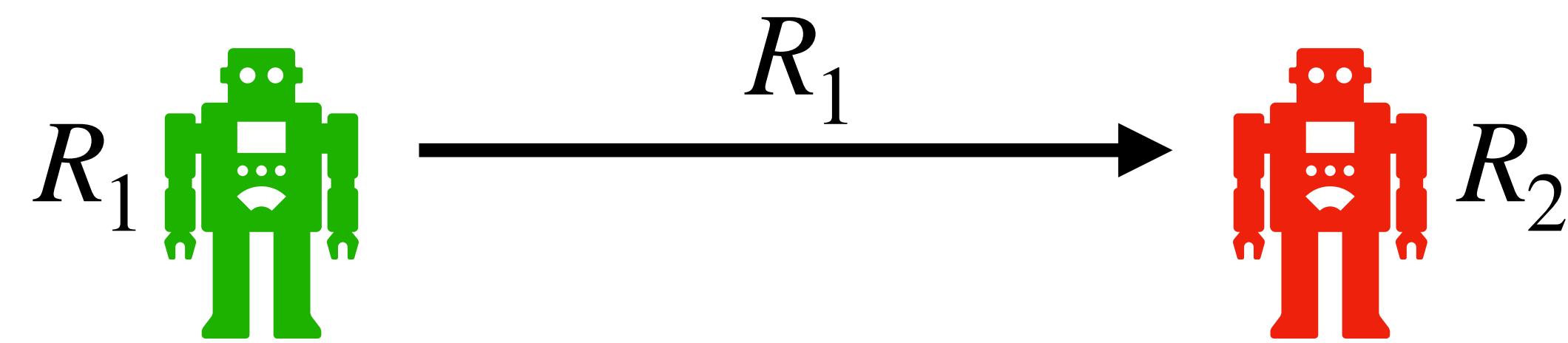
Motivation

More **realistic** attacker: information advantage instead of environment control


$$R_2$$

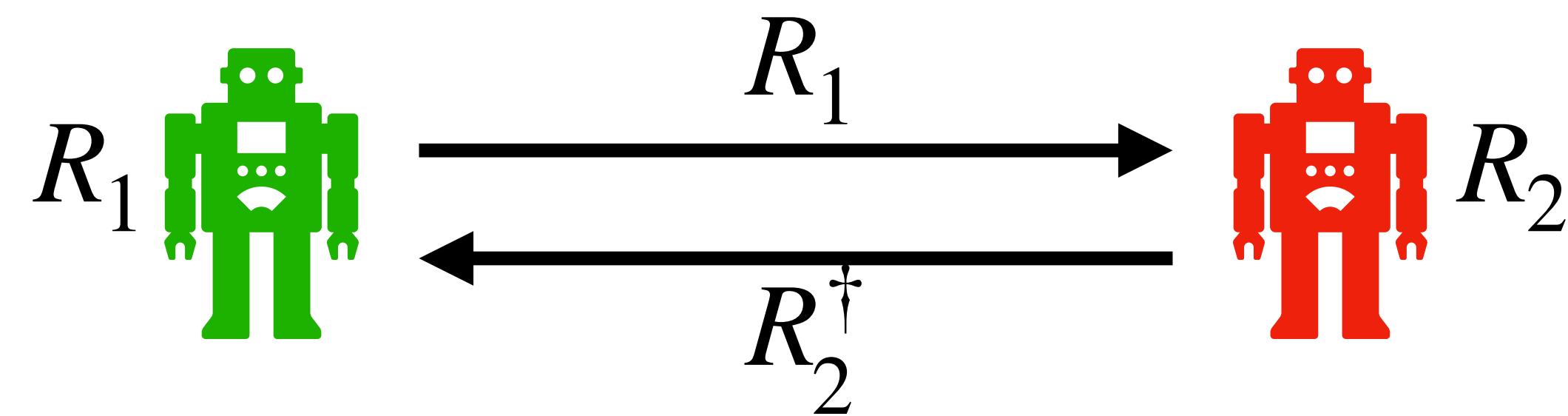
Motivation

More **realistic** attacker: information advantage instead of environment control



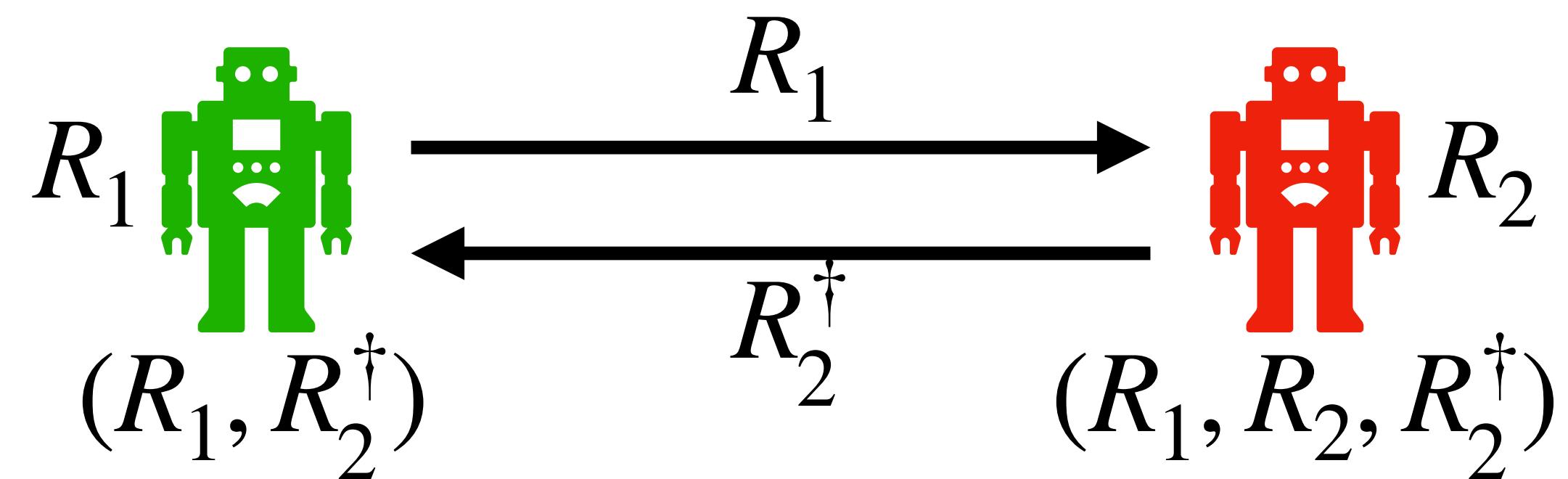
Motivation

More **realistic** attacker: information advantage instead of environment control



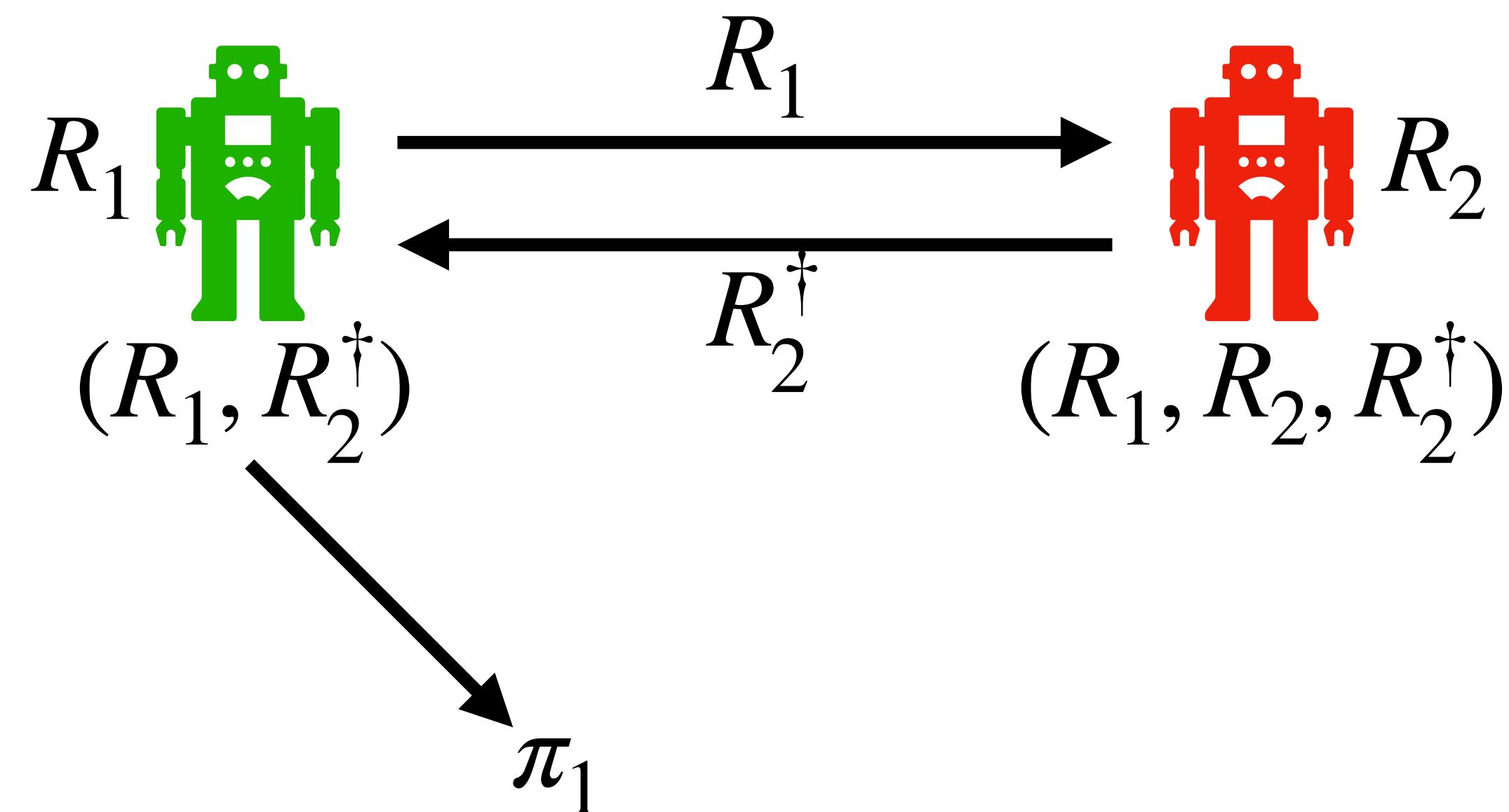
Motivation

More **realistic** attacker: information advantage instead of environment control



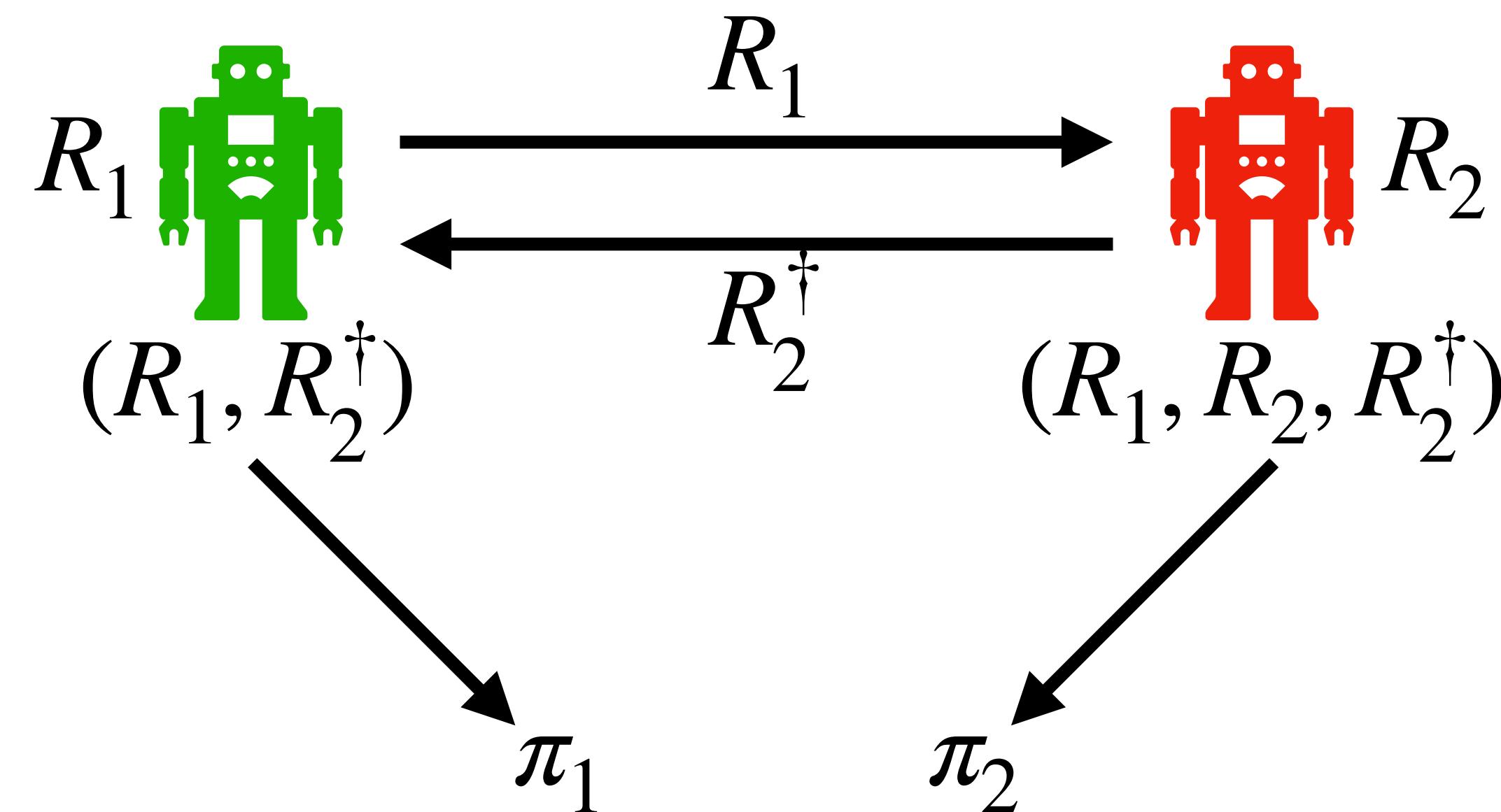
Motivation

More **realistic** attacker: information advantage instead of environment control



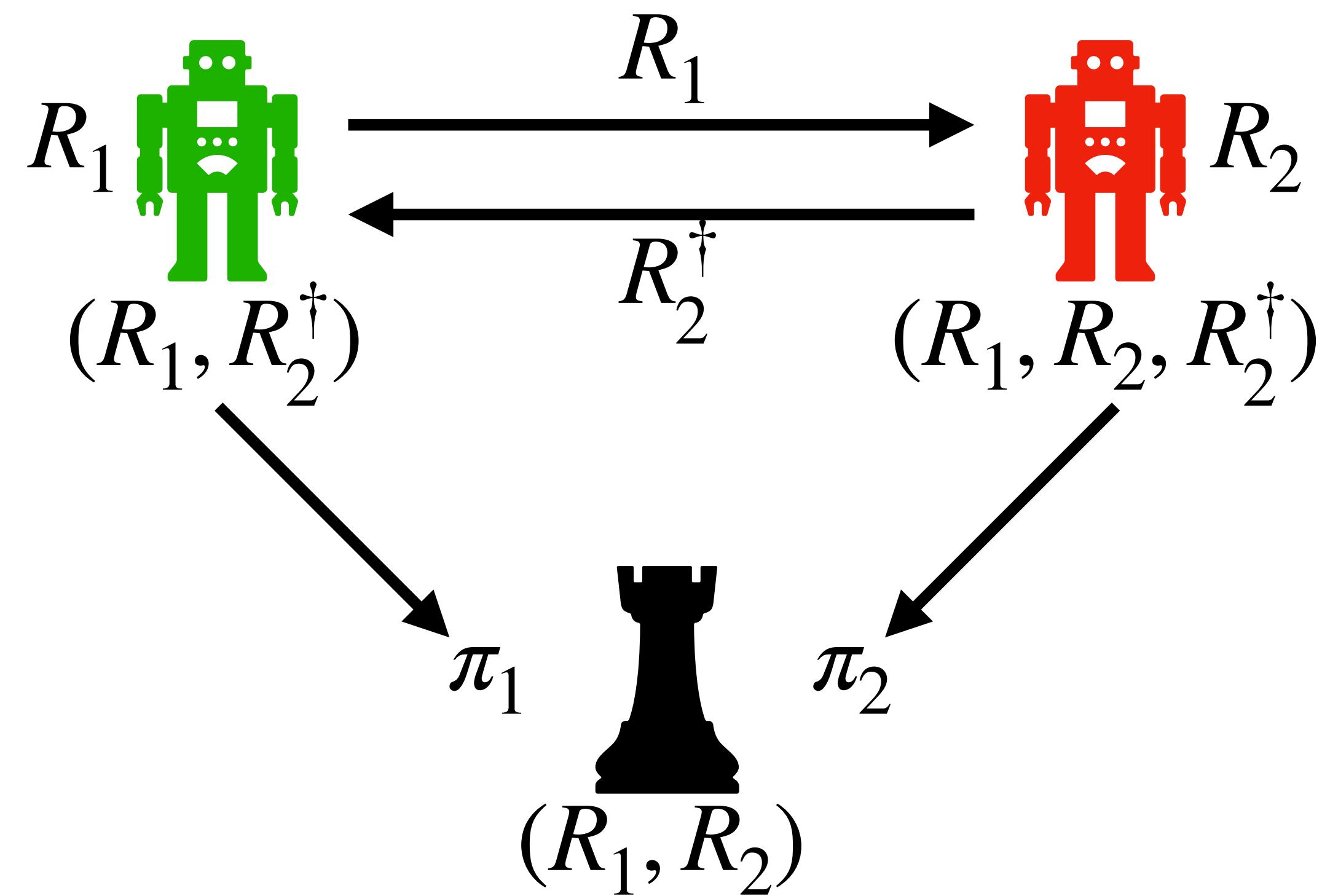
Motivation

More **realistic** attacker: information advantage instead of environment control



Motivation

More **realistic** attacker: information advantage instead of environment control



Inception

Inception

Inception Problem

$$\max_{R_2^\dagger} \quad$$

P2's best worst-case value
given P1's beliefs about R_2^\dagger

Inception

Inception Problem

$$\max_{R_2^\dagger} \quad$$

P2's best worst-case value
given P1's beliefs about R_2^\dagger

Belief set: $\Pi_2^b(R_2^\dagger)$

Inception

Inception Problem

$$\max_{R_2^\dagger} \quad$$

P2's best worst-case value
given P1's beliefs about R_2^\dagger

Belief set: $\Pi_2^b(R_2^\dagger)$ — P2 is "rational"

Inception

Inception Problem

$$\max_{R_2^\dagger} \quad$$

P2's best worst-case value
given P1's beliefs about R_2^\dagger

Belief set: $\Pi_2^b(R_2^\dagger)$ — P2 is "rational"

$$\Pi_2^b(R_2^\dagger) = \left\{ \pi_2 \mid \exists R'_2 \in \mathbb{B}_\epsilon(R_2^\dagger), (\cdot, \pi_2) \in SOL(R_1, R'_2) \right\}$$

Inception

Inception Problem

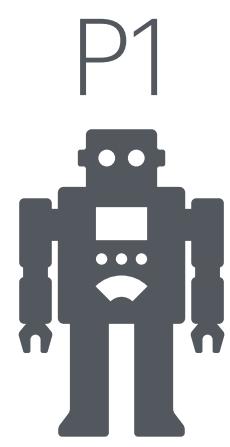
$$\begin{aligned} & \max_{R_2^\dagger} \max_{\pi_2^* \in \Pi_2} \min_{\pi_1^* \in \Pi_1^*} V_2^{\pi_1^*, \pi_2^*} \\ \text{s.t. } & \Pi_1^* = \arg \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2^b(R_2^\dagger)} V_1^{\pi_1, \pi_2} \end{aligned}$$

Belief set: $\Pi_2^b(R_2^\dagger)$ — P2 is "rational"

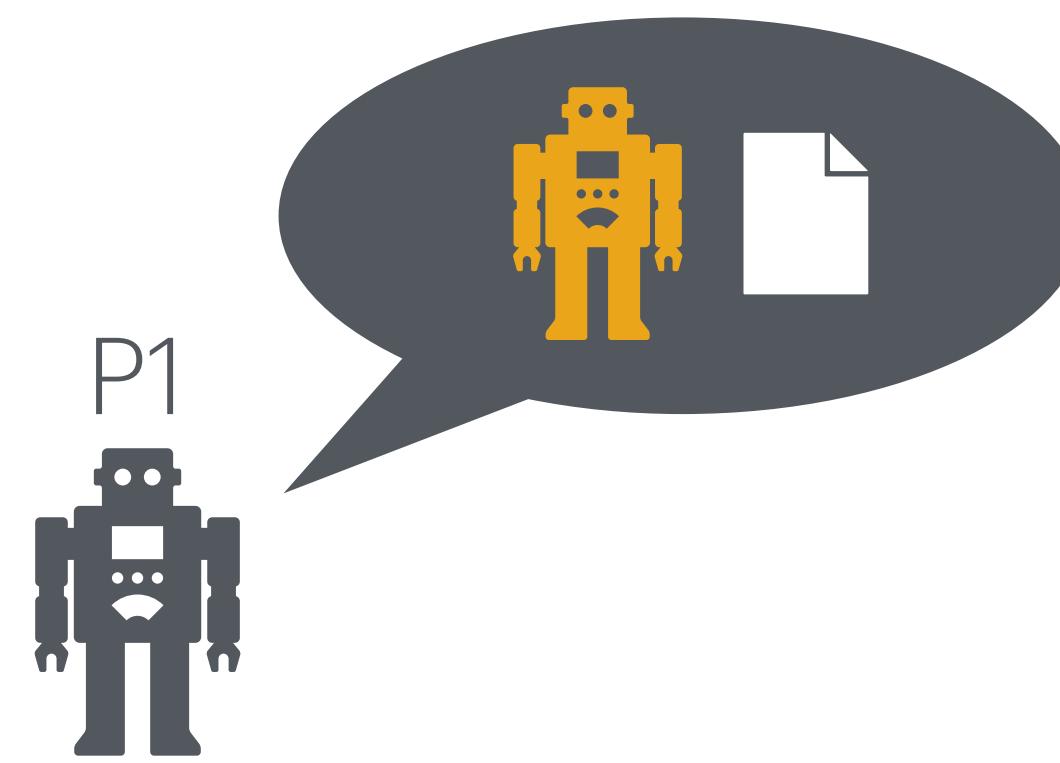
$$\Pi_2^b(R_2^\dagger) = \left\{ \pi_2 \mid \exists R'_2 \in \mathbb{B}_\epsilon(R_2^\dagger), (\cdot, \pi_2) \in SOL(R_1, R'_2) \right\}$$

Inception Approach

Inception Approach

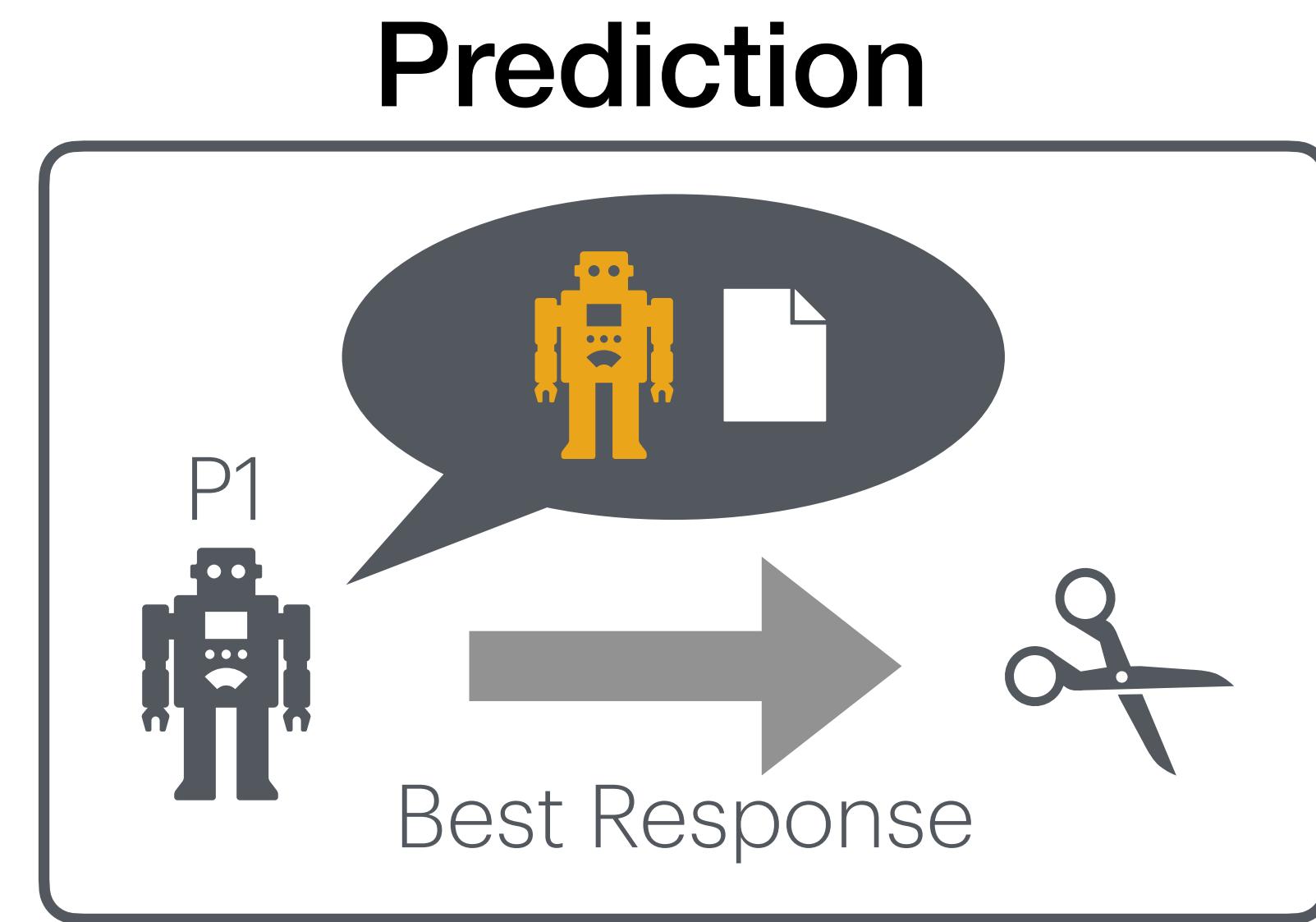


Inception Approach

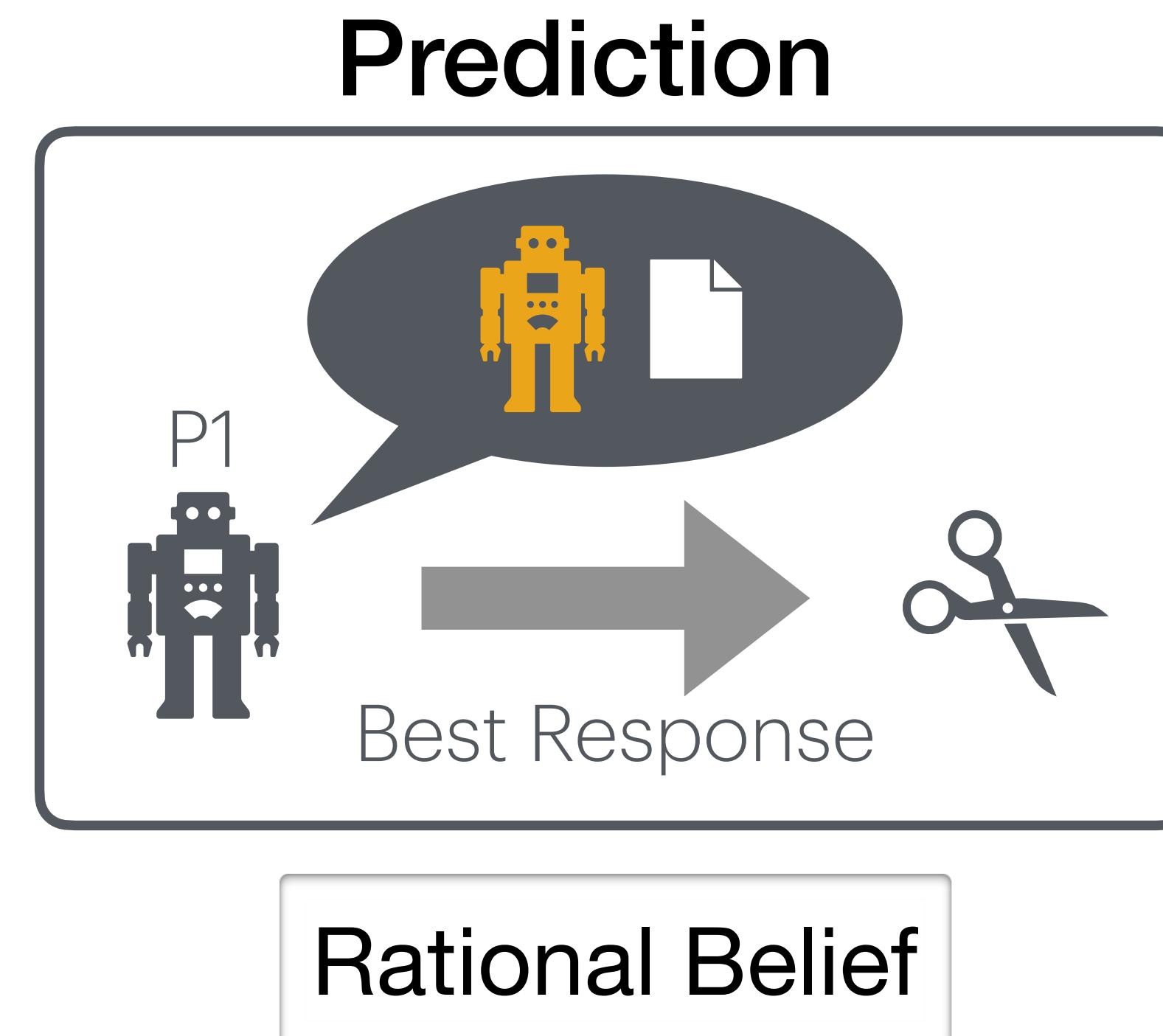


Inception Approach

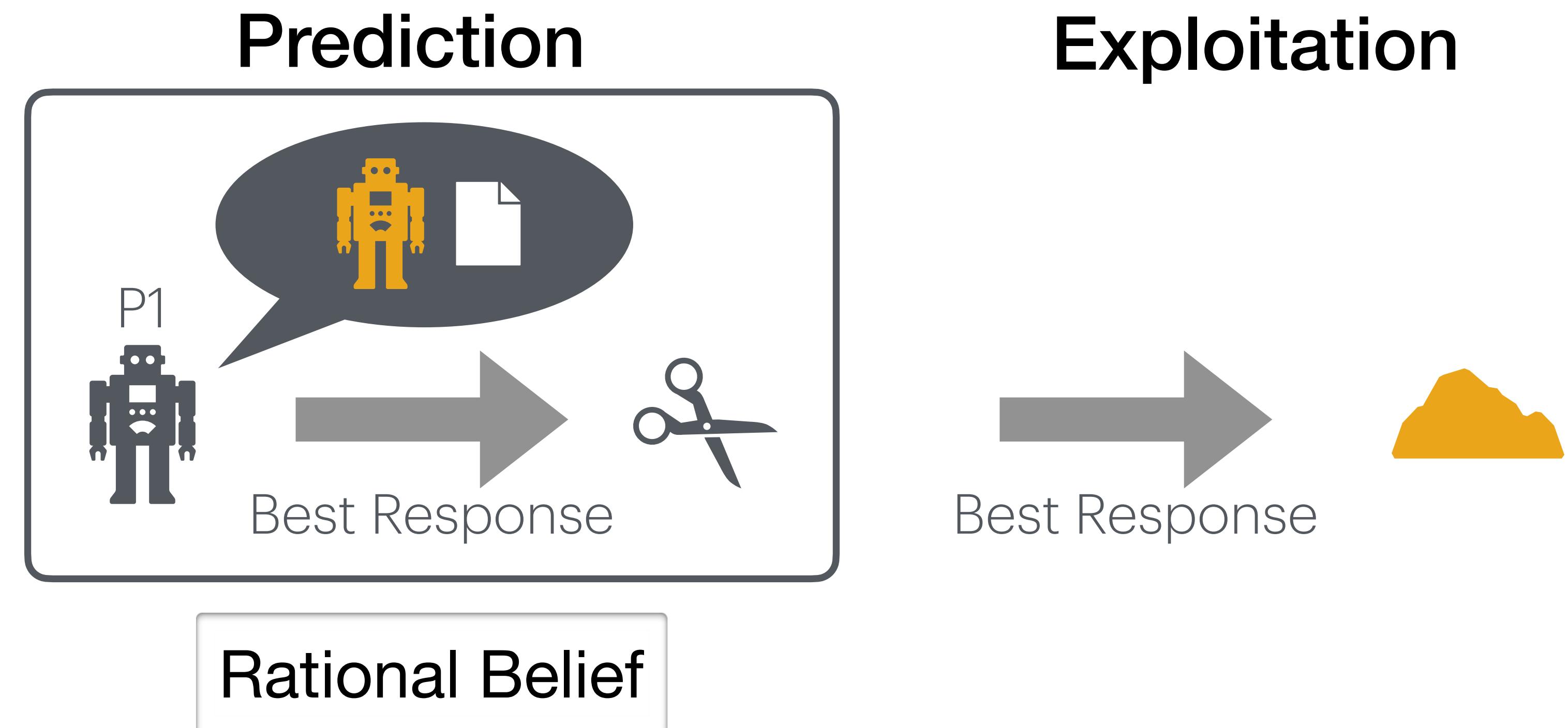
Inception Approach



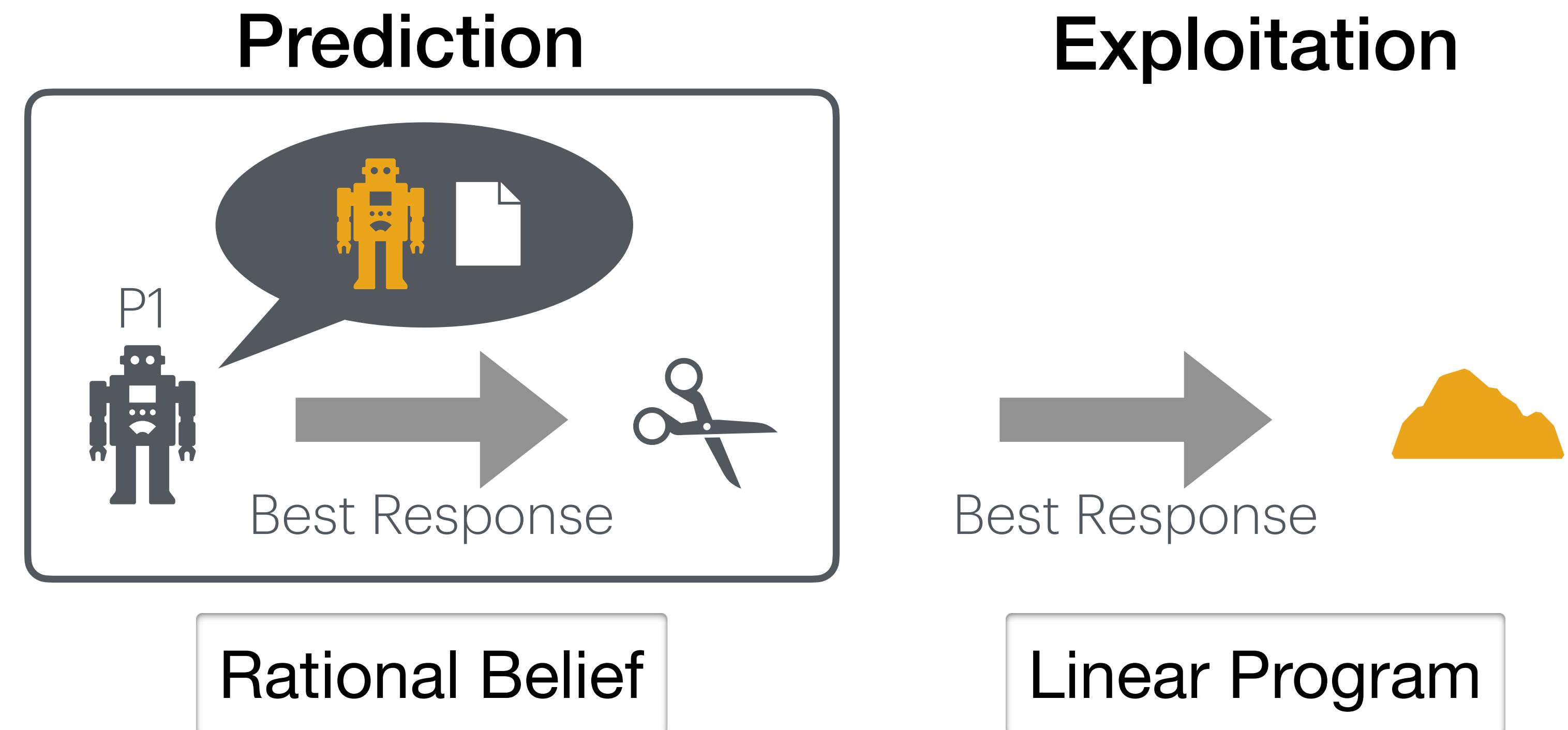
Inception Approach



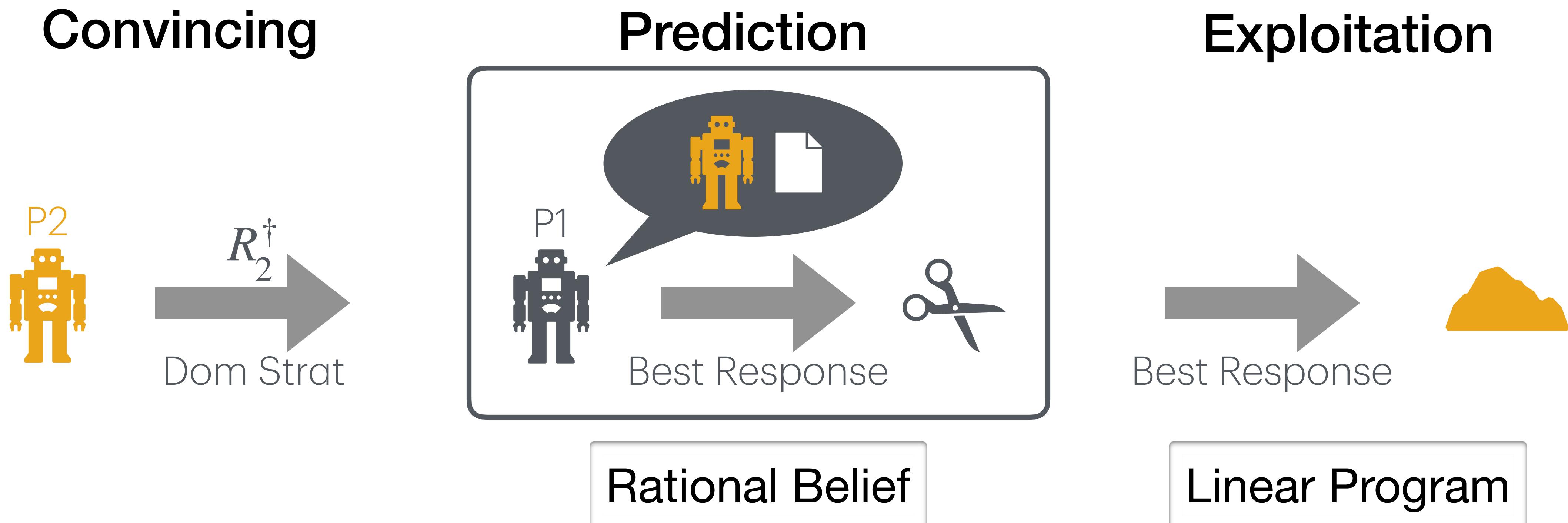
Inception Approach



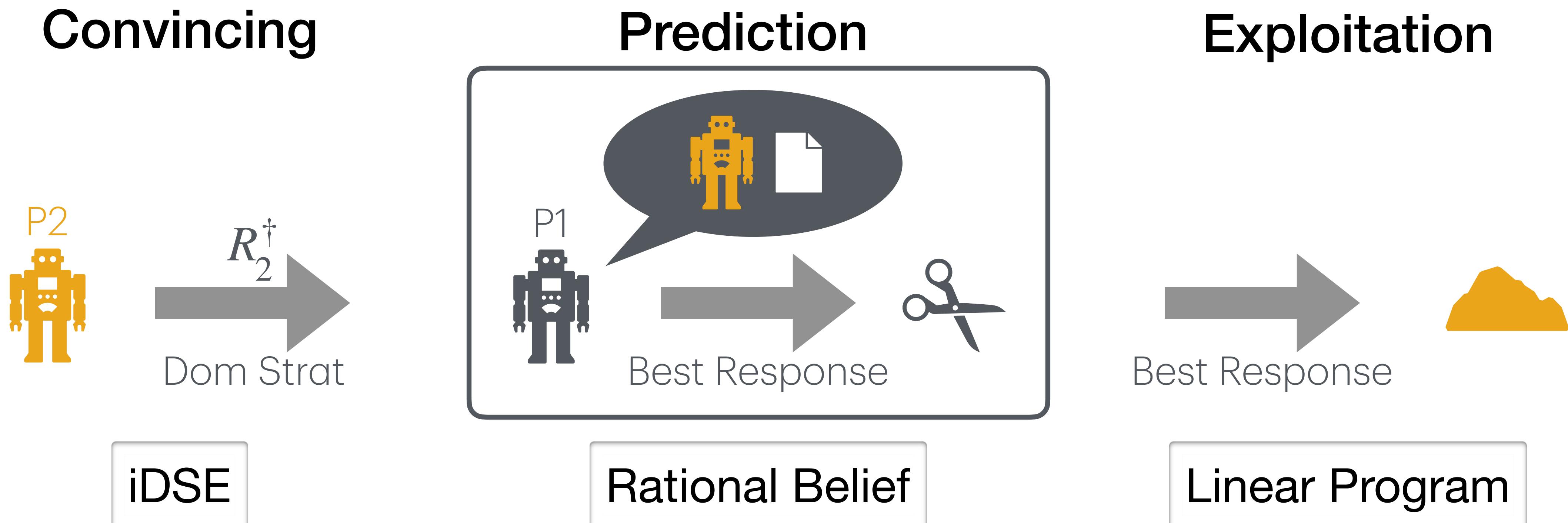
Inception Approach



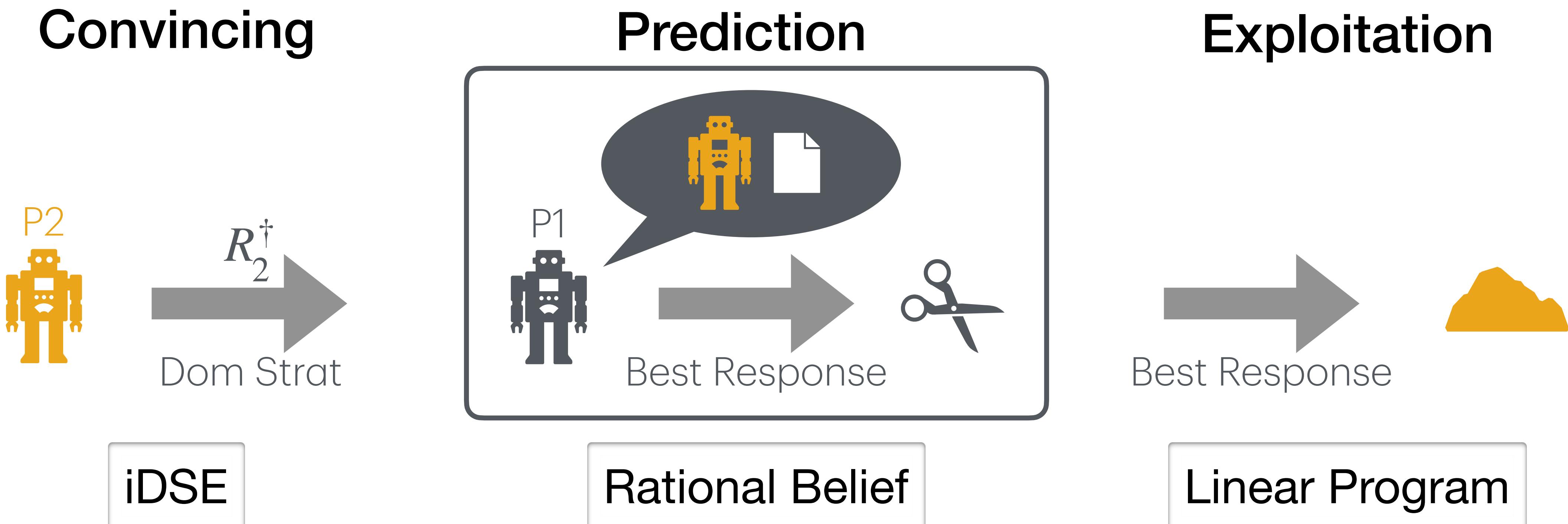
Inception Approach



Inception Approach



Inception Approach



Repeat to find the best **pure** strategy inception!

Example: True Game

Example: True Game

	L	R
U	0, 5	1, 0
D	1, ϵ	0, 0
S	1, 0	0, ϵ

Example: True Game

Unique NE

	L	R
U	0, 5	1, 0
D	1, ϵ	0, 0
S	1, 0	0, ϵ

Example: True Game

Unique NE

	L	R
U	0, 5	1, 0
D	1, ϵ	0, 0
S	1, 0	0, ϵ

If P1 is rational, P2 gets 0!

Example: True Game

	L	R
U	0, 5	1, 0
D	1, ϵ	0, 0
S	1, 0	0, ϵ

P2 wants
Unique NE

0, 5 1, 0

1, ϵ 0, 0

If P1 is rational, P2 gets 0!

P2 fakes L

P2 fakes L

	L	R
U	0, 5	1, 0
D	1, ϵ	0, 0
S	1, 2ϵ	0, ϵ

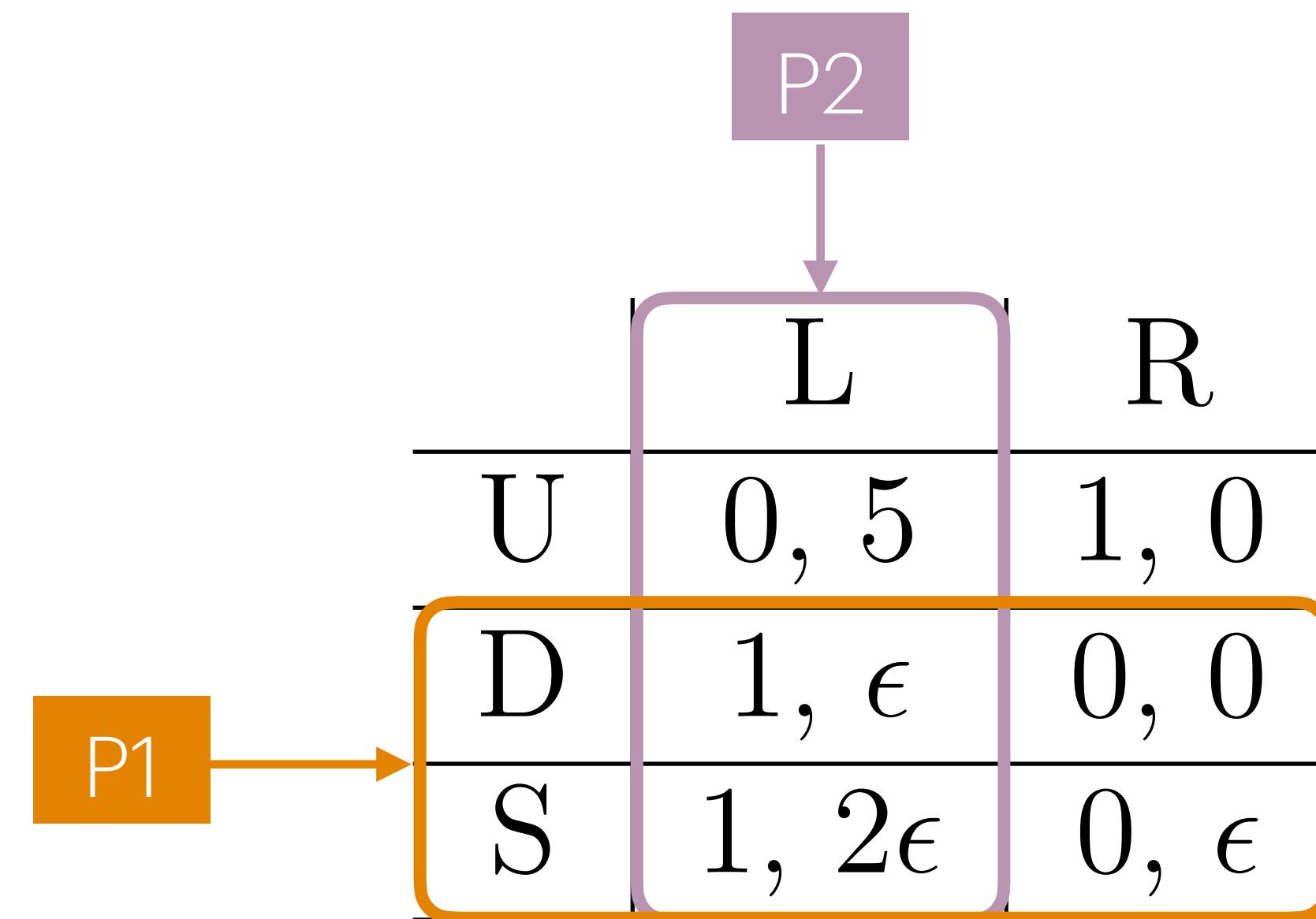
Increased

P2 fakes L

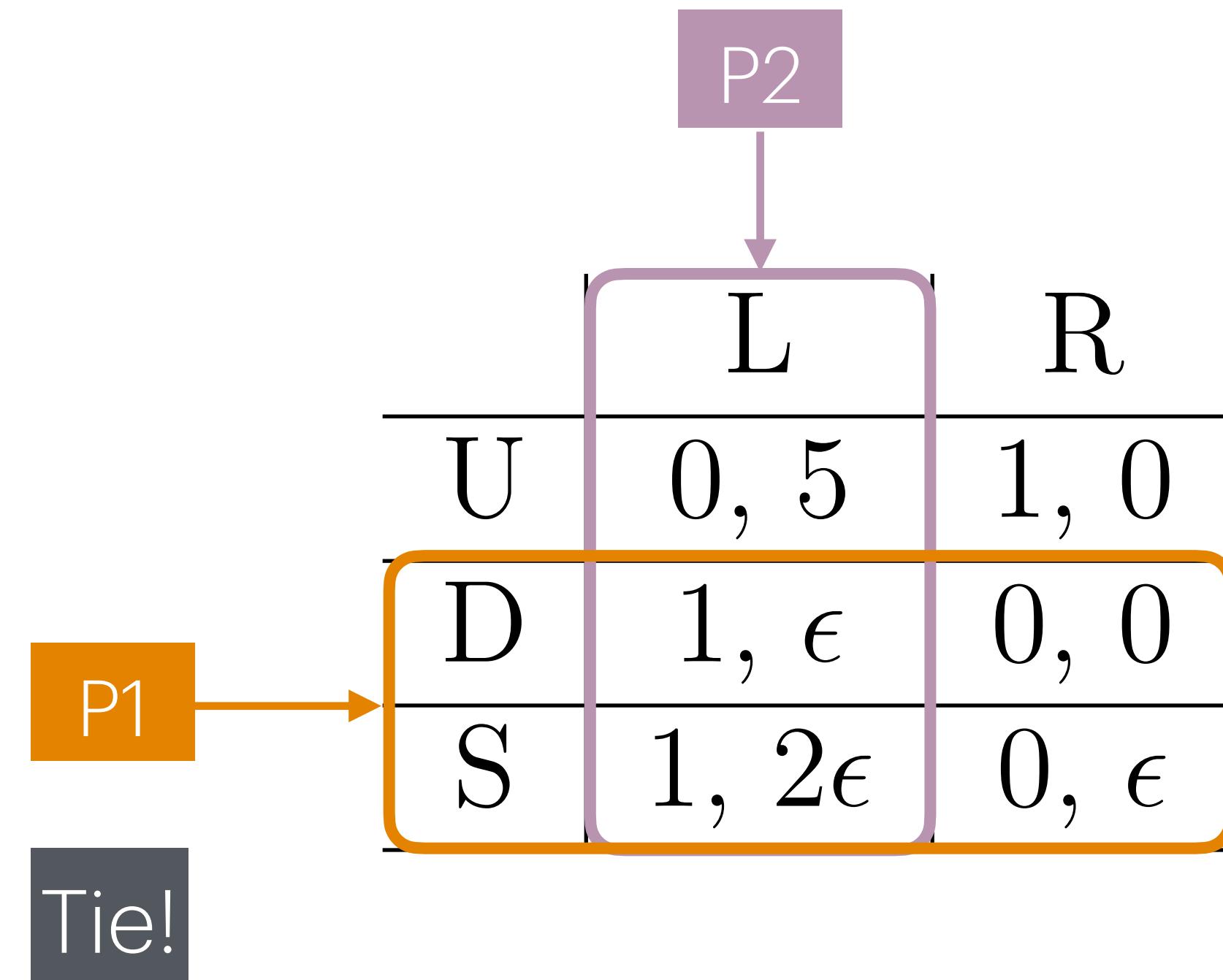
P2

		L	R
		0, 5	1, 0
		1, ϵ	0, 0
		1, 2ϵ	0, ϵ
U	0, 5	1, 0	
D	1, ϵ	0, 0	
S	1, 2ϵ	0, ϵ	

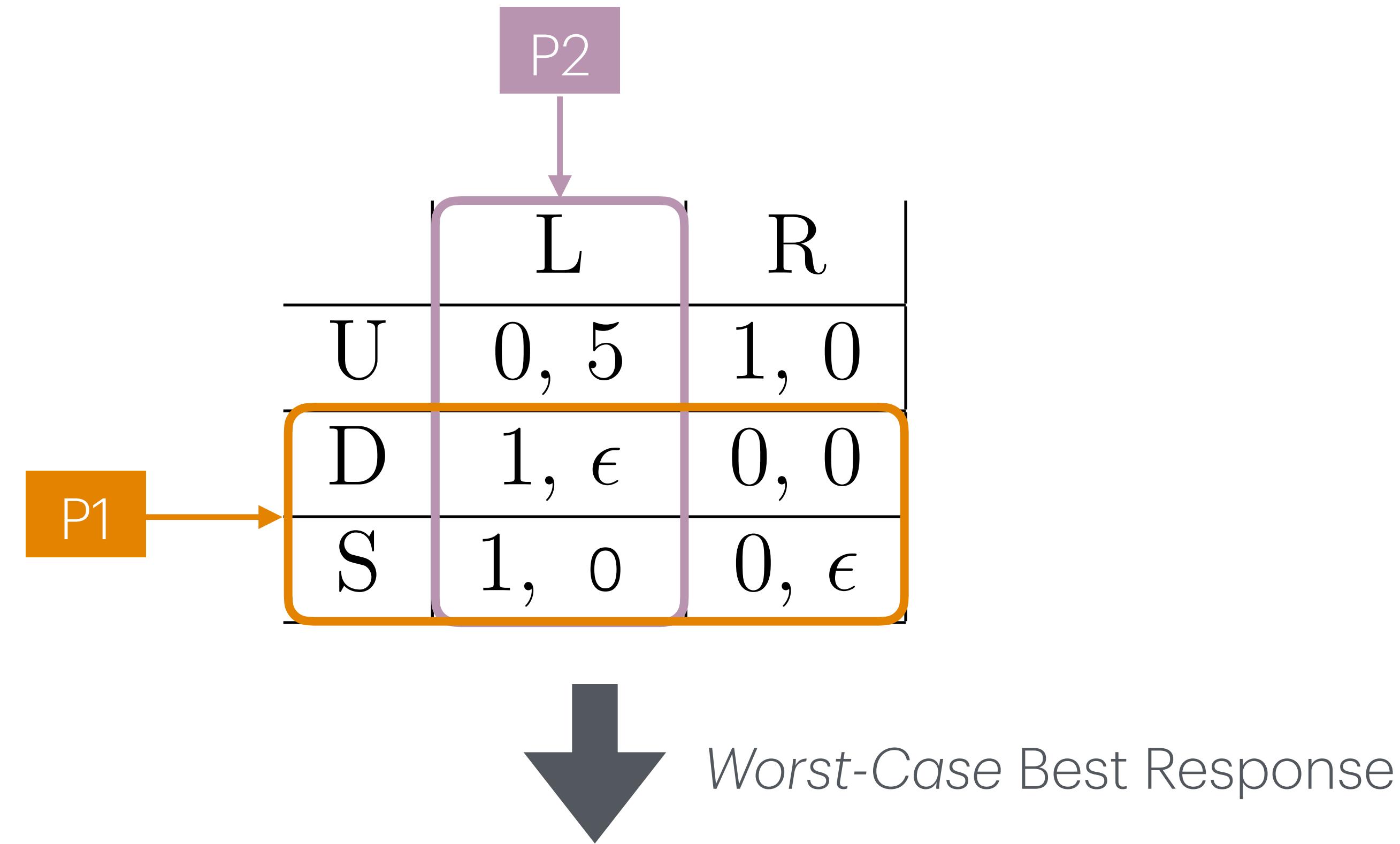
P2 fakes L



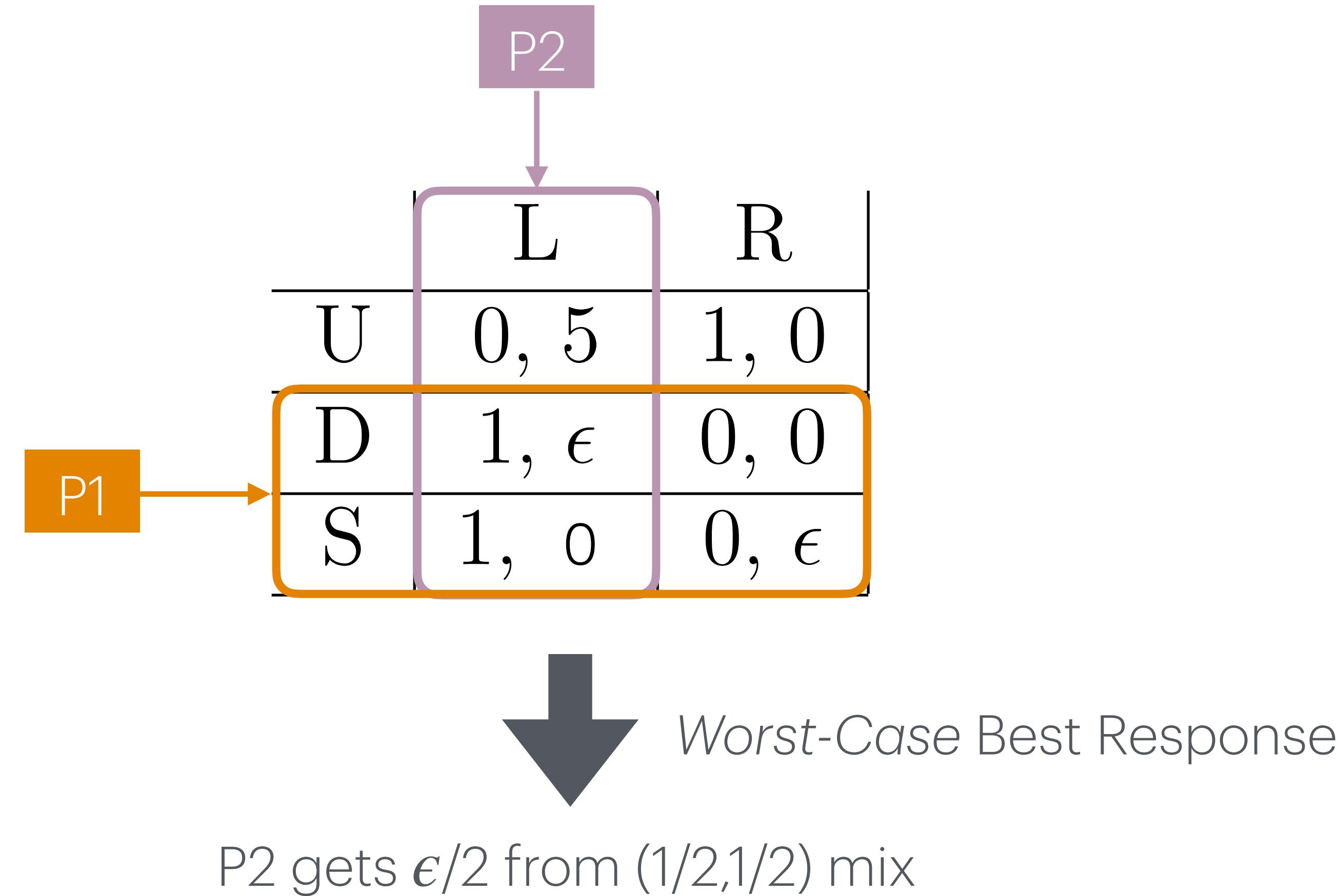
P2 fakes L



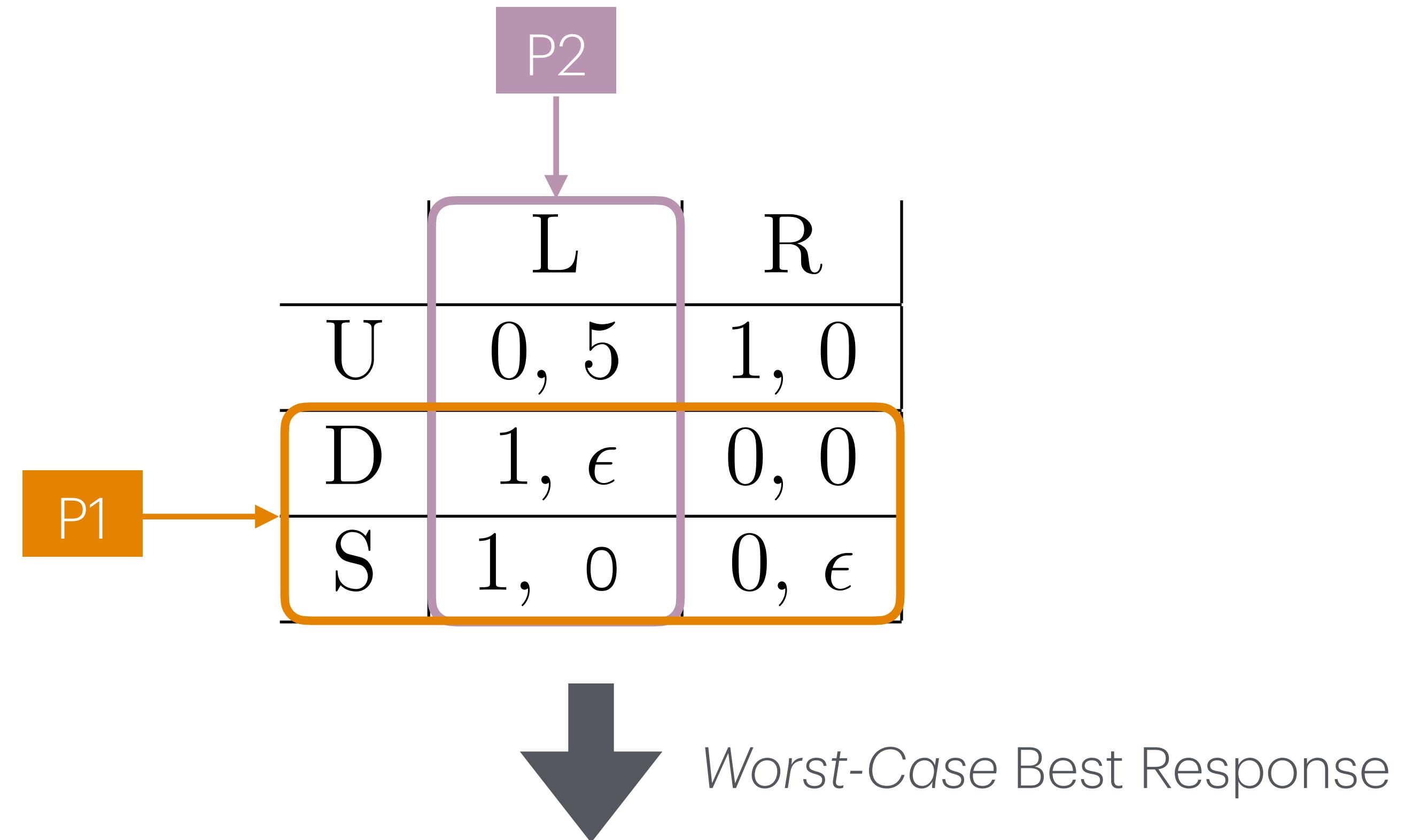
P2 fakes L



P2 fakes L



P2 fakes L



P2 gets $\epsilon/2$ from $(1/2, 1/2)$ mix

Solved by Nash LP!

P2 fakes R

P2 fakes R

	L	R
U	0, 5	1, $5+\epsilon$
D	1, ϵ	0, 2ϵ
S	1, 0	0, ϵ

Increased

P2 fakes R

	L	R
U	0, 5	1, 5+ ϵ
D	1, ϵ	0, 2 ϵ
S	1, 0	0, ϵ

Unique NE

P2 fakes R

	L	R
U	0, 5	1, 5+ ϵ
D	1, ϵ	0, 2 ϵ
S	1, 0	0, ϵ

Unique NE

P1 must play U!

P2 fakes R

An extensive form game tree is shown. Player 1 (P1) moves first, choosing between U, D, and S. If P1 chooses U, Player 2 (P2) moves second, choosing between L and R. The payoffs are as follows:

		L	R
		0, 5	1, 5+ ϵ
P1	U	0, 5	1, 5+ ϵ
	D	1, ϵ	0, 2 ϵ
P2	S	1, 0	0, ϵ

P2 wins! (highlighted in purple box with arrow to cell 0, 5)

Unique NE (highlighted in orange box with arrow to cell 1, 5+ ϵ)

P1 must play U!

P2 fakes R

“Inception Attack”

Exploitation

Exploitation

Assuming finite belief: $\Pi_2^b(R_2^\dagger) = \{\pi_2^1, \dots, \pi_2^K\}$

Exploitation

Assuming finite belief: $\Pi_2^b(R_2^\dagger) = \{\pi_2^1, \dots, \pi_2^K\}$

Complex

$$\max_{\pi_2^* \in \Pi_2} \min_{\pi_1^* \in \Pi_1^*} V_2^{\pi_1^*, \pi_2^*}$$

$$\text{s.t. } \Pi_1^* = \arg \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2^b(R_2^\dagger)} V_1^{\pi_1, \pi_2}$$

Exploitation

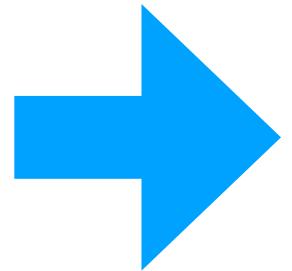
Assuming finite belief: $\Pi_2^b(R_2^\dagger) = \{\pi_2^1, \dots, \pi_2^K\}$

Complex

$$\max_{\pi_2^* \in \Pi_2} \min_{\pi_1^* \in \Pi_1^*} V_2^{\pi_1^*, \pi_2^*}$$

$$\text{s.t. } \Pi_1^* = \arg \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2^b(R_2^\dagger)} V_1^{\pi_1, \pi_2}$$

Duality



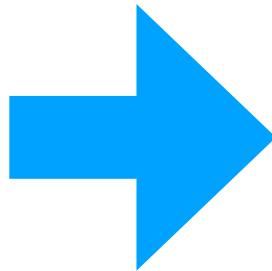
Exploitation

Assuming finite belief: $\Pi_2^b(R_2^\dagger) = \{\pi_2^1, \dots, \pi_2^K\}$

Complex

$$\begin{aligned} & \max_{\pi_2^* \in \Pi_2} \min_{\pi_1^* \in \Pi_1^*} V_2^{\pi_1^*, \pi_2^*} \\ \text{s.t. } & \Pi_1^* = \arg \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2^b(R_2^\dagger)} V_1^{\pi_1, \pi_2} \end{aligned}$$

Duality



Linear

$$\begin{aligned} & \max_{y \in \mathbb{R}^m, w \in \mathbb{R}^K, \alpha \in \mathbb{R}} z^* 1^\top w - \alpha \\ \text{s.t. } & \alpha + e_i^\top B y - e_i^\top A' w \geq 0 \quad \forall i \in [n] \\ & 1^\top y = 1, \quad y \geq 0 \quad w \geq 0. \end{aligned}$$

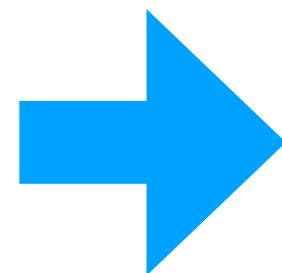
Exploitation

Assuming finite belief: $\Pi_2^b(R_2^\dagger) = \{\pi_2^1, \dots, \pi_2^K\}$

Complex

$$\begin{aligned} & \max_{\pi_2^* \in \Pi_2} \min_{\pi_1^* \in \Pi_1^*} V_2^{\pi_1^*, \pi_2^*} \\ \text{s.t. } & \Pi_1^* = \arg \max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2^b(R_2^\dagger)} V_1^{\pi_1, \pi_2} \end{aligned}$$

Duality



Linear

$$\begin{aligned} & \max_{y \in \mathbb{R}^m, w \in \mathbb{R}^K, \alpha \in \mathbb{R}} z^* 1^\top w - \alpha \\ \text{s.t. } & \alpha + e_i^\top B y - e_i^\top A' w \geq 0 \quad \forall i \in [n] \\ & 1^\top y = 1, \quad y \geq 0 \quad w \geq 0. \end{aligned}$$

Solve a sequence of LPs for MG case!

Results

Results

Theorem: *rationality enables the **polynomial-time** computation of **misinformation attacks** that are optimal amongst the set of dominant-mixture reward functions.*

Results

Theorem: *rationality enables the **polynomial-time** computation of **misinformation attacks** that are optimal amongst the set of dominant-mixture reward functions.*

First efficient misinformation attacks on Markov games!

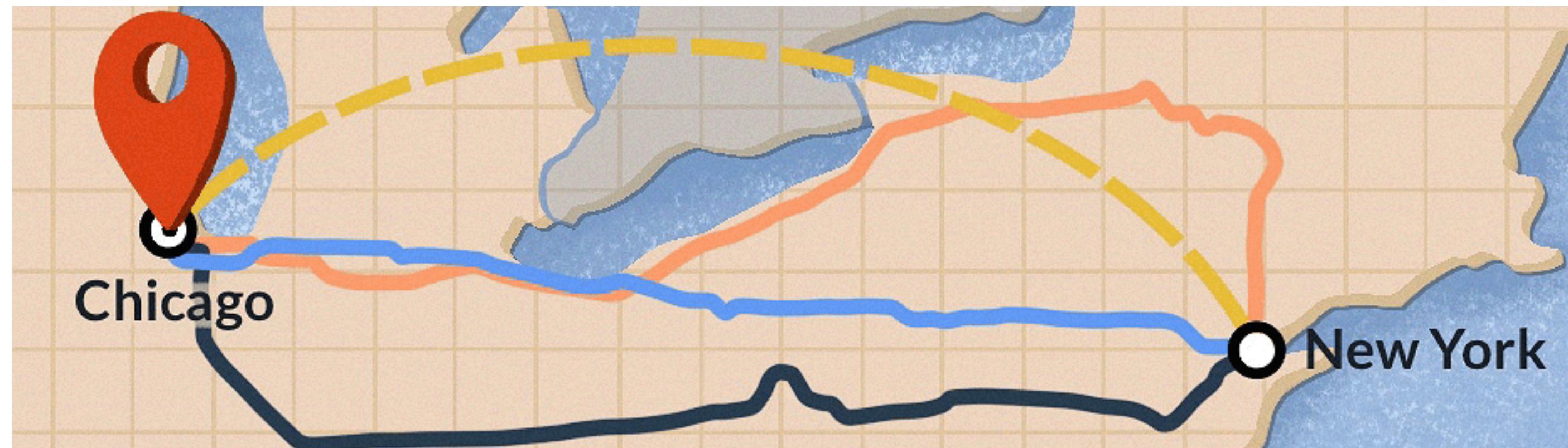
Constrained MARL

Anytime Constraints

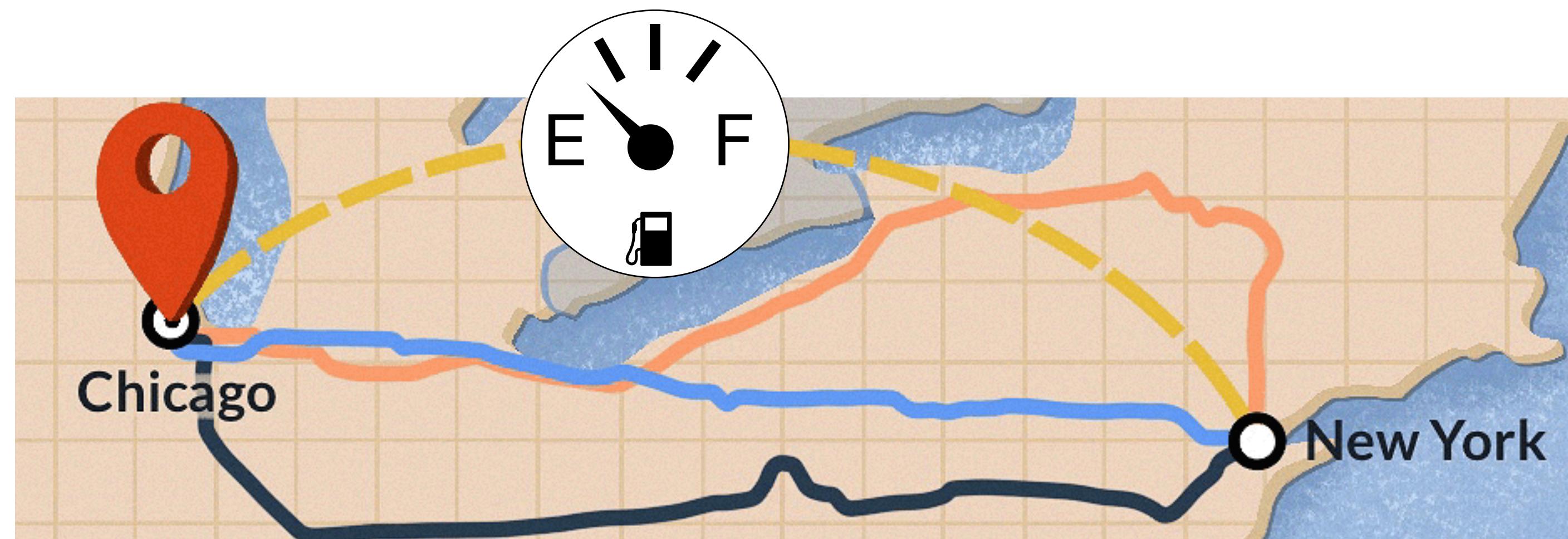
*AISTATS 2024

Motivation

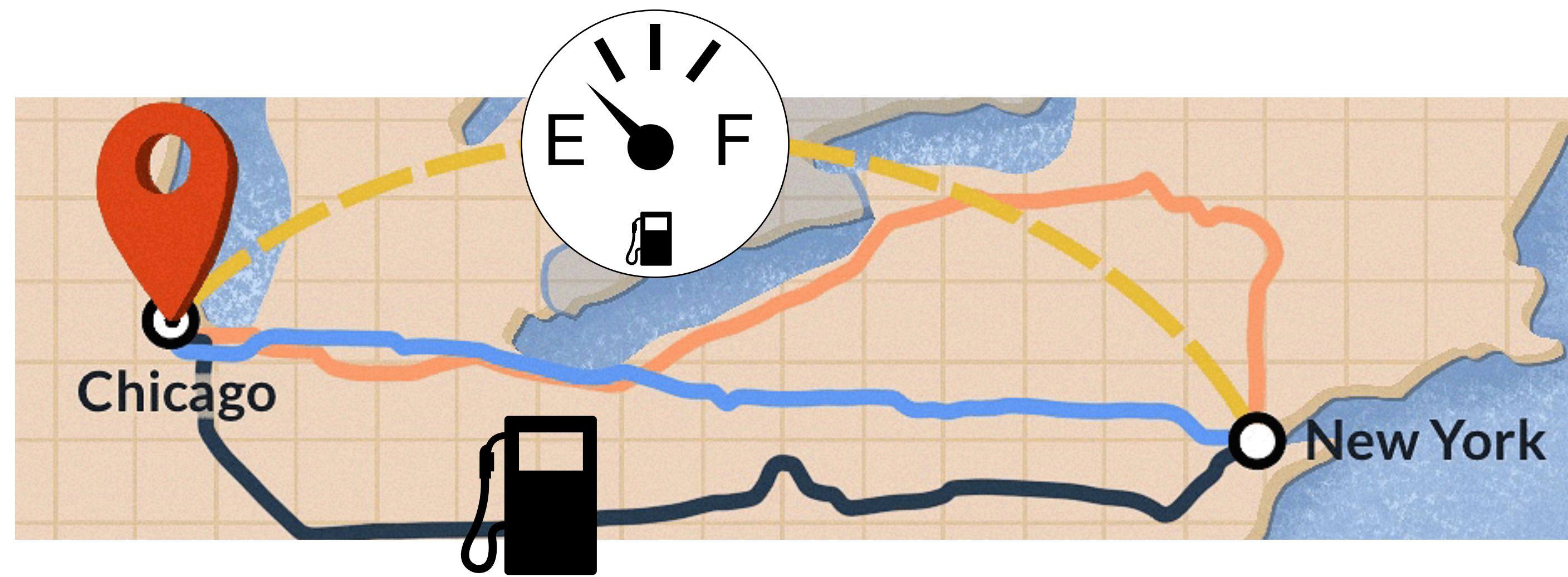
Motivation



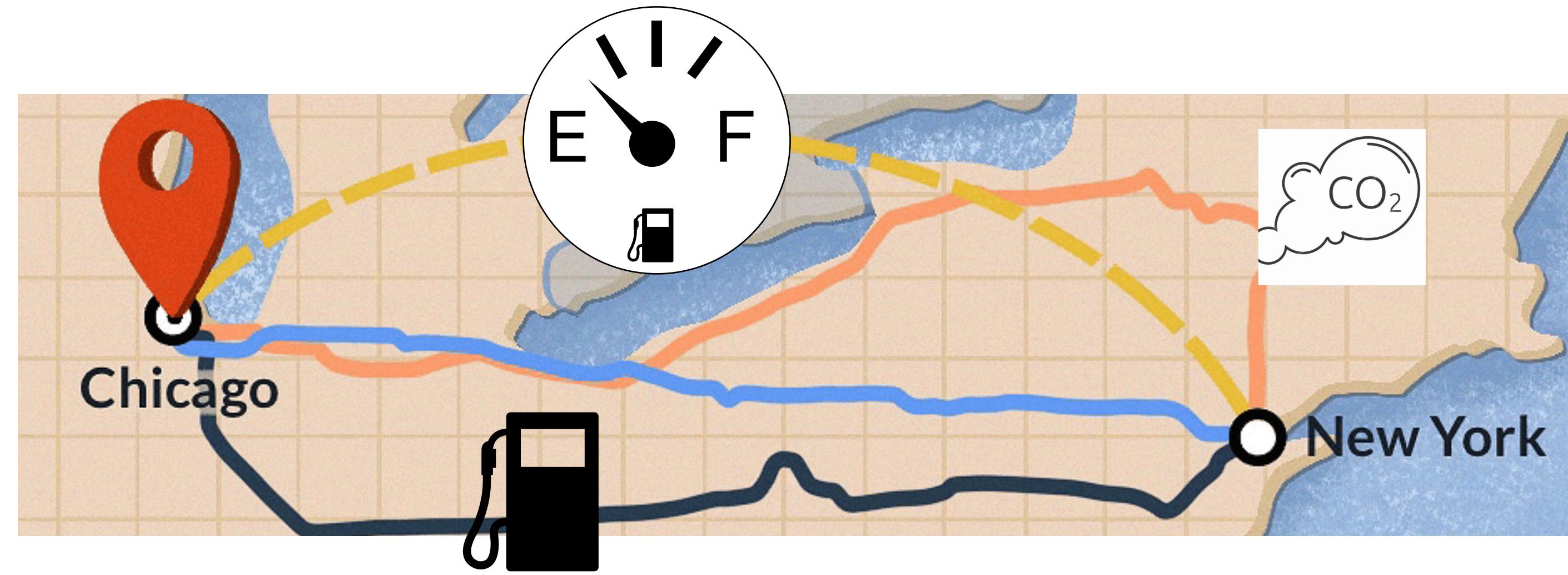
Motivation



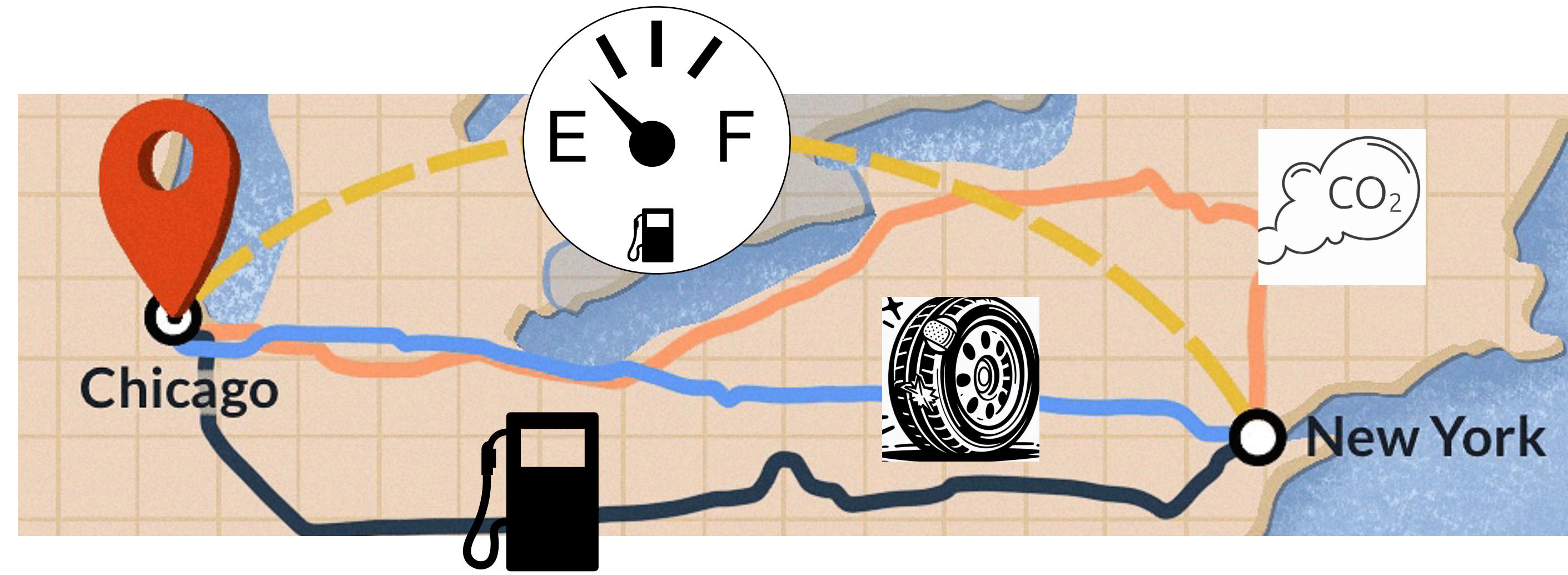
Motivation



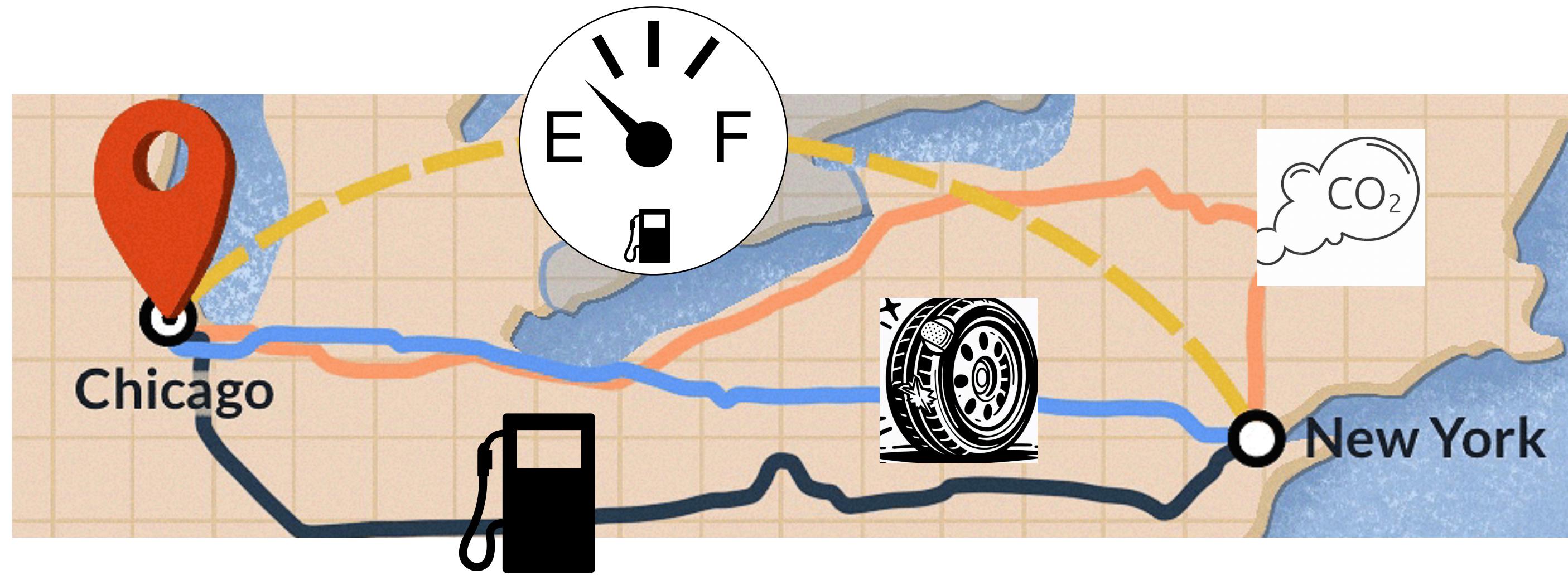
Motivation



Motivation

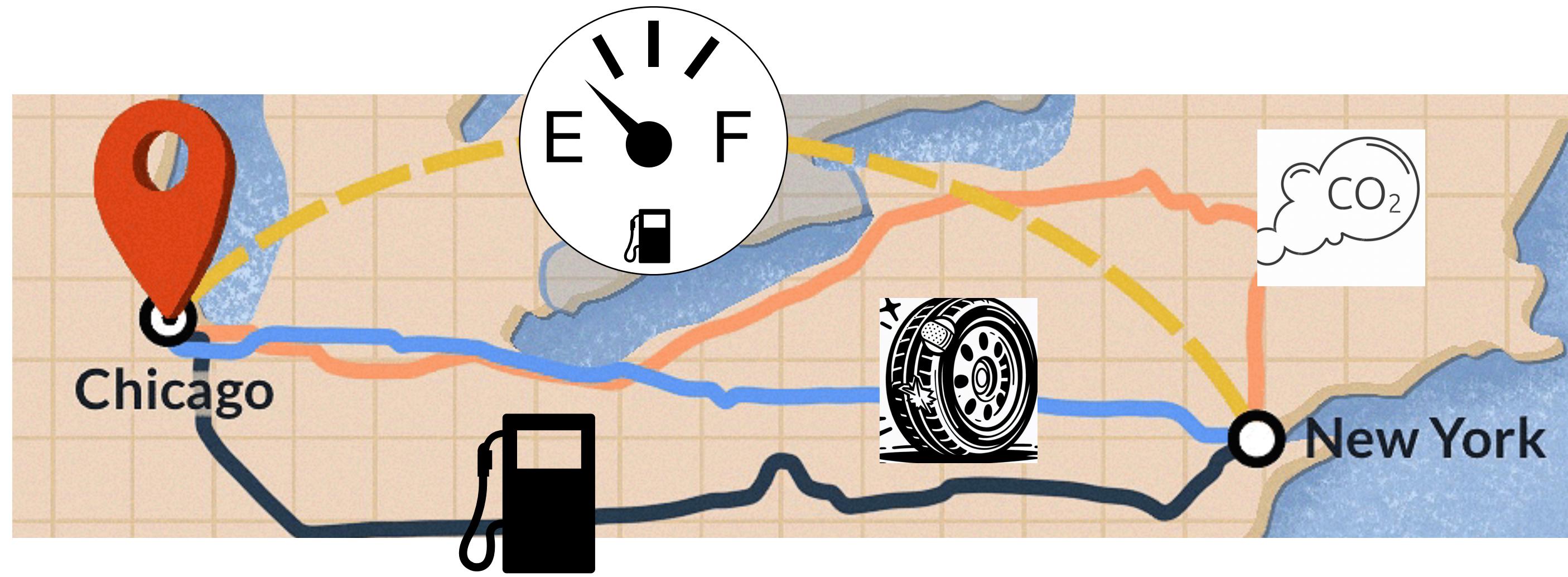


Motivation



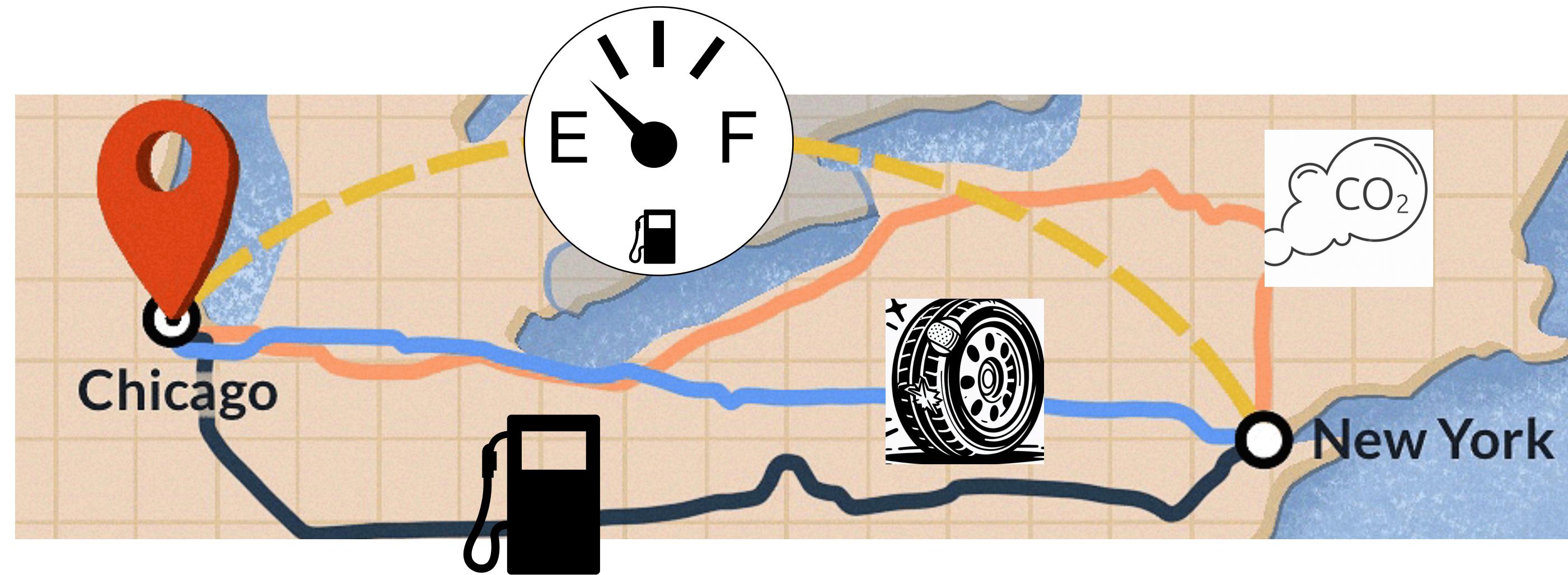
$$\mathbb{P}_M^\pi \left[\sum_{h=1}^H c_h \leq B \right] = 1$$

Motivation



$$\mathbb{P}_M^\pi \left[\sum_{h=1}^H c_h \leq B \right] = 1$$

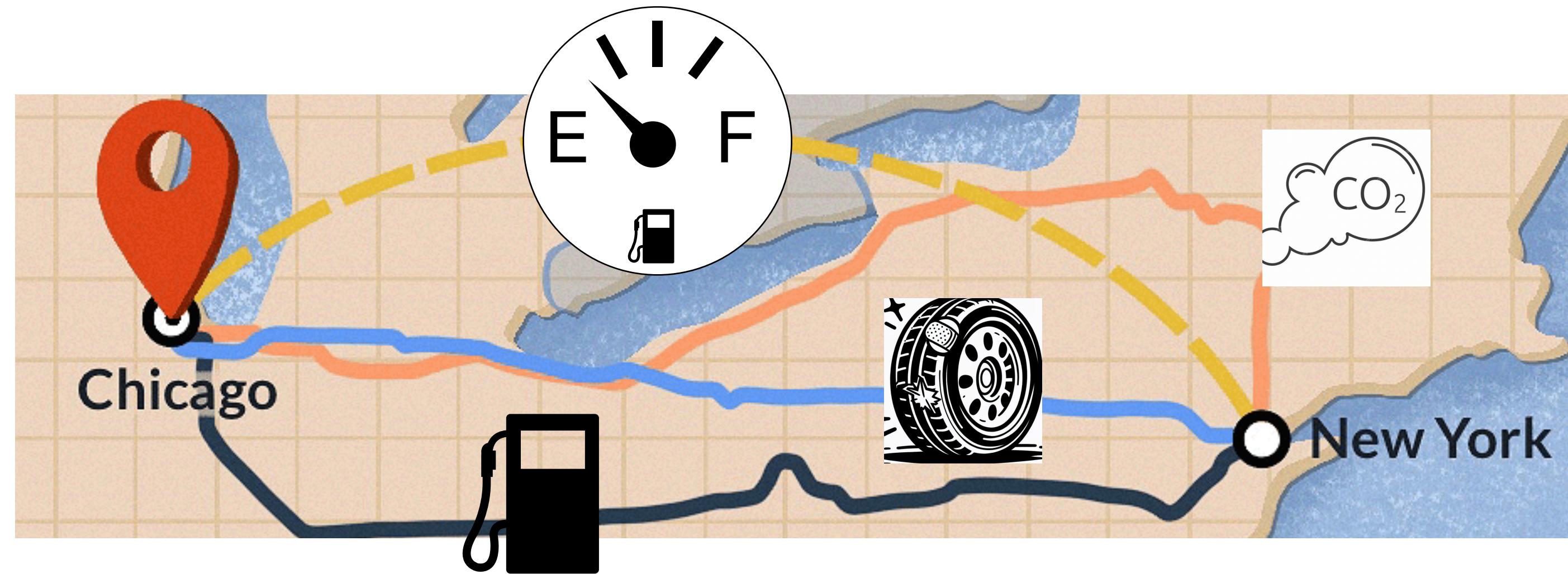
Motivation



$$\mathbb{P}_M^\pi \left[\sum_{h=1}^H c_h \leq B \right] = 1$$

Cannot IOU a gas tank!

Motivation

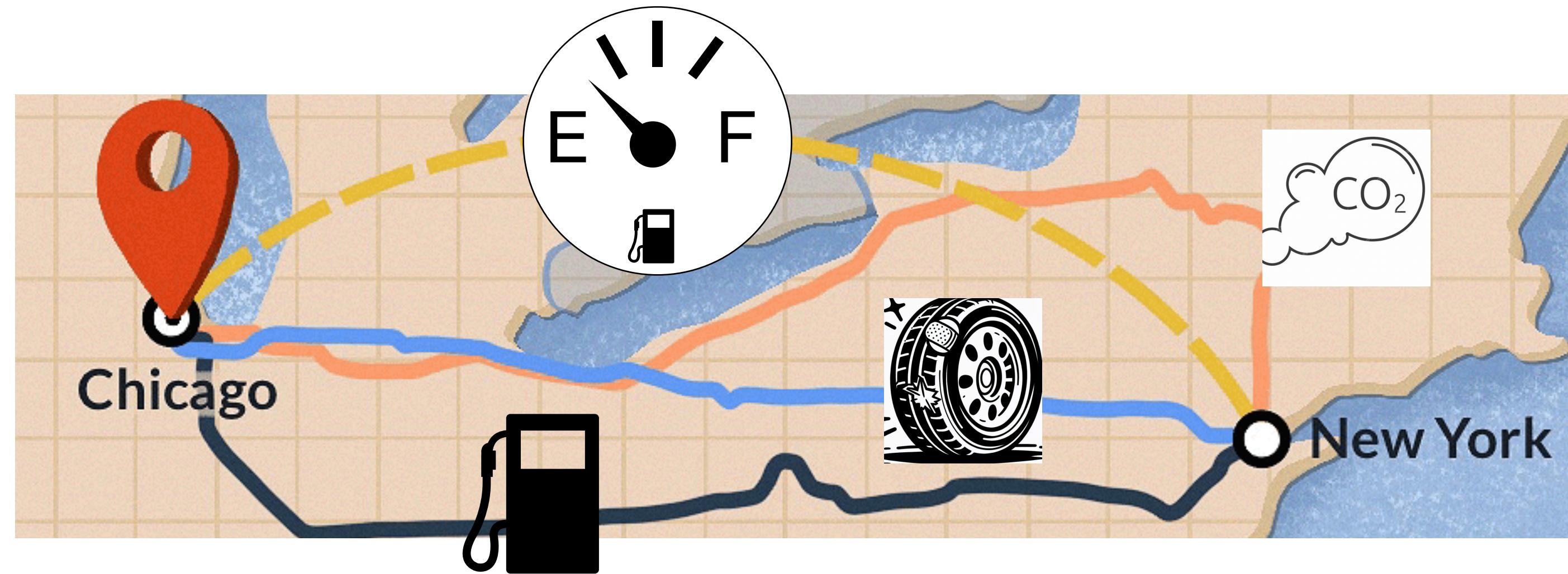


$$\mathbb{P}_M^\pi \left[\sum_{h=1}^H c_h \leq B \right] = 1$$

Cannot IOU a gas tank!

$$\mathbb{P}_M^\pi \left[\forall t \in [H], \sum_{h=1}^t c_h \leq B \right] = 1$$

Motivation



$$\mathbb{P}_M^\pi \left[\sum_{h=1}^H c_h \leq B \right] = 1$$

Cannot IOU a gas tank!

$$\mathbb{P}_M^\pi \left[\forall t \in [H], \sum_{h=1}^t c_h \leq B \right] = 1$$

Constrained Problem

Constrained Problem

Agent's **goal** is to solve:

Constrained Problem

Agent's **goal** is to solve:

$$\max_{\pi} \mathbb{E}_M^{\pi} \left[\sum_{h=1}^H r_h(s_h, a_h) \right] \quad \text{s.t.} \quad \mathbb{P}_M^{\pi} \left[\forall t \in [H], \sum_{h=1}^t c_h \leq B \right] = 1.$$

Challenges

Challenges

1. Feasible policies **non-Markovian**

Challenges

1. Feasible policies **non-Markovian**
2. Optimization is **NP-hard**

Challenges

1. Feasible policies **non-Markovian**
2. Optimization is **NP-hard**
3. Determining feasibility of ≥ 2 constraints is NP-hard
 \implies **Hardness of (value) Approximation**

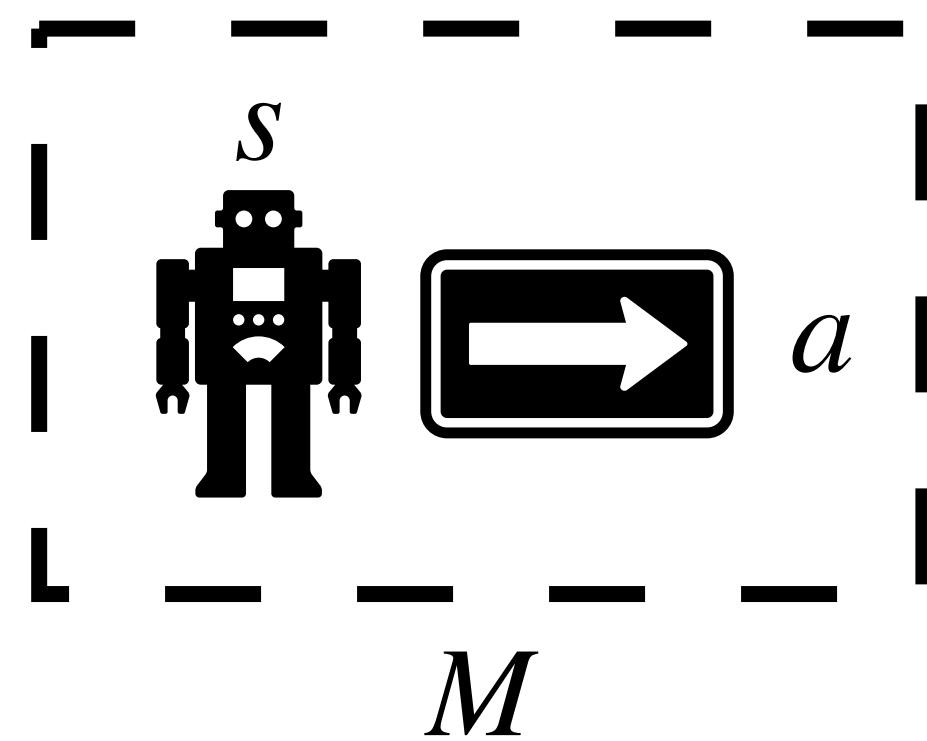
Reduction

Reduction

*1. State-Cost
Augmentation*

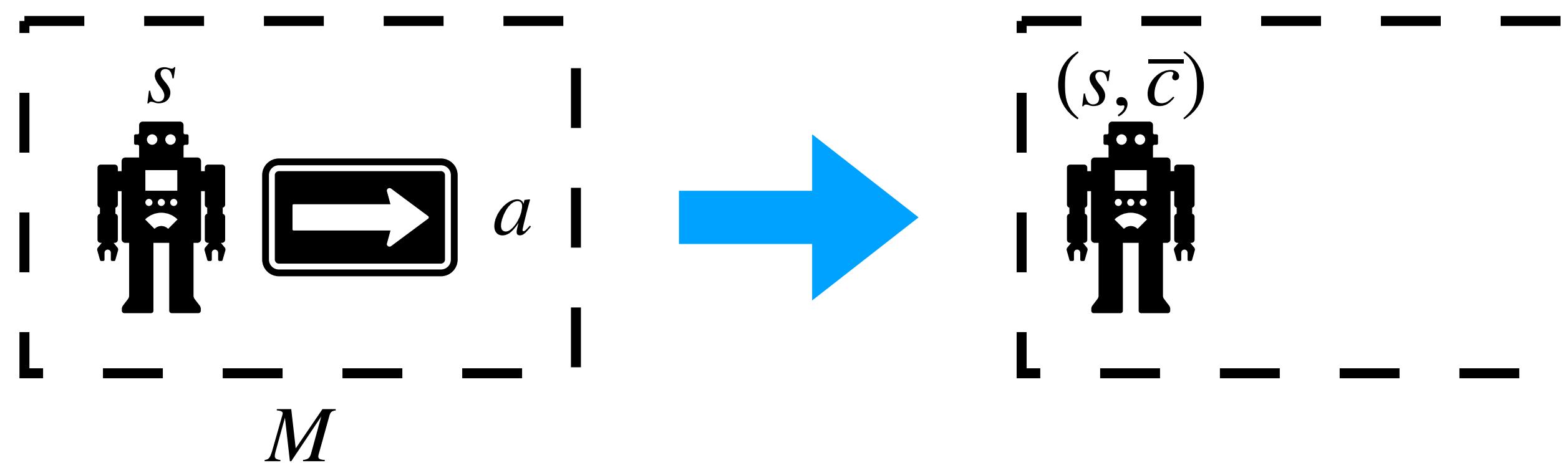
Reduction

1. State-Cost
Augmentation



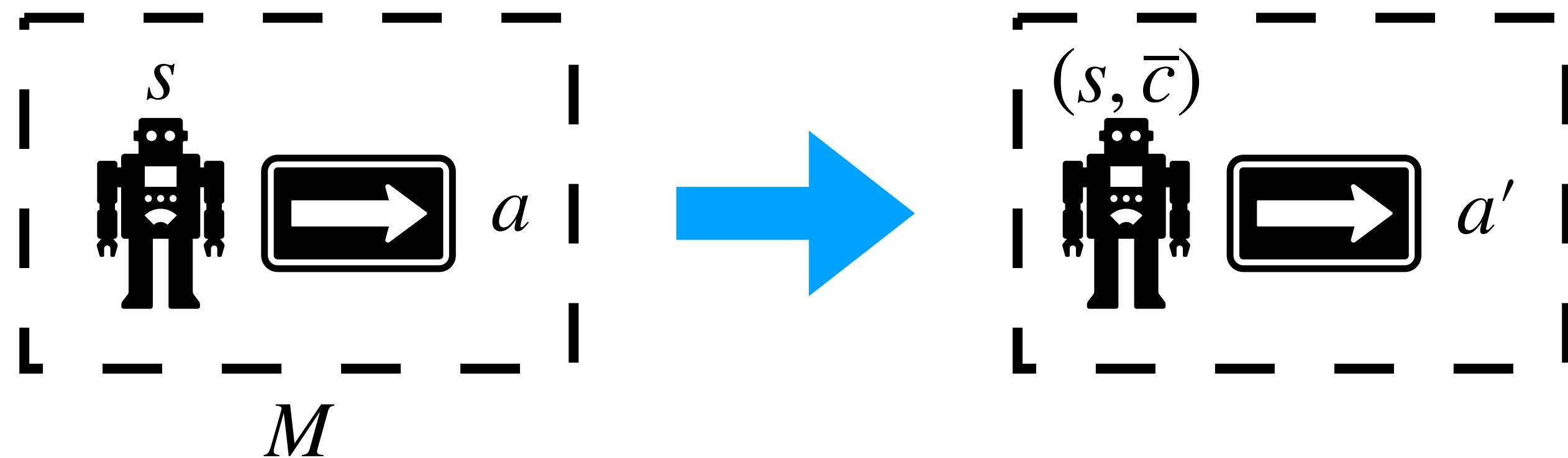
Reduction

1. State-Cost
Augmentation



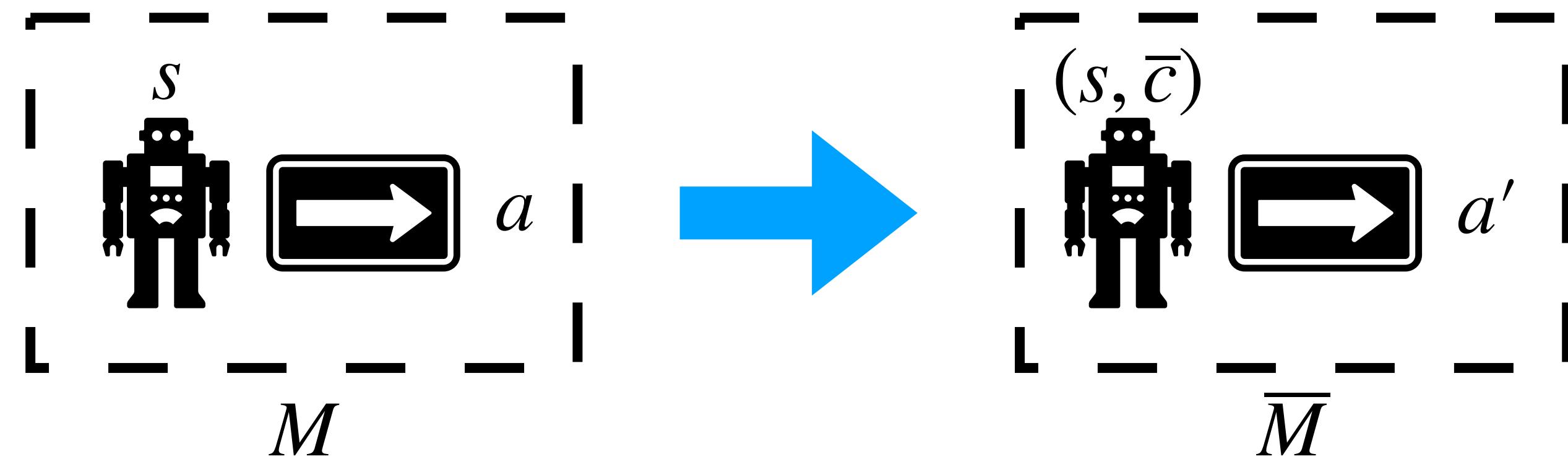
Reduction

1. State-Cost
Augmentation



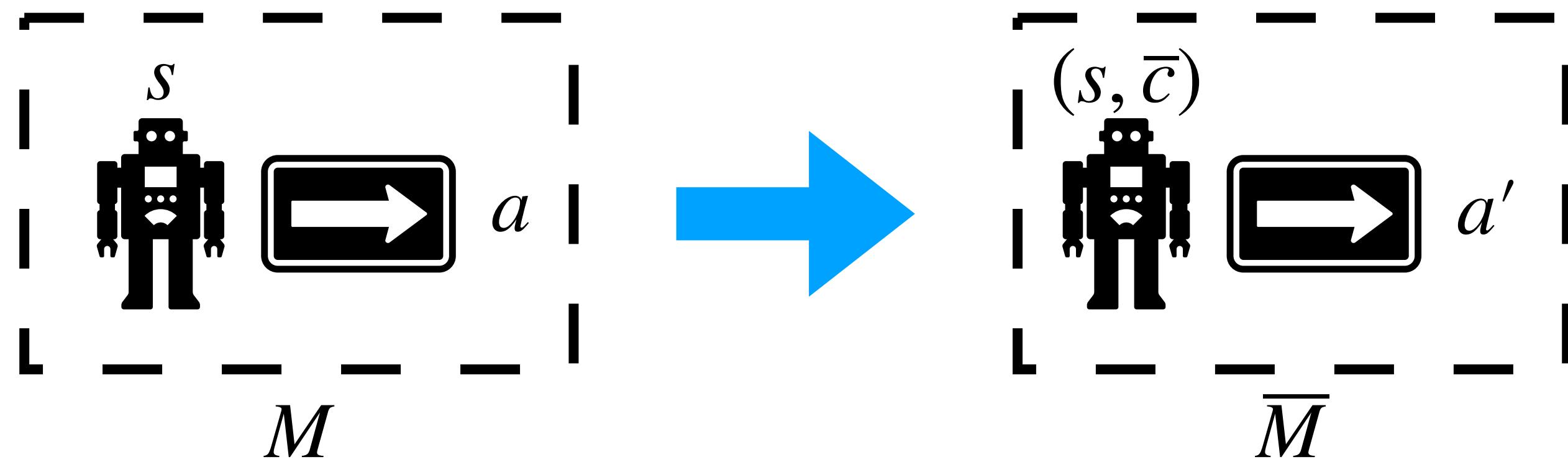
Reduction

1. State-Cost
Augmentation



Reduction

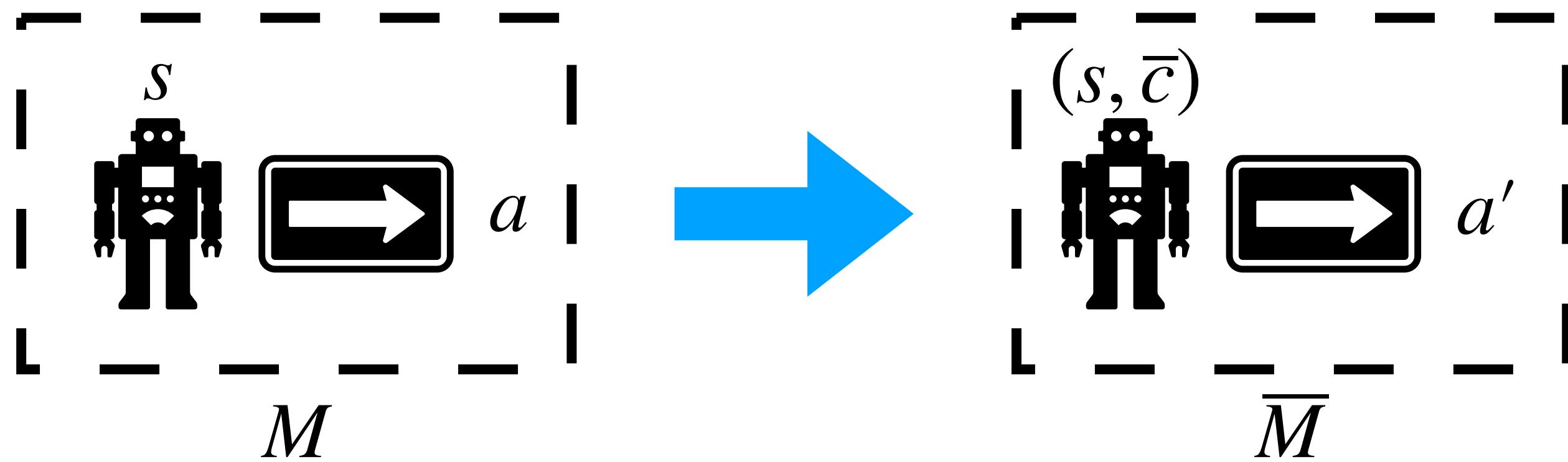
1. State-Cost
Augmentation



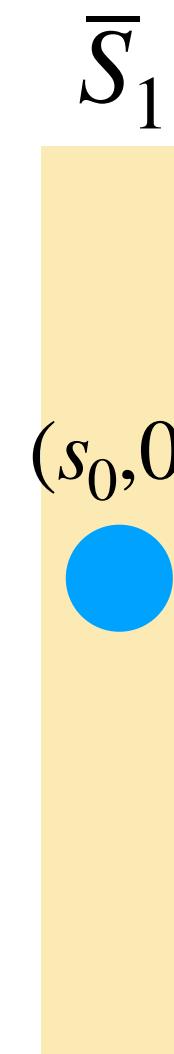
2. BFS Generate
Feasible Costs

Reduction

1. State-Cost
Augmentation

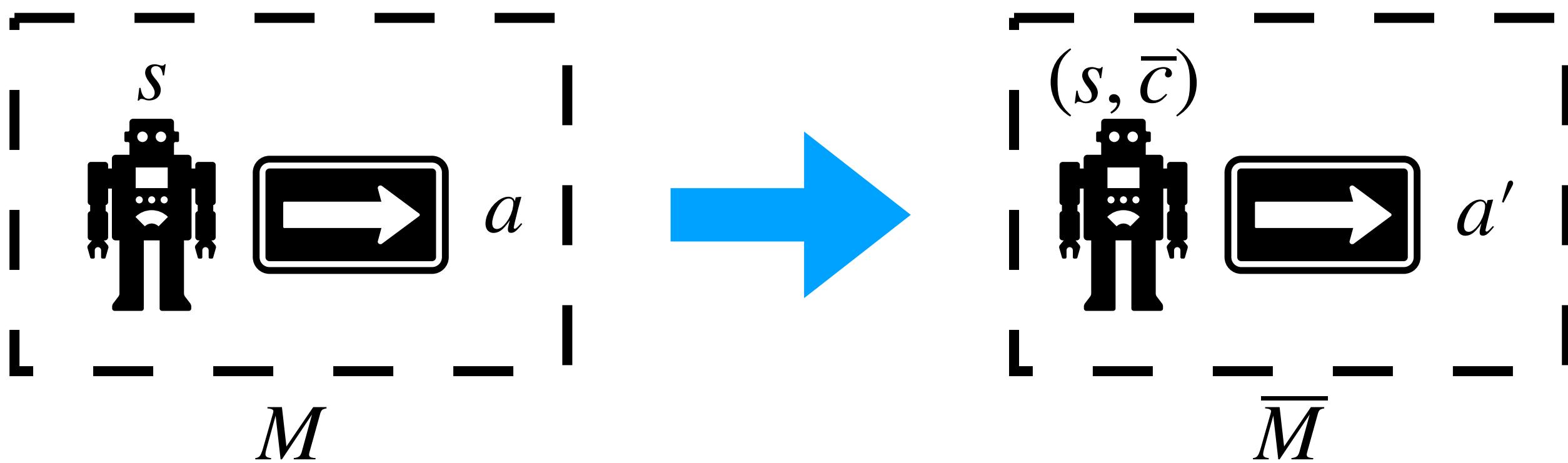


2. BFS Generate
Feasible Costs

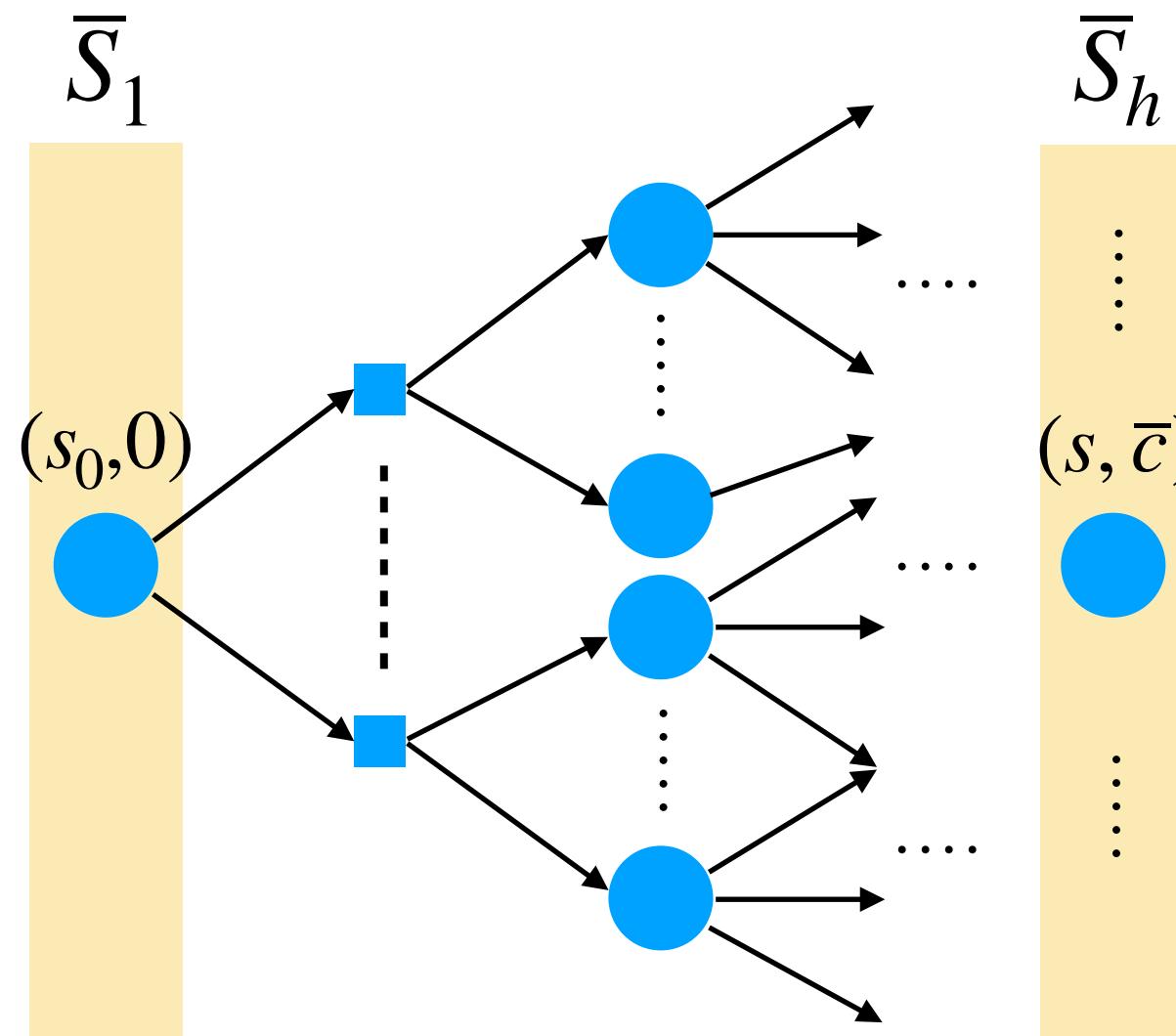


Reduction

1. State-Cost
Augmentation

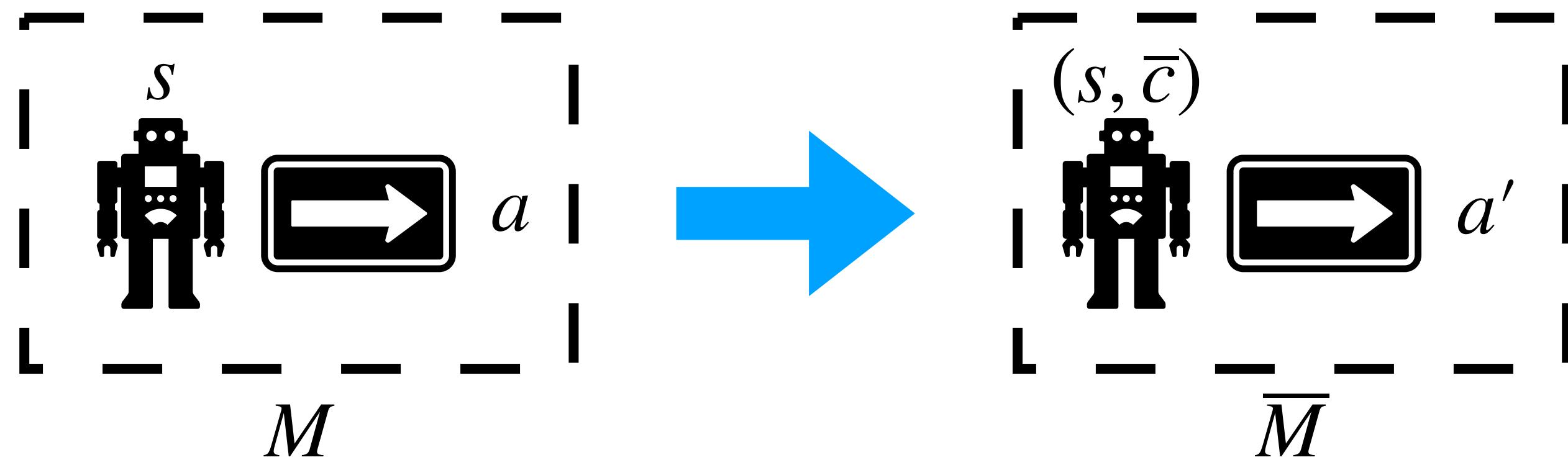


2. BFS Generate
Feasible Costs

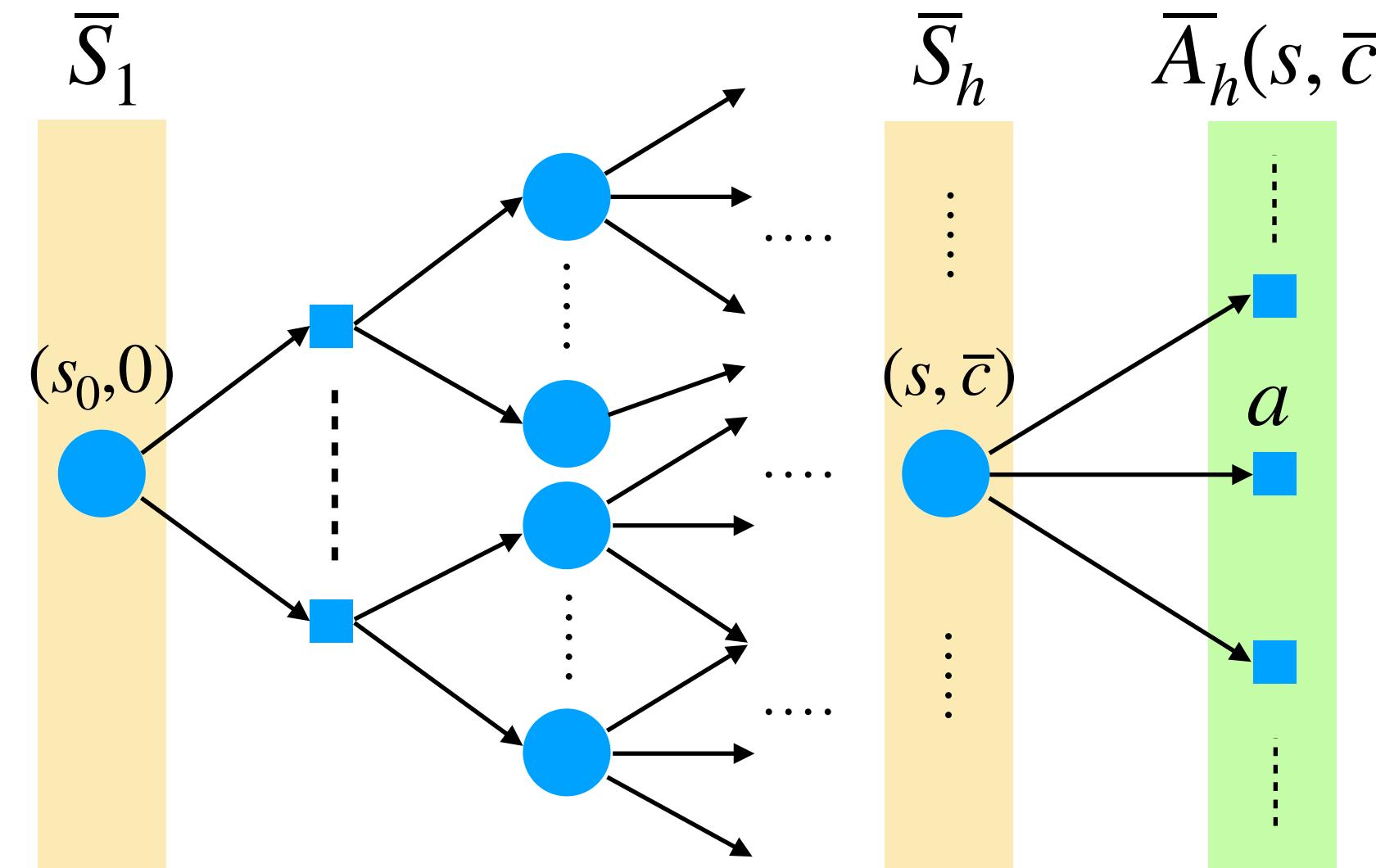


Reduction

1. State-Cost
Augmentation

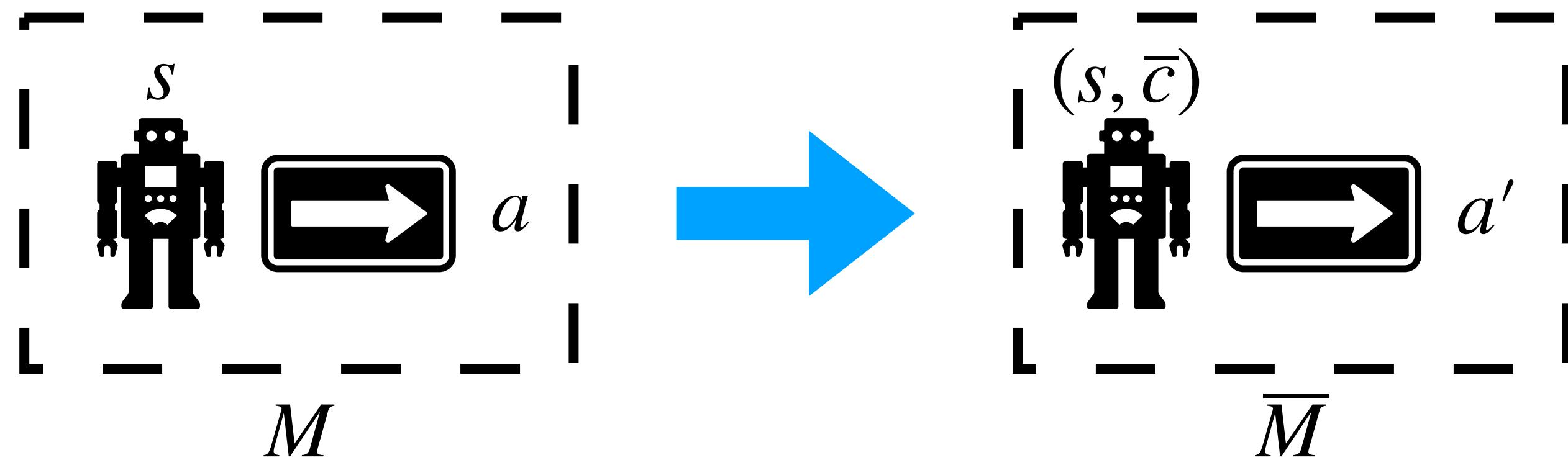


2. BFS Generate
Feasible Costs

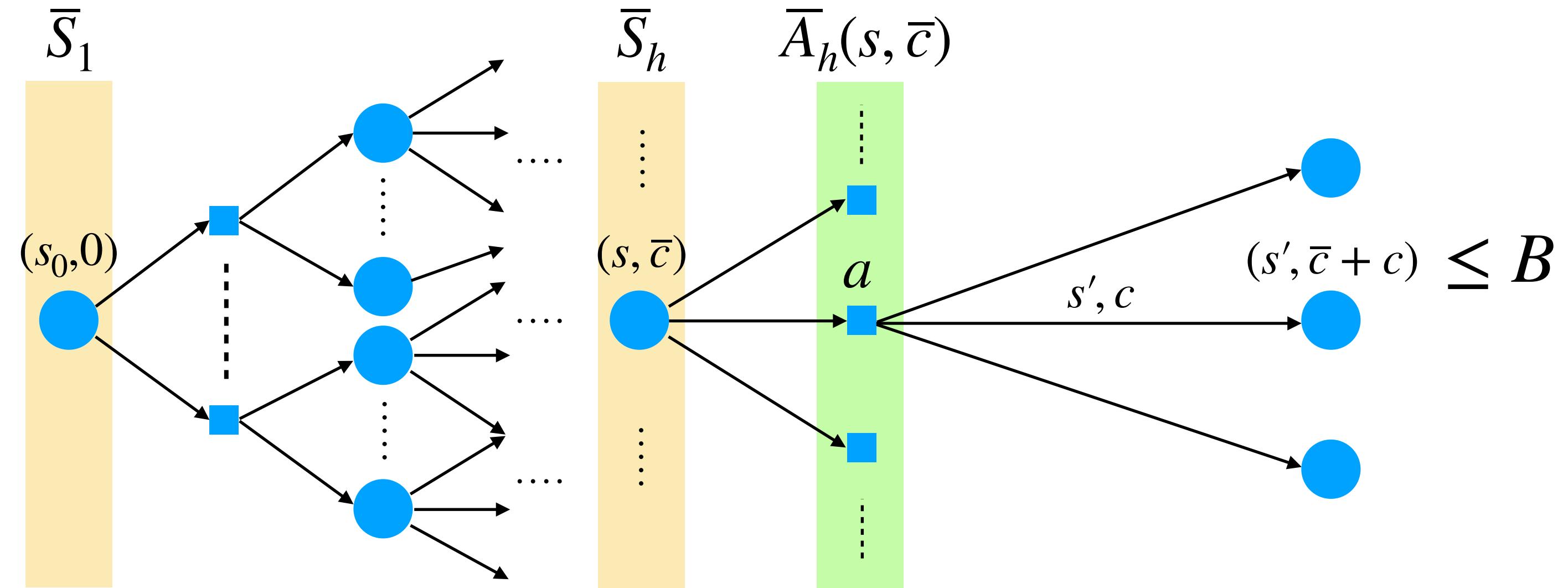


Reduction

1. State-Cost
Augmentation

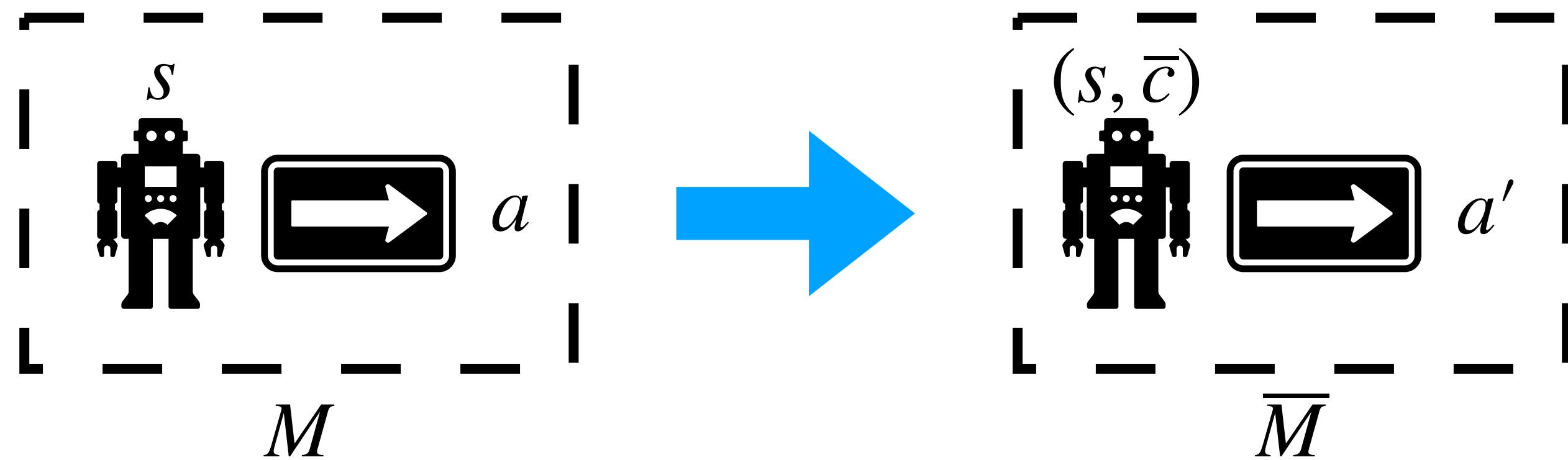


2. BFS Generate
Feasible Costs

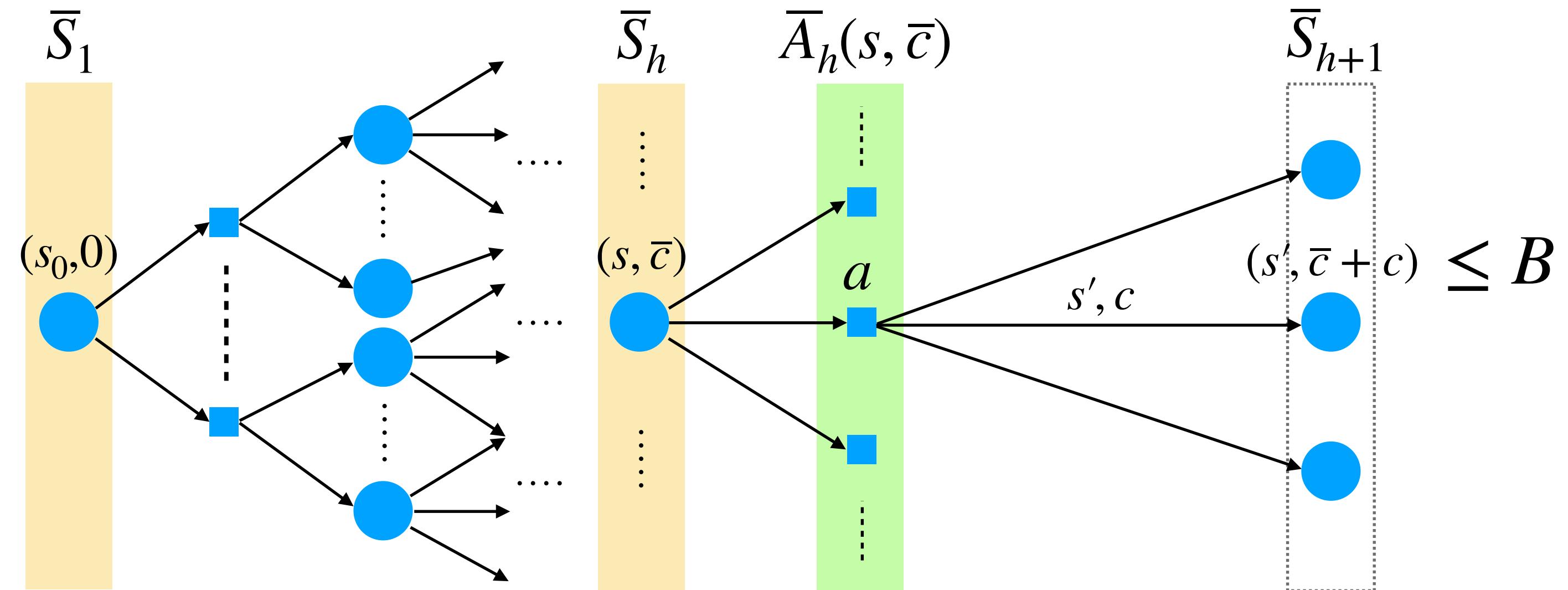


Reduction

1. State-Cost
Augmentation

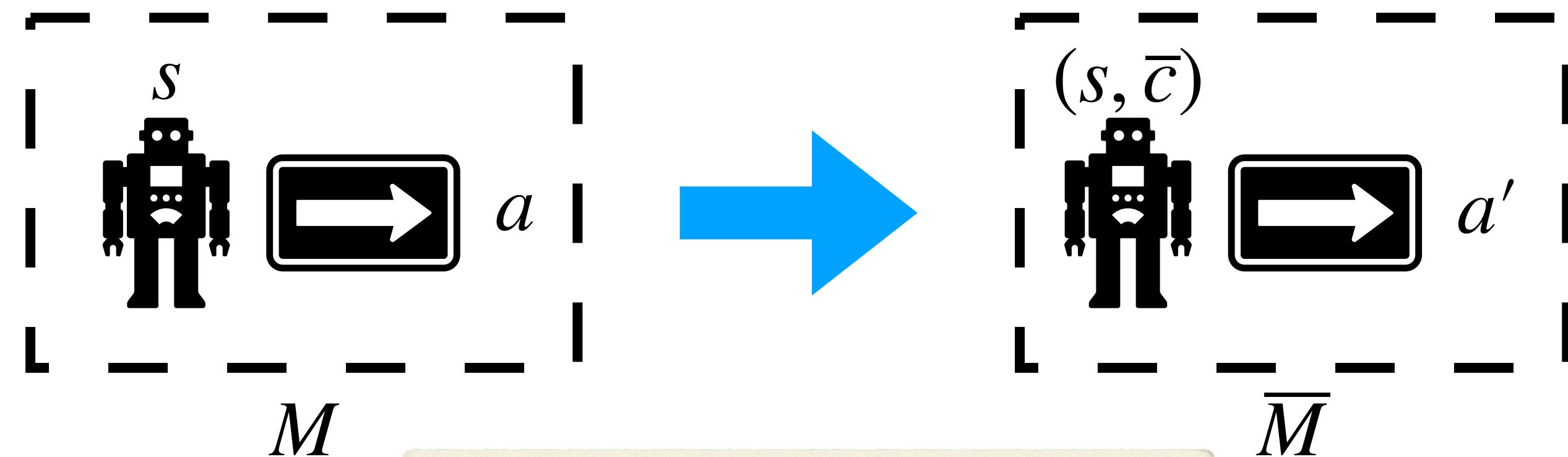


2. BFS Generate
Feasible Costs



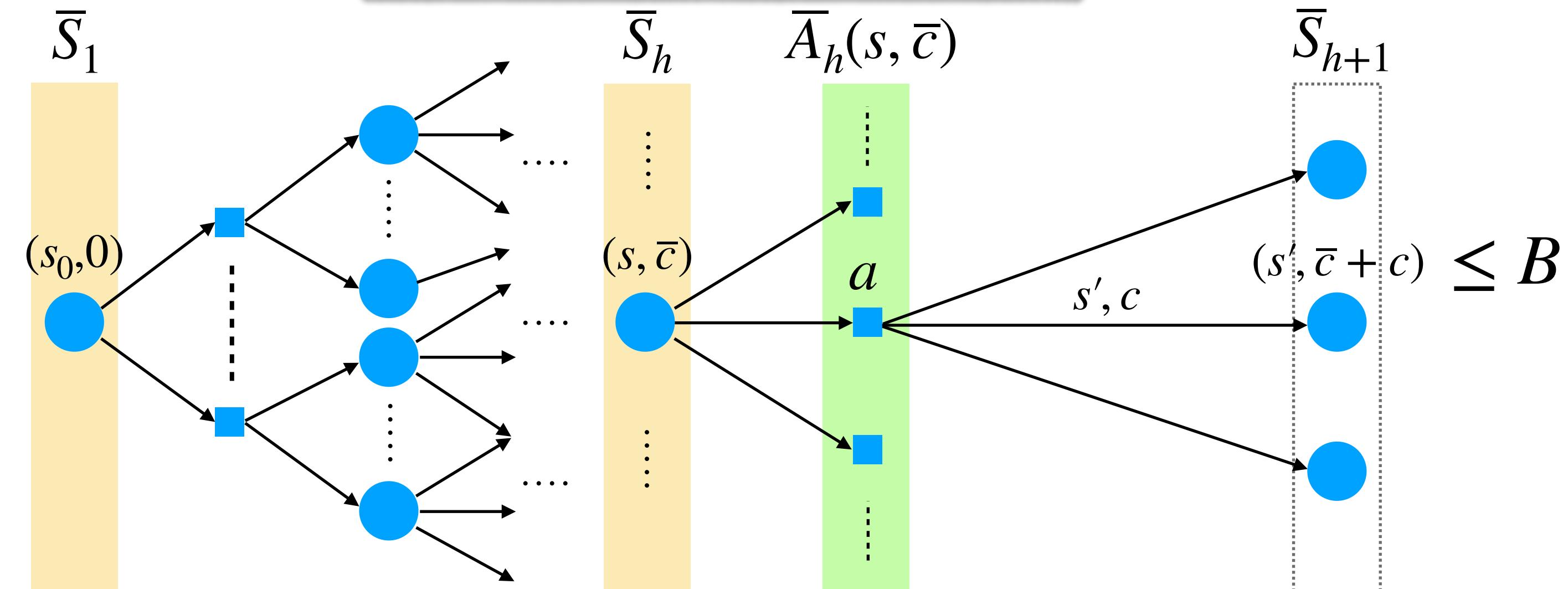
Reduction

1. State-Cost
Augmentation



Solve \bar{M} using RL!

2. BFS Generate
Feasible Costs



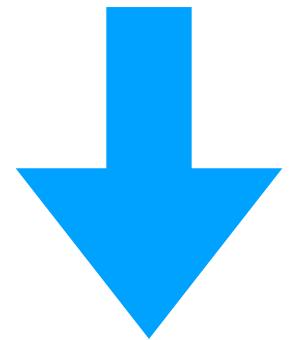
Exact Results

Exact Results

$$\text{cost precision} \leq k \implies |\overline{S}| \leq SH2^{k+1}$$

Exact Results

$$\text{cost precision} \leq k \implies |\bar{S}| \leq SH2^{k+1}$$



Theorem (Fixed-Parameter Tractability): *If the cost precision $k = O(\log(SAH))$, our algorithm outputs an optimal, anytime-constrained policy in polynomial time.*

Approximate Feasibility

Approximate Feasibility

Definition 1 (Approximate Feasibility). For any $\epsilon > 0$, a policy π is ϵ -additive feasible if,

$$\mathbb{P}_M^\pi \left[\forall k \in [H], \sum_{t=1}^k c_t \leq B + \epsilon \right] = 1,$$

and ϵ -relative feasible if,

$$\mathbb{P}_M^\pi \left[\forall k \in [H], \sum_{t=1}^k c_t \leq B(1 + \epsilon) \right] = 1.$$

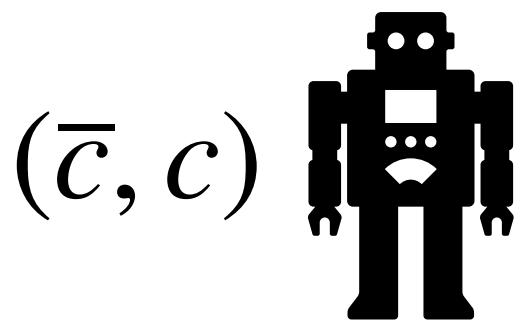
Approximation

Approximation

1. *Truncate*

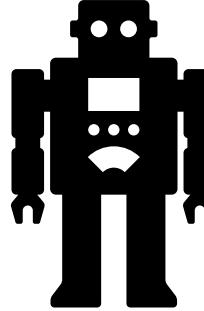
Approximation

1. *Truncate*



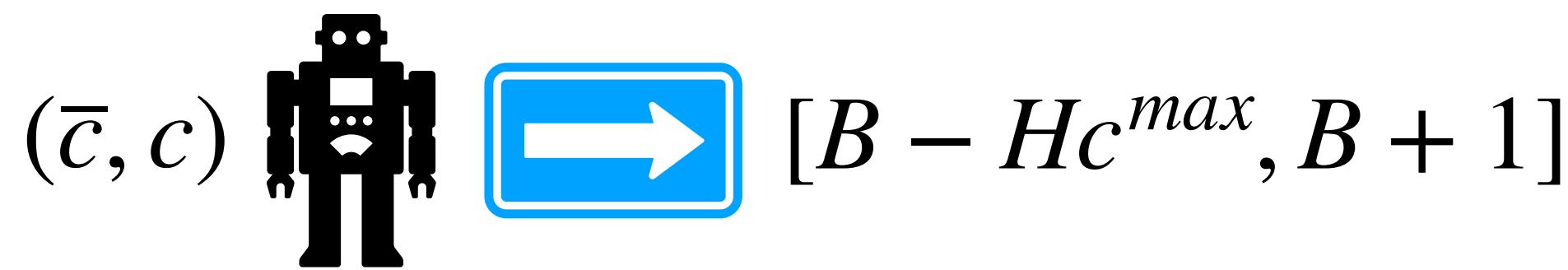
Approximation

1. Truncate

(\bar{c}, c)   $[B - Hc^{max}, B + 1]$

Approximation

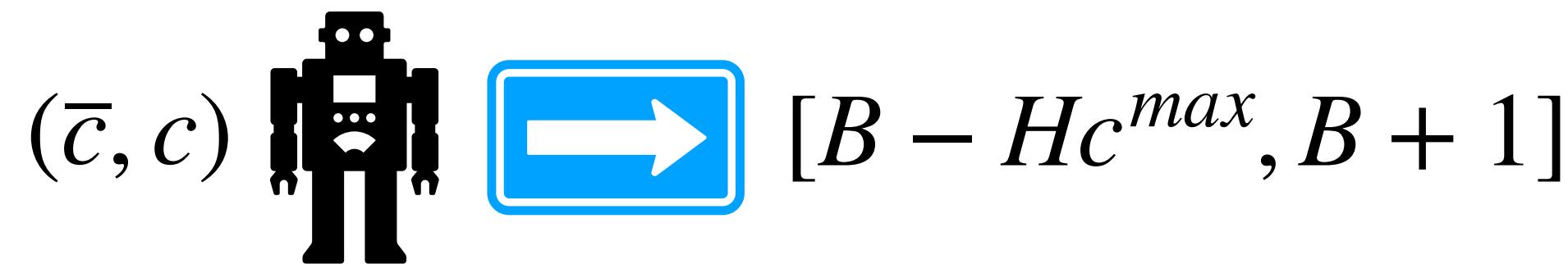
1. *Truncate*



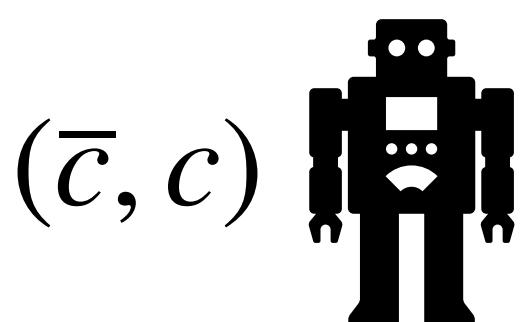
2. ℓ -*Discretize*

Approximation

1. *Truncate*



2. ℓ -*Discretize*



Approximation

1. Truncate

$$(\bar{c}, c) \xrightarrow{\quad} [B - Hc^{\max}, B + 1]$$

2. ℓ -Discretize

$$(\bar{c}, c) \xrightarrow{\quad} \left\lfloor \frac{\bar{c} + c}{\ell} \right\rfloor \ell$$

Approximation

1. Truncate

$$(\bar{c}, c) \xrightarrow{\quad} [B - Hc^{\max}, B + 1]$$

2. ℓ -Discretize

$$(\bar{c}, c) \xrightarrow{\quad} \left\lfloor \frac{\bar{c} + c}{\ell} \right\rfloor \ell = \bar{c} + \left\lfloor \frac{c}{\ell} \right\rfloor \ell$$

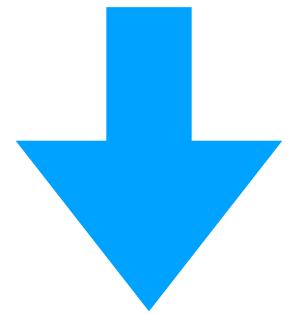
Approximation Results

Approximation Results

$$\ell = \frac{\epsilon}{H} \implies c \leq \hat{c} + \frac{\epsilon}{H} \implies \sum_h c_h \leq B + \epsilon$$

Approximation Results

$$\ell = \frac{\epsilon}{H} \implies c \leq \hat{c} + \frac{\epsilon}{H} \implies \sum_h c_h \leq B + \epsilon$$

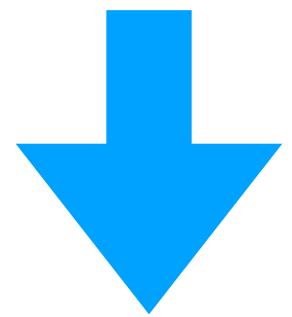


Theorem (Approx): If d is constant and $c^{max} \leq \text{poly}(|M|)$, our algorithm outputs an **optimal**-value, ϵ -**feasible** policy in time $\text{poly}(|M|, \frac{1}{\epsilon})$

*Guarantees are best-possible given hardness results.

Approximation Results

$$\ell = \frac{\epsilon}{H} \implies c \leq \hat{c} + \frac{\epsilon}{H} \implies \sum_h c_h \leq B + \epsilon$$



Theorem (Approx): If d is constant and $c^{max} \leq \text{poly}(|M|)$, our algorithm outputs an **optimal**-value, ϵ -**feasible** policy in time $\text{poly}(|M|, \frac{1}{\epsilon})$

First poly-time algorithm for anytime and almost sure constraints!

*Guarantees are best-possible given hardness results.

Single-Constraint FPTAS

**NeurIPS 2024*

Motivation

Motivation

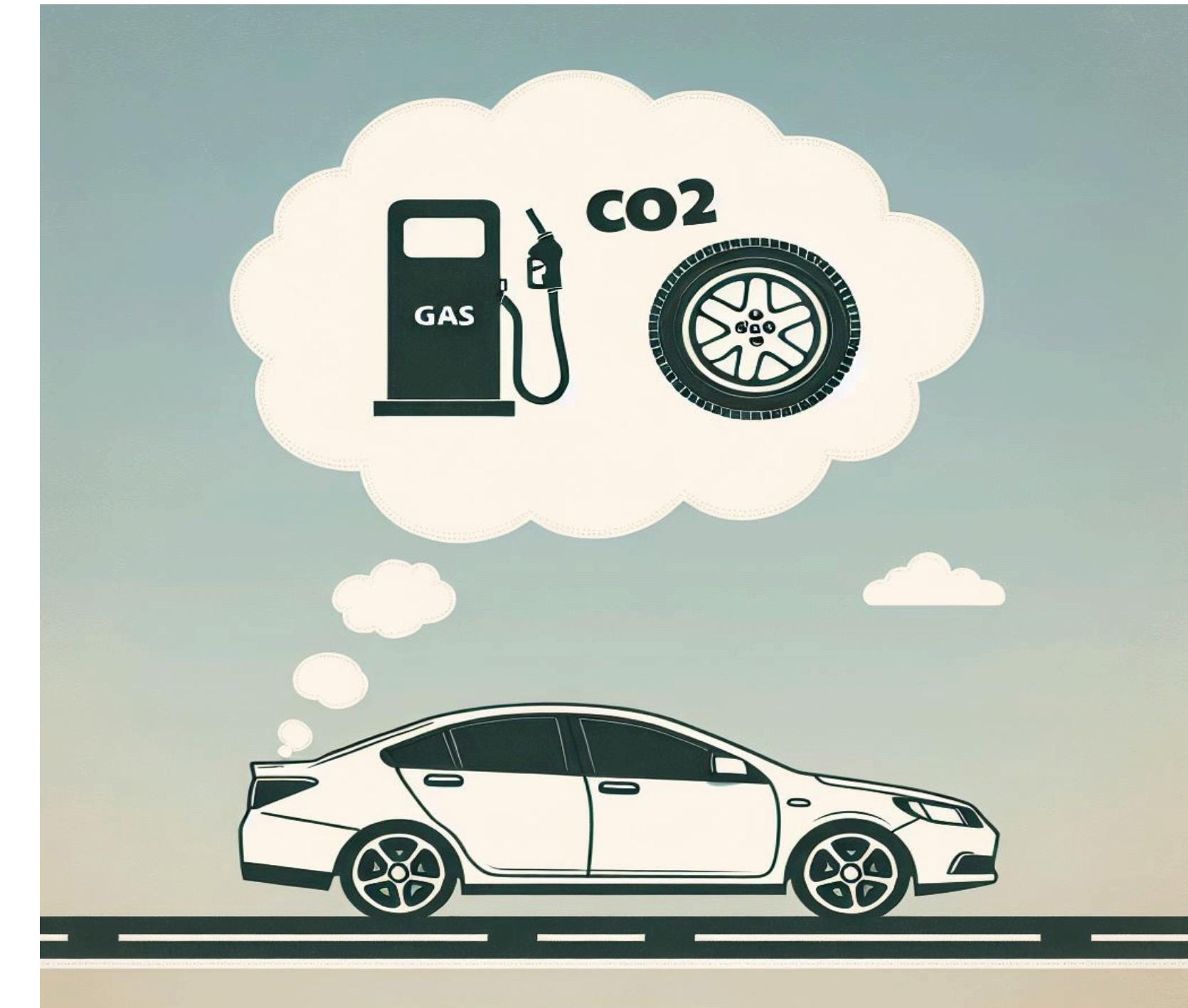
1. Previous approach cannot guarantee feasibility

Motivation

1. Previous approach cannot guarantee feasibility
2. Only works for anytime constraints

Motivation

1. Previous approach cannot guarantee feasibility
2. Only works for anytime constraints



Packing Form

Packing Form

$$\max_{\pi \in \Pi} \mathbb{E}_M^\pi \left[\sum_{h=1}^H r_h(s_h, a_h) \right] \quad \text{s.t.} \quad \left\{ \begin{array}{l} C_M^\pi \leq B \\ \end{array} \right.$$

Packing Form

$$\max_{\pi \in \Pi} \mathbb{E}_M^\pi \left[\sum_{h=1}^H r_h(s_h, a_h) \right] \quad \text{s.t.} \quad \begin{cases} C_M^\pi \leq B \\ \pi \text{ deterministic} \end{cases}$$

Packing Form

$$\max_{\pi \in \Pi} \mathbb{E}_M^\pi \left[\sum_{h=1}^H r_h(s_h, a_h) \right] \quad \text{s.t.} \quad \begin{cases} C_M^\pi \leq B \\ \pi \text{ deterministic} \end{cases}$$

Expectation: $C_M^\pi := \mathbb{E}_M^\pi \left[\sum_{h=1}^H c_h \right]$

Packing Form

$$\max_{\pi \in \Pi} \mathbb{E}_M^\pi \left[\sum_{h=1}^H r_h(s_h, a_h) \right] \quad \text{s.t.} \quad \begin{cases} C_M^\pi \leq B \\ \pi \text{ deterministic} \end{cases}$$

Expectation: $C_M^\pi := \mathbb{E}_M^\pi \left[\sum_{h=1}^H c_h \right]$

Anytime: $C_M^\pi := \max_t \max_{\tau: \mathbb{P}^\pi[\tau] > 0} \sum_{h=1}^t c_h$

Duality

Duality

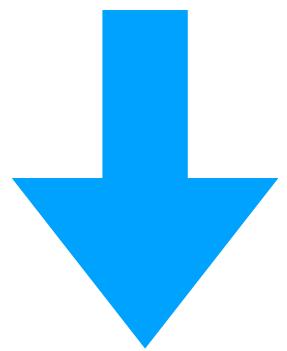
Packing (Primal)

$$\begin{aligned} \max_{\pi \in \Pi^D} \quad & V_M^\pi \\ \text{s.t.} \quad & C_M^\pi \leq B \end{aligned}$$

Duality

Packing (Primal)

$$\begin{aligned} \max_{\pi \in \Pi^D} \quad & V_M^\pi \\ \text{s.t.} \quad & C_M^\pi \leq B \end{aligned}$$

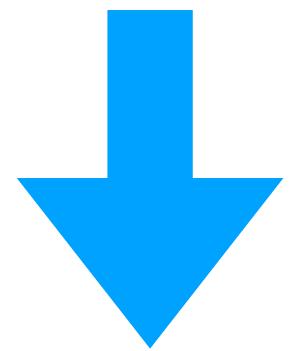


*Optimum value, but
approximate cost*

Duality

Packing (Primal)

$$V^* \boxed{\begin{aligned} & \max_{\pi \in \Pi^D} \quad V_M^\pi \\ & \text{s.t.} \quad C_M^\pi \leq B \end{aligned}}$$



*Optimum value, but
approximate cost*

Duality

Packing (Primal)

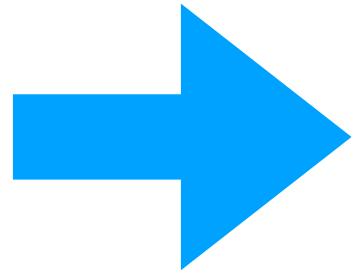
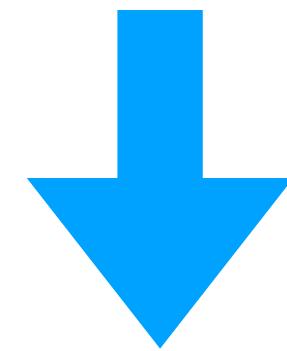
$$V^* \underset{\pi \in \Pi^D}{\max} \quad V_M^\pi$$

s.t. $C_M^\pi \leq B$

Covering (Dual)

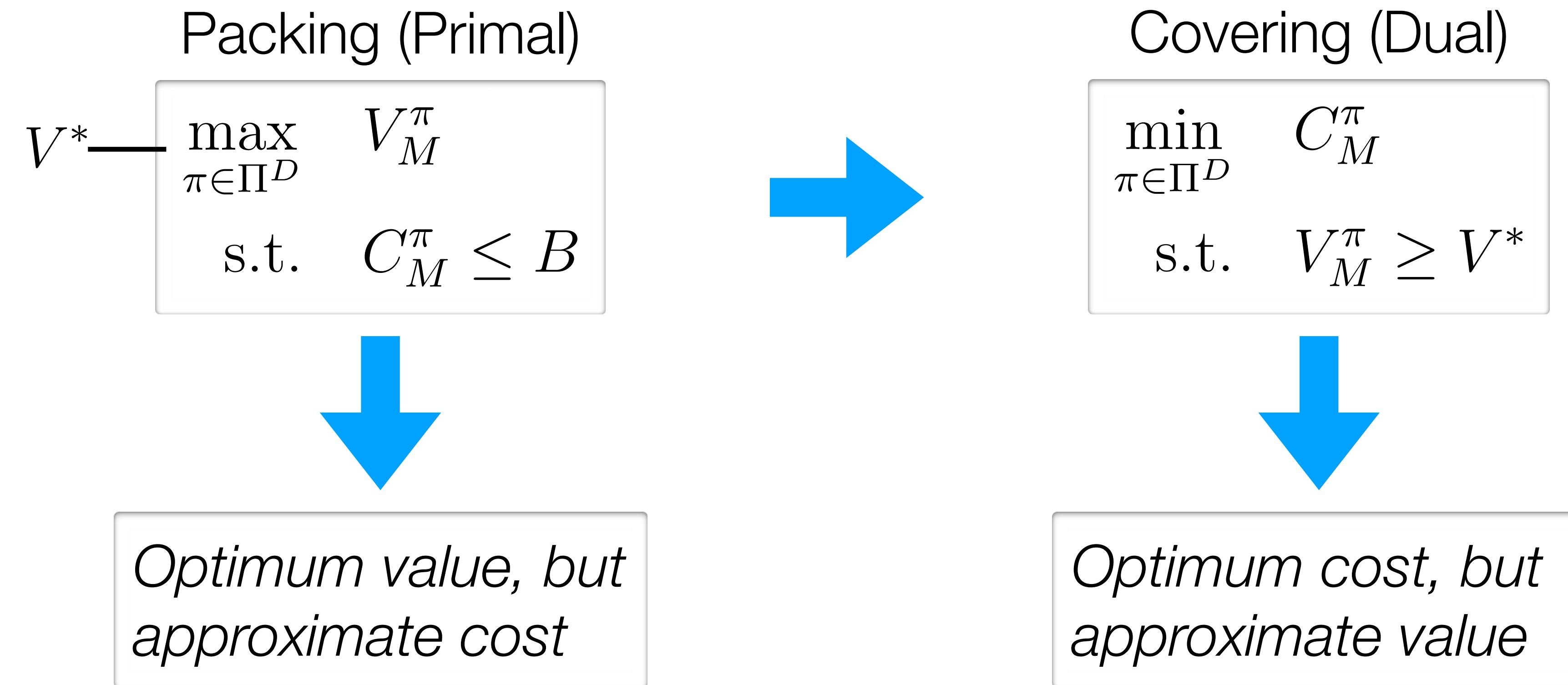
$$\underset{\pi \in \Pi^D}{\min} \quad C_M^\pi$$

s.t. $V_M^\pi \geq V^*$

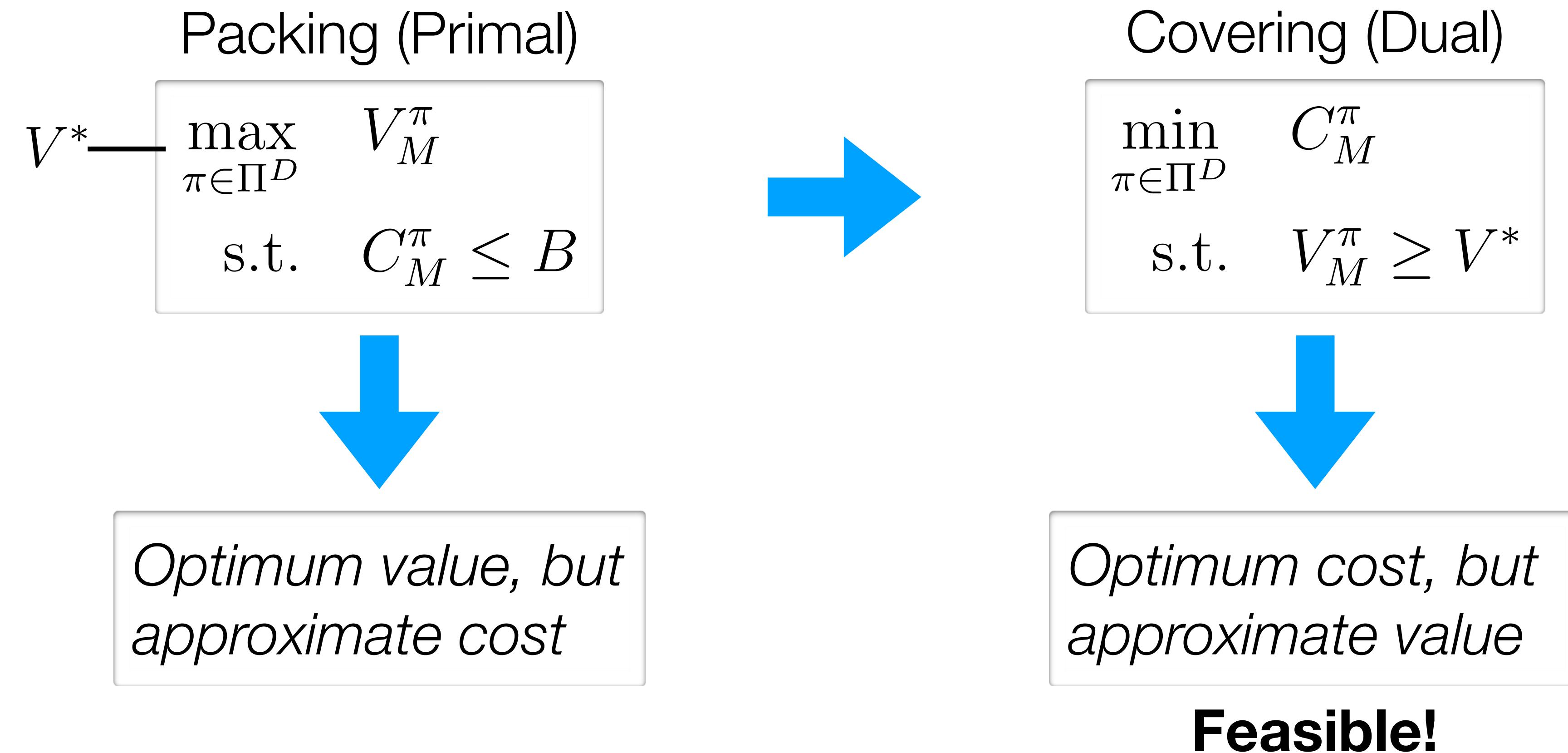


*Optimum value, but
approximate cost*

Duality



Duality



Value-Demand Augmentation

Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

Value-Demand Augmentation

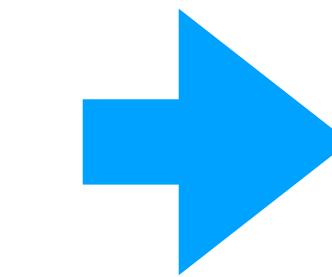
Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) &= \min_{\pi \in \Pi^D} \quad C_h^\pi(\tau_h) \\ \text{s.t.} \quad V_h^\pi(\tau_h) &\geq v\end{aligned}$$

Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$

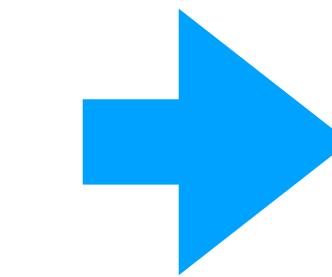


$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$

Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$

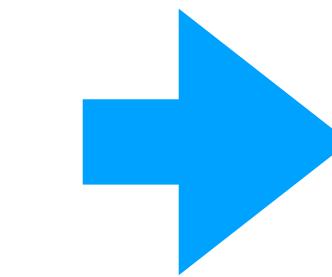


$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$

Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



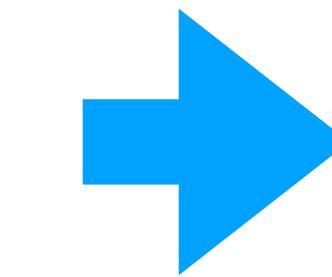
$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$

$$\bar{S} = S \times \mathcal{V} \text{ — all possible values}$$

Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$

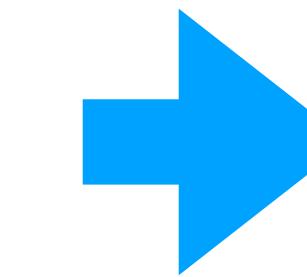
$$\bar{S} = S \times \mathcal{V} \text{ — all possible values}$$

Invariant: $v \leq \bar{V}_h^\pi(s, v)$

Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$

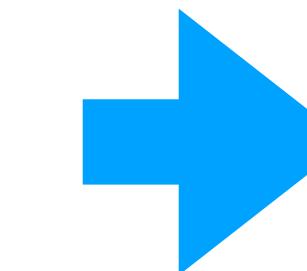
$$\bar{S} = S \times \mathcal{V} \text{ — all possible values}$$

Invariant: $v \leq \bar{V}_h^\pi(s, v) = r_h(s, a) + \sum_{s'} P_h(s' | s, a) \bar{V}_{h+1}^\pi(s', v_{s'})$ **PE**

Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$

$$\bar{S} = S \times \mathcal{V} \text{ — all possible values}$$

Invariant: $v \leq \bar{V}_h^\pi(s, v) = r_h(s, a) + \sum_{s'} P_h(s' \mid s, a) \bar{V}_{h+1}^\pi(s', v_{s'})$ **PE**

$$\bar{\mathcal{A}}_h(s, v) := \left\{ (a, \mathbf{v}) \in \mathcal{A} \times \mathcal{V}^S \mid r_h(s, a) + \sum_{s'} P_h(s' \mid s, a) v_{s'} \geq v \right\}$$

Outer Algorithm

Outer Algorithm

1. Solve:

Outer Algorithm

1. Solve:

$$\overline{C}_h^*(s, v) = \min_{a, \mathbf{v} \in \mathcal{A}_h(s, v)} c_h(s, a) + \max_{s'} \overline{C}_h^*(s', v_{s'})$$

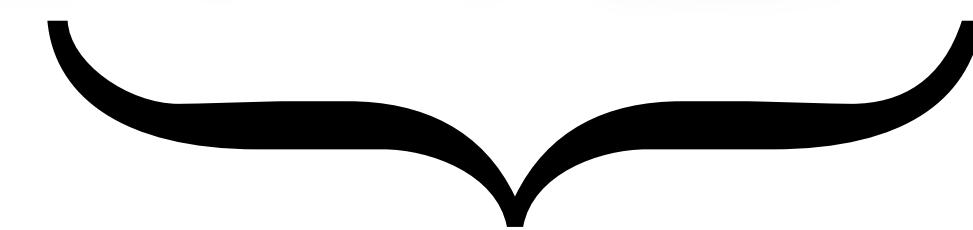
Anytime Constraints



Outer Algorithm

1. Solve:

$$\bar{C}_h^*(s, v) = \min_{a, \mathbf{v} \in \mathcal{A}_h(s, v)} c_h(s, a) + \sum_{s'} P_h(s' \mid s, a) \bar{C}_{h+1}^*(s', v_{s'})$$


Expectation Constraints

Outer Algorithm

1. Solve:

$$\bar{C}_h^*(s, v) = \min_{a, \mathbf{v} \in \mathcal{A}_h(s, v)} c_h(s, a) + \sum_{s'} P_h(s' \mid s, a) \bar{C}_{h+1}^*(s', v_{s'})$$

2. Output:

Outer Algorithm

1. Solve:

$$\bar{C}_h^*(s, v) = \min_{a, \mathbf{v} \in \mathcal{A}_h(s, v)} c_h(s, a) + \sum_{s'} P_h(s' \mid s, a) \bar{C}_{h+1}^*(s', v_{s'})$$

2. Output:

$$V_M^* = \max \{v \in \mathcal{V} \mid \bar{C}_1^*(s_0, v) \leq B\}$$

Outer Algorithm

1. Solve:

$$\bar{C}_h^*(s, v) = \min_{a, \mathbf{v} \in \mathcal{A}_h(s, v)} c_h(s, a) + \sum_{s'} P_h(s' \mid s, a) \bar{C}_{h+1}^*(s', v_{s'})$$

2. Output:

$$V_M^* = \max \{v \in \mathcal{V} \mid \bar{C}_1^*(s_0, v) \leq B\}$$

Feasible!

Outer Algorithm

1. Solve:

$$\bar{C}_h^*(s, v) = \min_{a, \mathbf{v} \in \mathcal{A}_h(s, v)} c_h(s, a) + \sum_{s'} P_h(s' \mid s, a) \bar{C}_{h+1}^*(s', v_{s'})$$

Exponential!

2. Output:

$$V_M^* = \max \{v \in \mathcal{V} \mid \bar{C}_1^*(s_0, v) \leq B\}$$

Feasible!

Solving \bar{M} Fast

Solving \overline{M} Fast

Optimality Equations

$$\begin{aligned}\overline{C}_h^*(s, v) &= \min_{(a, \mathbf{v})} c_h(s, a) + \sum_{s'} P_h(s' \mid s, a) \overline{C}_h^*(s, v_{s'}) \\ \text{s.t. } r_h(s, a) + \sum_{s'} P_h(s' \mid s, a) v_{s'} &\geq v\end{aligned}$$

Solving \overline{M} Fast

Optimality Equations

$$\min_{\mathbf{v} \in \mathcal{V}^S} \sum_{s'} P_h(s' \mid s, a) \overline{C}_h^*(s, v_{s'})$$
$$\sum_{s'} P_h(s' \mid s, a) v_{s'} \geq v$$

Solving \overline{M} Fast

Optimality Equations

$$\min_{\mathbf{v} \in \mathcal{V}^S} \sum_{s'} P_h(s' \mid s, a) \overline{C}_h^*(s, v_{s'})$$
$$\sum_{s'} p_{s'} v_{s'} \geq v$$

Solving \bar{M} Fast

Optimality Equations

$$\begin{aligned} \min_{\mathbf{v} \in \mathcal{V}^S} \quad & \sum_{s'} w_{s'} \quad \bar{C}_h^*(s, v_{s'}) \\ \sum_{s'} \quad & p_{s'} \quad v_{s'} \quad \geq v \end{aligned}$$

Solving \bar{M} Fast

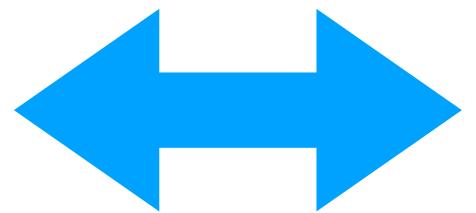
Optimality Equations

$$\begin{aligned} \min_{\mathbf{v} \in \mathcal{V}^S} \quad & \sum_{s'} w_{s'} \quad f(v_{s'}) \\ \sum_{s'} \quad & p_{s'} \quad v_{s'} \quad \geq v \end{aligned}$$

Solving \overline{M} Fast

Optimality Equations

$$\min_{\mathbf{v} \in \mathcal{V}^S} \sum_{s'} w_{s'} \quad f(v_{s'})$$
$$\sum_{s'} p_{s'} \quad v_{s'} \quad \geq v$$



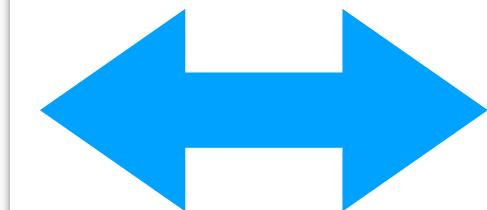
Knapsack Problem

$$\min_{x \in X^n} \sum_i w_i x_i$$
$$\text{s.t. } \sum_i p_i x_i \geq P$$

Solving \bar{M} Fast

Optimality Equations

$$\min_{\mathbf{v} \in \mathcal{V}^S} \sum_{s'} w_{s'} f(v_{s'})$$
$$\sum_{s'} p_{s'} v_{s'} \geq v$$



Knapsack Problem

$$\min_{x \in X^n} \sum_i w_i x_i$$
$$\text{s.t. } \sum_i p_i x_i \geq P$$

Knapsack Approx!

$MC(s', p)$

Solving \bar{M} Fast

Optimality Equations

$$\min_{\mathbf{v} \in \mathcal{V}^S} \sum_{s'} w_{s'} f(v_{s'})$$
$$\sum_{s'} p_{s'} v_{s'} \geq v$$

Knapsack Problem

$$\min_{x \in X^n} \sum_i w_i x_i$$
$$\text{s.t. } \sum_i p_i x_i \geq P$$

$$\sum_{i=1}^{s'-1} p_i v_i$$

$$MC(s', p)$$

Knapsack Approx!

Solving \bar{M} Fast

Optimality Equations

$$\min_{\mathbf{v} \in \mathcal{V}^S} \sum_{s'} w_{s'} f(v_{s'})$$
$$\sum_{s'} p_{s'} v_{s'} \geq v$$

Knapsack Problem

$$\min_{x \in X^n} \sum_i w_i x_i$$
$$\text{s.t. } \sum_i p_i x_i \geq P$$

$$\sum_{i=1}^{s'-1} p_i v_i$$

Knapsack Approx!

$$MC(s', p) = \min_{v_{s'} \in \mathcal{V}} w_{s'} f(v_{s'})$$

Solving \bar{M} Fast

Optimality Equations

$$\min_{\mathbf{v} \in \mathcal{V}^S} \sum_{s'} w_{s'} f(v_{s'})$$
$$\sum_{s'} p_{s'} v_{s'} \geq v$$

Knapsack Problem

$$\min_{x \in X^n} \sum_i w_i x_i$$
$$\text{s.t. } \sum_i p_i x_i \geq P$$

$$\sum_{i=1}^{s'-1} p_i v_i$$

Knapsack Approx!

$$MC(s', p) = \min_{v_{s'} \in \mathcal{V}} w_{s'} f(v_{s'}) + MC(s' + 1, p + p_{s'} v_{s'})$$

Solving \bar{M} Fast

Optimality Equations

$$\min_{\mathbf{v} \in \mathcal{V}^S} \sum_{s'} w_{s'} f(v_{s'})$$

$$\sum_{s'} p_{s'} v_{s'} \geq v$$

Knapsack Problem

$$\min_{x \in X^n} \sum_i w_i x_i$$

$$\text{s.t. } \sum_i p_i x_i \geq P$$

Knapsack Approx!

$$\sum_{i=1}^{s'-1} p_i v_i$$

$$MC(s', p) = \min_{v_{s'} \in \mathcal{V}} w_{s'} f(v_{s'}) + MC(s' + 1, p + \sum_{i=1}^{s'} p_i v_i)$$

Solving \bar{M} Fast

Optimality Equations

$$\min_{v \in \mathcal{V}^S} \sum_{s'} w_{s'} f(v_{s'})$$
$$\sum_{s'} p_{s'} v_{s'} \geq v$$

Knapsack Problem

$$\min_{x \in X^n} \sum_i w_i x_i$$
$$\text{s.t. } \sum_i p_i x_i \geq P$$

Knapsack Approx!

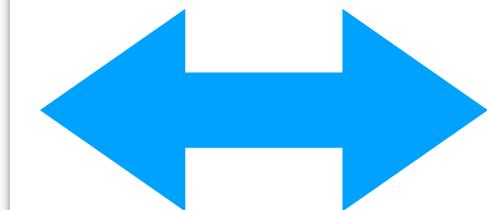
$$MC(s', p) = \min_{v_{s'} \in \mathcal{V}} w_{s'} f(v_{s'}) + MC(s' + 1, p + p_{s'} v_{s'})$$

Round for approx

Solving \bar{M} Fast

Optimality Equations

$$\min_{\mathbf{v} \in \mathcal{V}^S} \sum_{s'} w_{s'} f(v_{s'})$$
$$\sum_{s'} p_{s'} v_{s'} \geq v$$



Knapsack Problem

$$\min_{x \in X^n} \sum_i w_i x_i$$
$$\text{s.t. } \sum_i p_i x_i \geq P$$

Knapsack Approx!

$$MC(s', p) = \min_{v_{s'} \in \mathcal{V}} P_h(s' | s, a) \bar{C}_{h+1}^*(s', v_{s'}) + MC(s' + 1, p + P_h(s' | s, a) v_{s'})$$

Round for approx

Time-Space Rounding

Time-Space Rounding

Round ν 's down \implies cost goes down!

Time-Space Rounding

Round ν 's down \implies cost goes down!

Feasible!

Time-Space Rounding

Round v 's down \implies cost goes down!

Feasible!

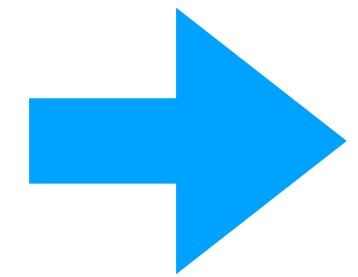
Rounding v 's causes error over **time**

Time-Space Rounding

Round v 's down \implies cost goes down!

Feasible!

Rounding v 's causes error over **time**



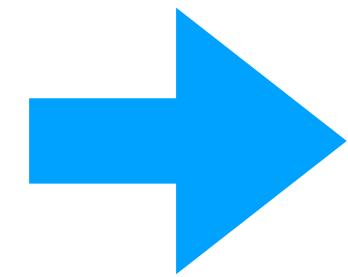
$$\hat{V}^\pi \geq V^* - \ell H$$

Time-Space Rounding

Round v 's down \implies cost goes down!

Feasible!

Rounding v 's causes error over **time**



$$\hat{V}^\pi \geq V^* - \ell H$$

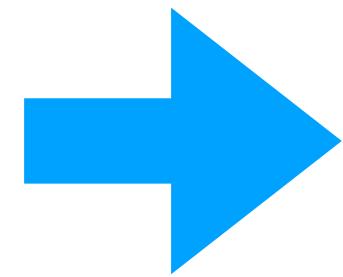
Rounding p 's causes error over **space**

Time-Space Rounding

Round v 's down \implies cost goes down!

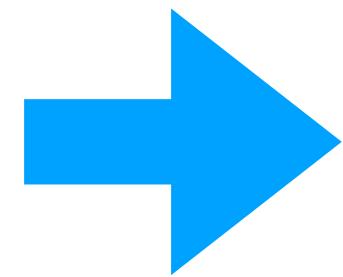
Feasible!

Rounding v 's causes error over **time**



$$\hat{V}^\pi \geq V^* - \ell H$$

Rounding p 's causes error over **space**



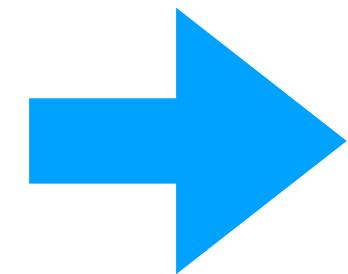
$$\hat{V}^\pi \geq V^* - \ell S H$$

Time-Space Rounding

Round v 's down \implies cost goes down!

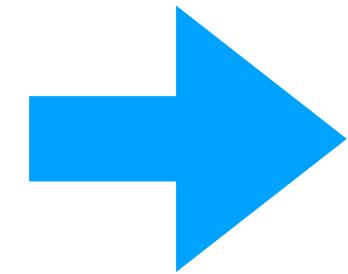
Feasible!

Rounding v 's causes error over **time**



$$\hat{V}^\pi \geq V^* - \ell H$$

Rounding p 's causes error over **space**



$$\hat{V}^\pi \geq V^* - \ell SH$$

$$\ell = \frac{\epsilon}{SH} \implies \hat{V}^\pi \geq V^* - \epsilon$$

Results

Results

Theorem (FPTAS): *If the rewards are poly-bounded, our algorithm outputs a **feasible** policy with value $V^* - \epsilon$ in time $\text{poly}(|M|, \frac{1}{\epsilon})$*

**Guarantees are best-possible given hardness results.*

Results

Theorem (FPTAS): *If the rewards are poly-bounded, our algorithm outputs a **feasible** policy with value $V^* - \epsilon$ in time $\text{poly}(|M|, \frac{1}{\epsilon})$*

*First ever poly-time algorithm for **deterministic**, expectation-constrained policies!*

**Guarantees are best-possible given hardness results.*

Multi-Constraint Bicriteria

**ICML 2025*

Motivation

Motivation

Full Problem

$$\max_{\pi \in \Pi^D} V^\pi$$

$$\text{s.t. } C_1^\pi \leq B_1$$

$$C_2^\pi \leq B_2$$

⋮

$$C_m^\pi \leq B_m$$

Motivation

Full Problem

$$\begin{aligned} \max_{\pi \in \Pi^D} \quad & V^\pi \\ \text{s.t.} \quad & C_1^\pi \leq B_1 \\ & C_2^\pi \leq B_2 \\ & \vdots \\ & C_m^\pi \leq B_m \end{aligned}$$

Expectation: $\mathbb{E}_M^\pi \left[\sum_{h=1}^H c_h \right] \leq B$

Chance: $\mathbb{P}_M^\pi \left[\sum_{h=1}^H c_h > B \right] \leq \delta$

Almost Sure: $\mathbb{P}_M^\pi \left[\sum_{h=1}^H c_h \leq B \right] = 1$

Anytime: $\mathbb{P}_M^\pi \left[\forall t, \sum_{h=1}^t c_h \leq B \right] = 1$

Motivation

Full Problem

$$\begin{aligned} \max_{\pi \in \Pi^D} \quad & V^\pi \\ \text{s.t.} \quad & C_1^\pi \leq B_1 \\ & C_2^\pi \leq B_2 \\ & \vdots \\ & C_m^\pi \leq B_m \end{aligned}$$

Expectation: $\mathbb{E}_M^\pi \left[\sum_{h=1}^H c_h \right] \leq B$

Chance: $\mathbb{P}_M^\pi \left[\sum_{h=1}^H c_h > B \right] \leq \delta$

Almost Sure: $\mathbb{P}_M^\pi \left[\sum_{h=1}^H c_h \leq B \right] = 1$

Anytime: $\mathbb{P}_M^\pi \left[\forall t, \sum_{h=1}^t c_h \leq B \right] = 1$

Can we create a framework that works for **any combination** of constraints?

Budget Augmentation

Budget Augmentation

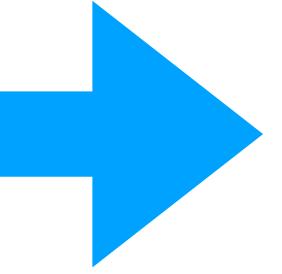
Full Form

$$\begin{aligned} \max_{\pi \in \Pi^D} \quad & V^\pi \\ \text{s.t.} \quad & C_1^\pi \leq B_1 \\ & C_2^\pi \leq B_2 \\ & \vdots \\ & C_m^\pi \leq B_m \end{aligned}$$

Budget Augmentation

Full Form

$$\begin{aligned} \max_{\pi \in \Pi^D} \quad & V^\pi \\ \text{s.t.} \quad & C_1^\pi \leq B_1 \\ & C_2^\pi \leq B_2 \\ & \vdots \\ & C_m^\pi \leq B_m \end{aligned}$$



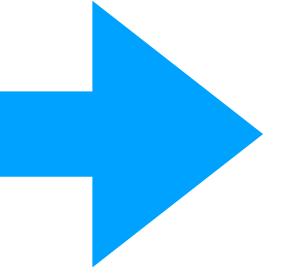
Intuition: Build \bar{M} satisfying,

$$\begin{aligned} \bar{V}_h^*(s, b) = \max_{\pi \in \Pi^D} \quad & V_h^\pi(\tau_h) \\ \text{s.t.} \quad & C_h^\pi(\tau_h) \leq b \end{aligned}$$

Budget Augmentation

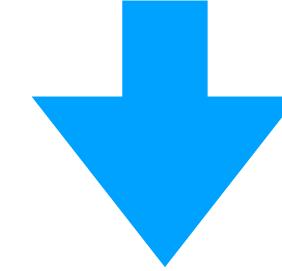
Full Form

$$\begin{aligned} \max_{\pi \in \Pi^D} \quad & V^\pi \\ \text{s.t.} \quad & C_1^\pi \leq B_1 \\ & C_2^\pi \leq B_2 \\ & \vdots \\ & C_m^\pi \leq B_m \end{aligned}$$



Intuition: Build \bar{M} satisfying,

$$\begin{aligned} \bar{V}_h^*(s, b) = \max_{\pi \in \Pi^D} \quad & V_h^\pi(\tau_h) \\ \text{s.t.} \quad & C_h^\pi(\tau_h) \leq b \end{aligned}$$

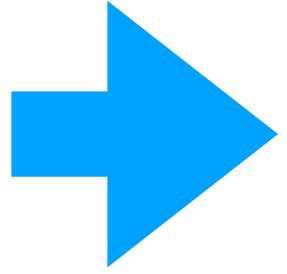


$$\text{Primal} = \bar{V}_1^*(s_0, B)$$

Budget Augmentation

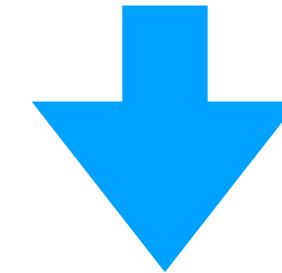
Full Form

$$\begin{aligned} \max_{\pi \in \Pi^D} \quad & V^\pi \\ \text{s.t.} \quad & C_1^\pi \leq B_1 \\ & C_2^\pi \leq B_2 \\ & \vdots \\ & C_m^\pi \leq B_m \end{aligned}$$



Intuition: Build \bar{M} satisfying,

$$\begin{aligned} \bar{V}_h^*(s, b) = \max_{\pi \in \Pi^D} \quad & V_h^\pi(\tau_h) \\ \text{s.t.} \quad & C_h^\pi(\tau_h) \leq b \end{aligned}$$



$$\text{Primal} = \bar{V}_1^*(s_0, B)$$

Use previous approach but with rounding up!

Constraint Assumptions

Constraint Assumptions

1. *Recursion:*

Constraint Assumptions

1. Recursion:

$$C_h^\pi(\tau_h) = c_h(s, a) + f_{s'} g(P_h(s' \mid s, a)) C_{h+1}^\pi(s')$$

Constraint Assumptions

1. Recursion:

$$C_h^\pi(\tau_h) = c_h(s, a) + f_{s'}g(P_h(s' | s, a))C_{h+1}^\pi(s')$$

Required for inner DP

Constraint Assumptions

1. Recursion:

$$C_h^\pi(\tau_h) = c_h(s, a) + f_{s'} g(P_h(s' | s, a)) C_{h+1}^\pi(s')$$

Required for inner DP

	Exp	AS
f	$\sum_{s'}$	$\max_{s'}$
g	id	$[x > 0]$

Constraint Assumptions

1. Recursion:

$$C_h^\pi(\tau_h) = c_h(s, a) + f_{s'} g(P_h(s' | s, a)) C_{h+1}^\pi(s')$$

Required for inner DP

	Exp	AS
f	$\sum_{s'}$	$\max_{s'}$
g	id	$[x > 0]$

Constraint Assumptions

1. Recursion:

$$C_h^\pi(\tau_h) = c_h(s, a) + f_{s'} g(P_h(s' | s, a)) C_{h+1}^\pi(s')$$

Required for inner DP

	Exp	AS
f	$\sum_{s'}$	$\max_{s'}$
g	id	$[x > 0]$

2. 1-Lipschitz:

Constraint Assumptions

1. Recursion:

$$C_h^\pi(\tau_h) = c_h(s, a) + f_{s'} g(P_h(s' | s, a)) C_{h+1}^\pi(s')$$

Required for inner DP

2. 1-Lipschitz:

$$f(x, \text{round}(y)) \leq f(x, y + \ell) \leq f(x, y) + \ell$$

	Exp	AS
f	$\sum_{s'}$	$\max_{s'}$
g	id	$[x > 0]$

Constraint Assumptions

1. Recursion:

$$C_h^\pi(\tau_h) = c_h(s, a) + f_{s'} g(P_h(s' | s, a)) C_{h+1}^\pi(s')$$

Required for inner DP

2. 1-Lipschitz:

$$f(x, \text{round}(y)) \leq f(x, y + \ell) \leq f(x, y) + \ell$$

Required for rounding error analysis

	Exp	AS
f	$\sum_{s'}$	$\max_{s'}$
g	id	$[x > 0]$

Results

Results

Theorem (Bicriteria): Our algorithm computes an ***optimal***-value, **ϵ -feasible** policy in ***polynomial time***, so long as the costs are poly-bounded and satisfy the SR condition.

*Guarantees are best-possible given hardness results.

Results

Theorem (Bicriteria): Our algorithm computes an ***optimal***-value, **ϵ -feasible** policy in ***polynomial time***, so long as the costs are poly-bounded and satisfy the SR condition.

*Includes **all** classical constraints!*

*Guarantees are best-possible given hardness results.

Results

Theorem (Bicriteria): Our algorithm computes an ***optimal***-value, **ϵ -feasible** policy in ***polynomial time***, so long as the costs are poly-bounded and satisfy the SR condition.

Includes ***all*** classical constraints!

First ever poly-time algorithm for ***chance*** constraints and ***non-homogenous*** constraints!

*Guarantees are best-possible given hardness results.

Future Directions

1. Beyond Worst-case Analysis for all works
(especially POMDPs for defense and anytime constraints)
2. Submodular Constrained Reinforcement Learning
3. Optimal learning under constraints.

Thank you!

Backup

Motivating Example

Motivating Example

Motivating Example

1. Robust to visual noise (ash)

Motivating Example

1. Robust to visual noise (ash)
2. Robust to other rescue vehicles

Motivating Example

1. Robust to visual noise (ash)
2. Robust to other rescue vehicles
3. Coordinate well with teammates

Motivating Example

1. Robust to visual noise (ash)
2. Robust to other rescue vehicles
3. Coordinate well with teammates

1. Effective fuel management

Motivating Example

1. Robust to visual noise (ash)
2. Robust to other rescue vehicles
3. Coordinate well with teammates

1. Effective fuel management
2. Avoids dangerous terrain (lava)

Motivating Example

1. Robust to visual noise (ash)
2. Robust to other rescue vehicles
3. Coordinate well with teammates

1. Effective fuel management
2. Avoids dangerous terrain (lava)
3. Balances risks of difficult terrain

Framework Extensions

Framework Extensions

1. Multiple agents

Framework Extensions

1. Multiple agents
2. Infinite discounting

Framework Extensions

1. Multiple agents
2. Infinite discounting
3. Stochastic costs

Framework Extensions

1. Multiple agents
2. Infinite discounting
3. Stochastic costs
 1. Discrete

Framework Extensions

1. Multiple agents
2. Infinite discounting
3. Stochastic costs
 1. Discrete
 2. Bounded Continuous

Framework Extensions

1. Multiple agents
2. Infinite discounting
3. Stochastic costs
 1. Discrete
 2. Bounded Continuous
4. Continuous States

Chance Constraints

Chance Constraints

1. Use Discretized \hat{M} from anytime constraints section

Chance Constraints

1. Use Discretized \hat{M} from anytime constraints section
2. Define $C_h^\pi(s, \bar{c}) = \mathbb{P}^\pi \left[\exists k, \bar{c} + \sum_{t=h}^k c_t > B \right]$

Chance Constraints

1. Use Discretized \hat{M} from anytime constraints section

2. Define $C_h^\pi(s, \bar{c}) = \mathbb{P}^\pi \left[\exists k, \bar{c} + \sum_{t=h}^k c_t > B \right]$ satisfies,

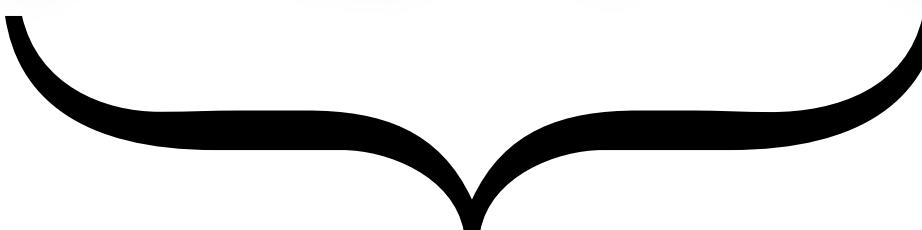
$$C_h^\pi(s, \bar{c}) = [\bar{c} + c_h(s, a) > B] + \sum_{s'} P_h(s' | s, a) C_{h+1}^\pi(s, \bar{c} + c_h(s, a))$$

Chance Constraints

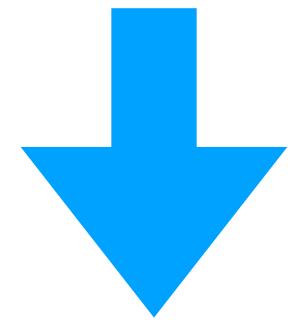
1. Use Discretized \hat{M} from anytime constraints section

2. Define $C_h^\pi(s, \bar{c}) = \mathbb{P}^\pi \left[\exists k, \bar{c} + \sum_{t=h}^k c_t > B \right]$ satisfies,

$$C_h^\pi(s, \bar{c}) = [\bar{c} + c_h(s, a) > B] + \sum_{s'} P_h(s' | s, a) C_{h+1}^\pi(s, \bar{c} + c_h(s, a))$$

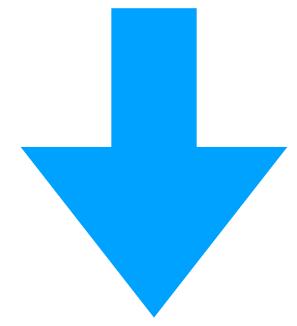

New $c'_h((s, \bar{c}), a)$

Action Space



Action Space

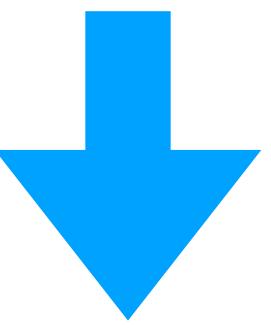
Policy Evaluation Equation: $C_h^\pi(s) = c_h(s, a) + \sum_{s'} P_h(s' | s, a)C_{h+1}^\pi(s')$



Action Space

Policy Evaluation Equation: $C_h^\pi(s) = c_h(s, a) + \sum_{s'} P_h(s' | s, a) C_{h+1}^\pi(s')$

Same form as before!



$$\overline{\mathcal{A}}_h(s, b) := \left\{ (a, \mathbf{b}) \in \mathcal{A} \times \mathbb{R}^S \mid c_h(s, a) + \sum_{s'} P_h(s' | s, a) b_{s'} \leq b \right\}$$

Budget Augmentation

Budget Augmentation

Intuition: Build \overline{M} satisfying,

Budget Augmentation

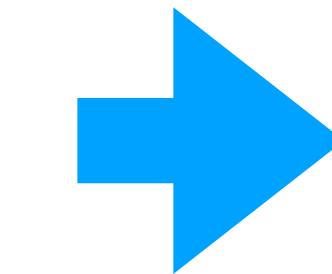
Intuition: Build \overline{M} satisfying,

$$\begin{aligned}\overline{V}_h^*(s, b) &= \max_{\pi \in \Pi^D} \quad V_h^\pi(\tau_h) \\ \text{s.t.} \quad C_h^\pi(\tau_h) &\leq b\end{aligned}$$

Budget Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{V}_h^*(s, b) &= \max_{\pi \in \Pi^D} \quad V_h^\pi(\tau_h) \\ \text{s.t.} \quad C_h^\pi(\tau_h) &\leq b\end{aligned}$$



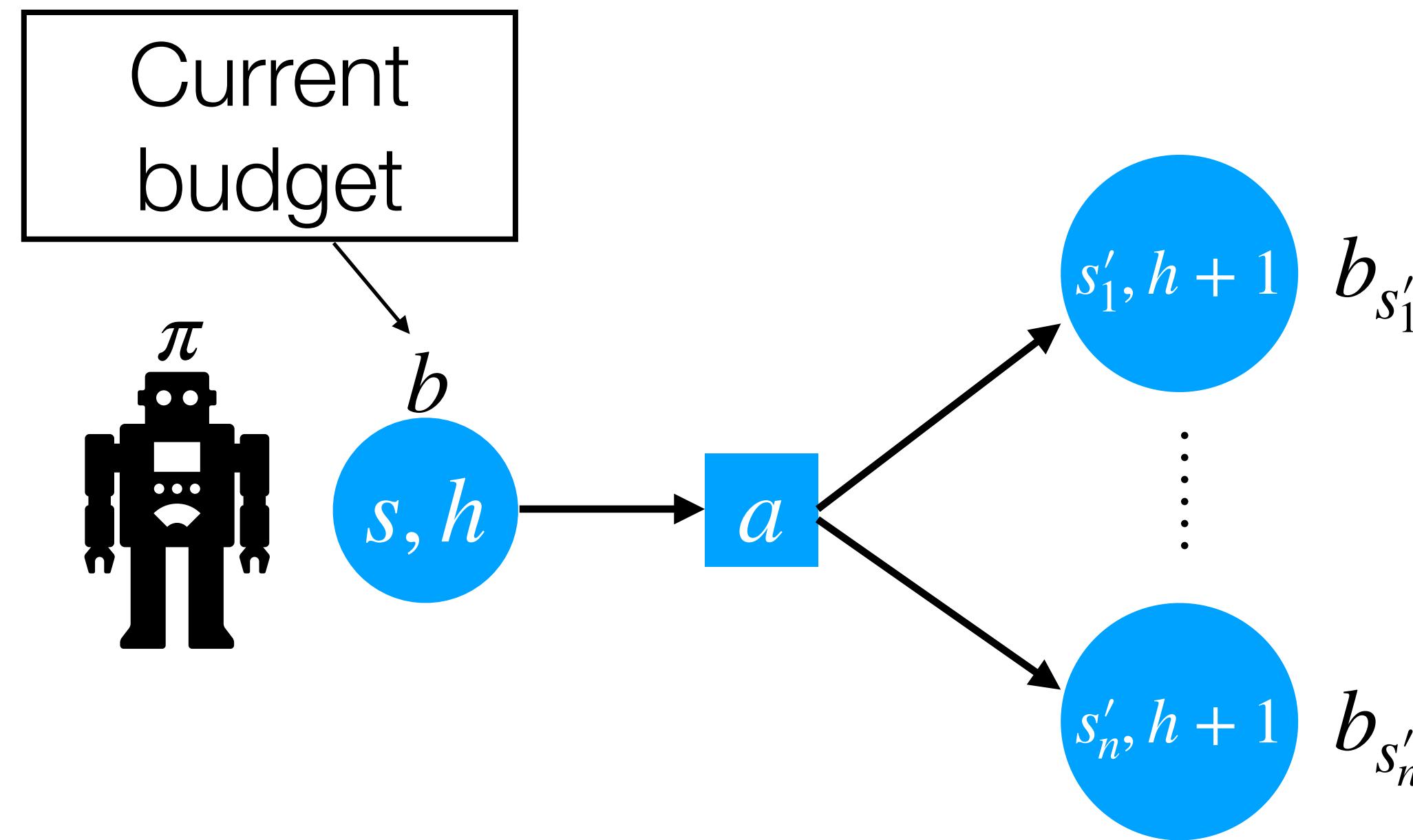
Primal = $\bar{V}_1^*(s_0, B)$

Budget Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{V}_h^*(s, b) = \max_{\pi \in \Pi^D} \quad & V_h^\pi(\tau_h) \\ \text{s.t.} \quad & C_h^\pi(\tau_h) \leq b\end{aligned}$$

Primal = $\bar{V}_1^*(s_0, B)$

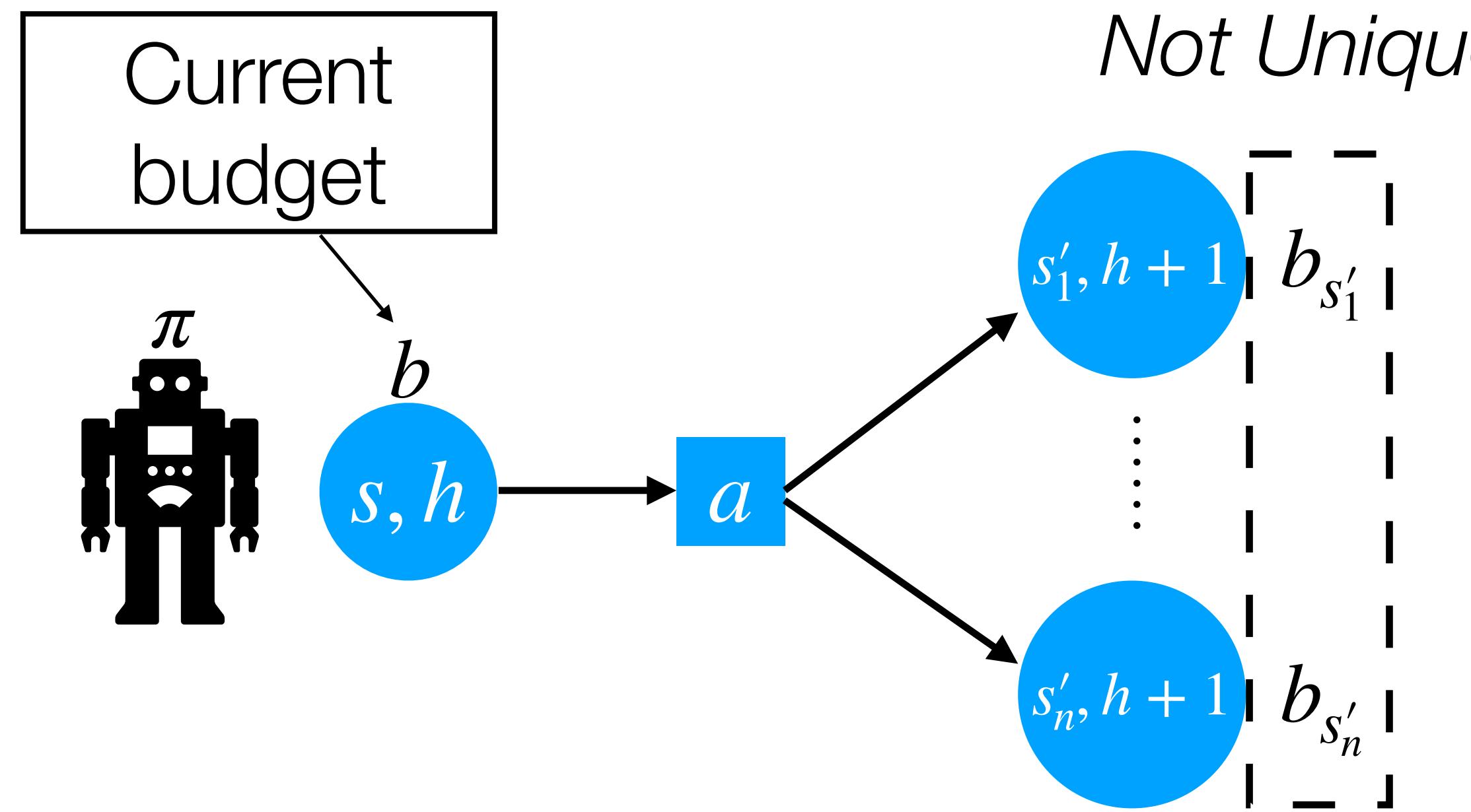


Budget Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{V}_h^*(s, b) = \max_{\pi \in \Pi^D} \quad & V_h^\pi(\tau_h) \\ \text{s.t.} \quad & C_h^\pi(\tau_h) \leq b\end{aligned}$$

Primal = $\bar{V}_1^*(s_0, B)$

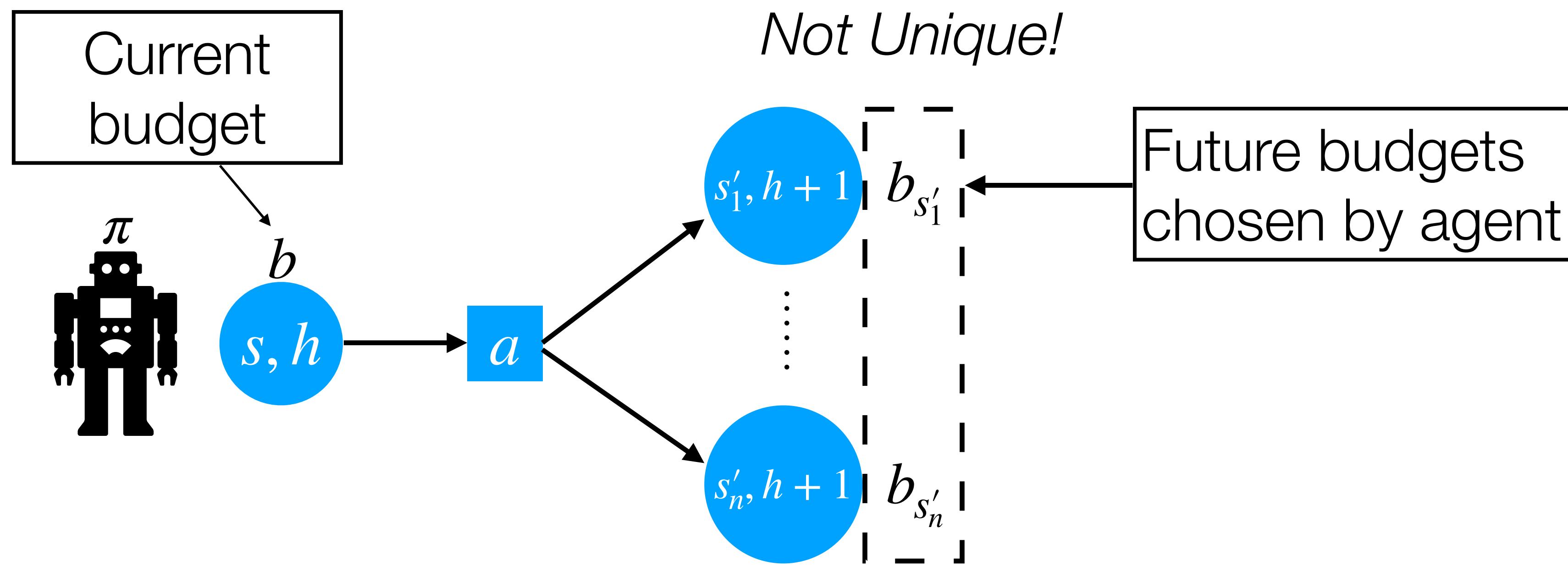


Budget Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{V}_h^*(s, b) = \max_{\pi \in \Pi^D} \quad & V_h^\pi(\tau_h) \\ \text{s.t.} \quad & C_h^\pi(\tau_h) \leq b\end{aligned}$$

Primal = $\bar{V}_1^*(s_0, B)$

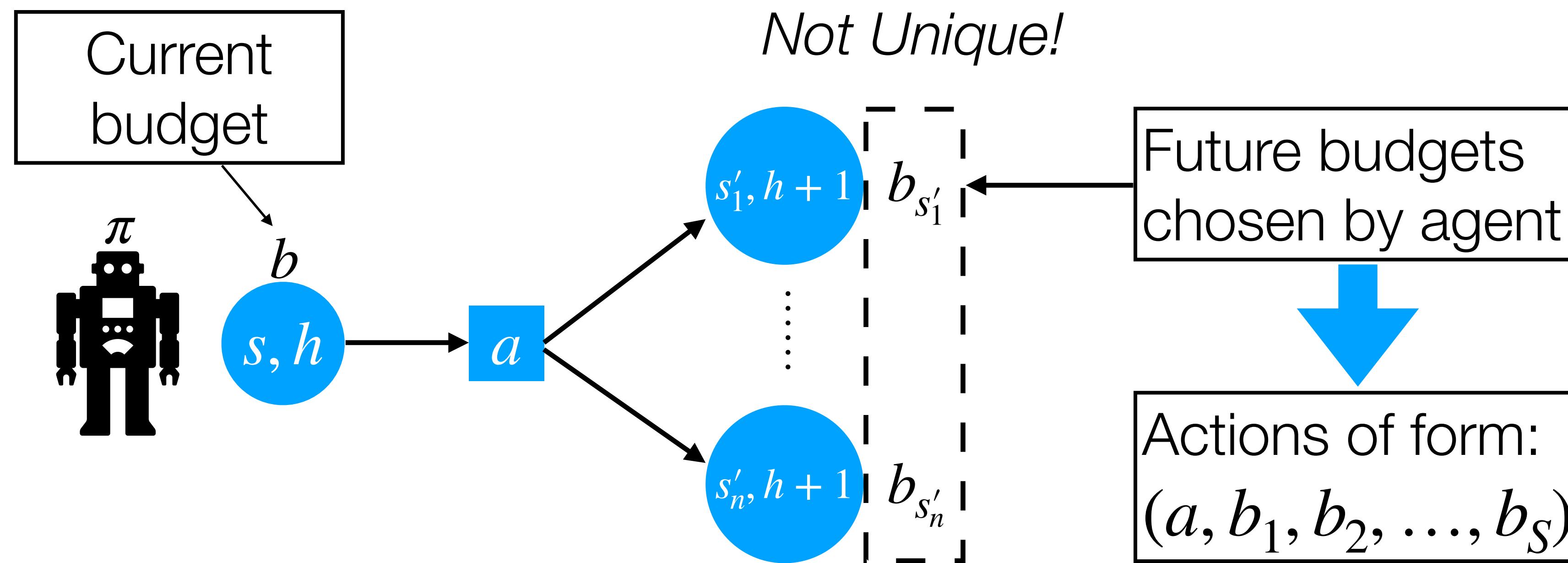


Budget Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{V}_h^*(s, b) = \max_{\pi \in \Pi^D} \quad & V_h^\pi(\tau_h) \\ \text{s.t.} \quad & C_h^\pi(\tau_h) \leq b\end{aligned}$$

Primal = $\bar{V}_1^*(s_0, B)$



Definition 1 (TSR). We call a cost criterion C *time-recursiive* (TR) if for any cMDP M and policy $\pi \in \Pi^D$, π 's cost decomposes recursively into $C_M^\pi = C_1^\pi(s_0)$. Here, $C_{H+1}^\pi(\cdot) = \mathbf{0}$ and for any $h \in [H]$ and $\tau_h \in \mathcal{H}_h$,

$$C_h^\pi(\tau_h) = c_h(s, a) + f \left(\left(P_h(s' \mid s, a), C_{h+1}^\pi(\tau_h, a, s') \right)_{s' \in P_h(s, a)} \right), \quad (\text{TR})$$

where $s = s_h(\tau_h)$, $a = \pi_h(\tau_h)$, and f is a non-decreasing function¹ computable in $O(S)$ time. For technical reasons, we also require that $f(x) = \infty$ whenever $\infty \in x$.

We further say C is *time-space-recursiive* (TSR) if the f term above is equal to $g_h^{\tau_h, a}(1)$. Here, $g_h^{\tau_h, a}(S+1) = 0$ and for any $t \leq S$,

$$g_h^{\tau_h, a}(t) = \alpha \left(\beta \left(P_h(t \mid s, a), C_{h+1}^\pi(\tau_h, a, t) \right), g_h^{\tau_h, a}(t+1) \right), \quad (\text{SR})$$

where α is a non-decreasing function, and both α, β are computable in $O(1)$ time. We also assume that $\alpha(\cdot, \infty) = \infty$, and β satisfies $\alpha(\beta(0, \cdot), x) = x$ to match f 's condition.

Generalization

Generalization

Recursive cost optimization suffices for our algorithm

Generalization

Recursive cost optimization suffices for our algorithm

Assumption [time-space recursive]: *the optimal cost is computable recursively over both **time** and state **space***

Generalization

Recursive cost optimization suffices for our algorithm

Assumption [time-space recursive]: *the optimal cost is computable recursively over both **time** and state **space***

**holds for expectation, almost sure, and anytime constraints*

Action Space

Action Space

Policy Evaluation Equation: $V_h^\pi(s) = r_h(s, a) + \sum_{s'} P_h(s' \mid s, a) V_{h+1}^\pi(s')$

Action Space

Policy Evaluation Equation: $V_h^\pi(s) = r_h(s, a) + \sum_{s'} P_h(s' | s, a) V_{h+1}^\pi(s')$

Guarantee demand by:

Action Space

Policy Evaluation Equation: $V_h^\pi(s) = r_h(s, a) + \sum_{s'} P_h(s' | s, a) V_{h+1}^\pi(s')$

Guarantee demand by:

1. $\forall i, V_{h+1}^\pi(s'_i) \geq v_{s'_i}$

Action Space

Policy Evaluation Equation: $V_h^\pi(s) = r_h(s, a) + \sum_{s'} P_h(s' | s, a) V_{h+1}^\pi(s')$

Guarantee demand by:

1. $\forall i, V_{h+1}^\pi(s'_i) \geq v_{s'_i}$
2. $r_h(s, a) + \sum_i P_h(s'_i | s, a) v_{s'_i} \geq v$

Action Space

Policy Evaluation Equation: $V_h^\pi(s) = r_h(s, a) + \sum_{s'} P_h(s' | s, a) V_{h+1}^\pi(s')$

Guarantee demand by:

$$1. \quad \forall i, V_{h+1}^\pi(s'_i) \geq v_{s'_i}$$

$$2. \quad r_h(s, a) + \sum_i P_h(s'_i | s, a) v_{s'_i} \geq v$$

$$\bar{\mathcal{A}}_h(s, v) := \left\{ (a, \mathbf{v}) \in \mathcal{A} \times \mathcal{V}^S \mid r_h(s, a) + \sum_{s'} P_h(s' | s, a) v_{s'} \geq v \right\}$$

Action-Space Dynamic Programming

Action-Space Dynamic Programming

$$\begin{aligned} \min_{\mathbf{v} \in \mathcal{V}^S} \quad & P_h(1 \mid s, a) \bar{C}_{h+1}^*(1, v_1) + \cdots + P_h(S \mid s, a) \bar{C}_{h+1}^*(S, v_S) \\ \text{s.t.} \quad & P_h(1 \mid s, a)v_1 + \cdots + P_h(S \mid s, a)v_S \geq v - r_h(s, a) \end{aligned}$$

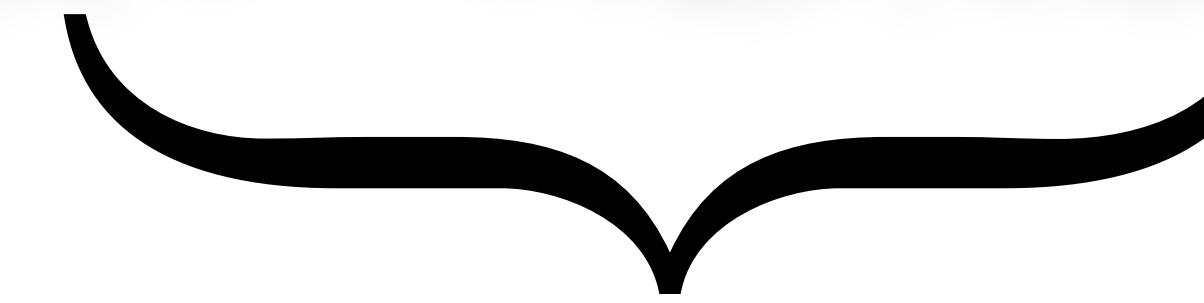
Action-Space Dynamic Programming

$$\begin{aligned} \min_{\mathbf{v} \in \mathcal{V}^S} \quad & P_h(1 \mid s, a) \bar{C}_{h+1}^*(1, v_1) + \dots + P_h(S \mid s, a) \bar{C}_{h+1}^*(S, v_S) \\ \text{s.t.} \quad & P_h(1 \mid s, a) v_1 + \dots + P_h(S \mid s, a) v_S \geq v - r_h(s, a) \end{aligned}$$

Action-Space Dynamic Programming

$$\min_{\mathbf{v} \in \mathcal{V}^S} \quad P_h(1 \mid s, a) \bar{C}_{h+1}^*(1, v_1) + \dots + P_h(S \mid s, a) \bar{C}_{h+1}^*(S, v_S)$$

$$\text{s.t.} \quad P_h(1 \mid s, a) v_1 + \dots + P_h(S \mid s, a) v_S \geq v - r_h(s, a)$$



Can choose each v_i independently if track the partial demand

Action-Space Dynamic Programming

$$\min_{\mathbf{v} \in \mathcal{V}^S} \quad P_h(1 \mid s, a) \bar{C}_{h+1}^*(1, v_1) + \dots + P_h(S \mid s, a) \bar{C}_{h+1}^*(S, v_S)$$

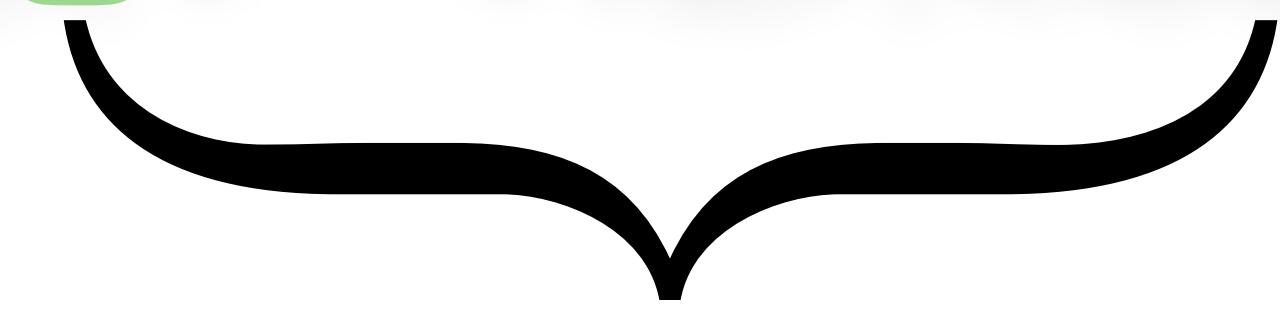
$$\text{s.t.} \quad P_h(1 \mid s, a) v_1 + \dots + P_h(S \mid s, a) v_S \geq v - r_h(s, a)$$

Can choose each v_i independently if track the partial demand

Action-Space Dynamic Programming

$$\min_{\mathbf{v} \in \mathcal{V}^S} \quad P_h(1 \mid s, a) \bar{C}_{h+1}^*(1, v_1) + \dots + P_h(S \mid s, a) \bar{C}_{h+1}^*(S, v_S)$$

$$\text{s.t.} \quad P_h(1 \mid s, a) v_1 + \dots + P_h(S \mid s, a) v_S \geq v - r_h(s, a)$$



Can choose each v_i independently if track the partial demand

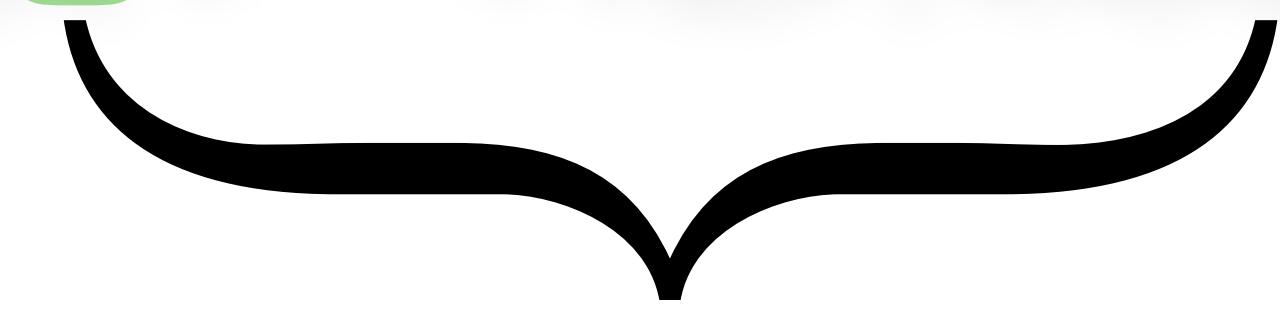
Space Recursion!

$$g(t, u) = \min_{v_t \in \mathcal{V}} P_h(t \mid s, a) C_{h+1}^*(t, v_t) + g(t + 1, u + P_h(t \mid s, a) v_t)$$

Action-Space Dynamic Programming

$$\min_{\mathbf{v} \in \mathcal{V}^S} \quad P_h(1 \mid s, a) \bar{C}_{h+1}^*(1, v_1) + \dots + P_h(S \mid s, a) \bar{C}_{h+1}^*(S, v_S)$$

$$\text{s.t.} \quad P_h(1 \mid s, a) v_1 + \dots + P_h(S \mid s, a) v_S \geq v - r_h(s, a)$$



Can choose each v_i independently if track the partial demand

Space Recursion!

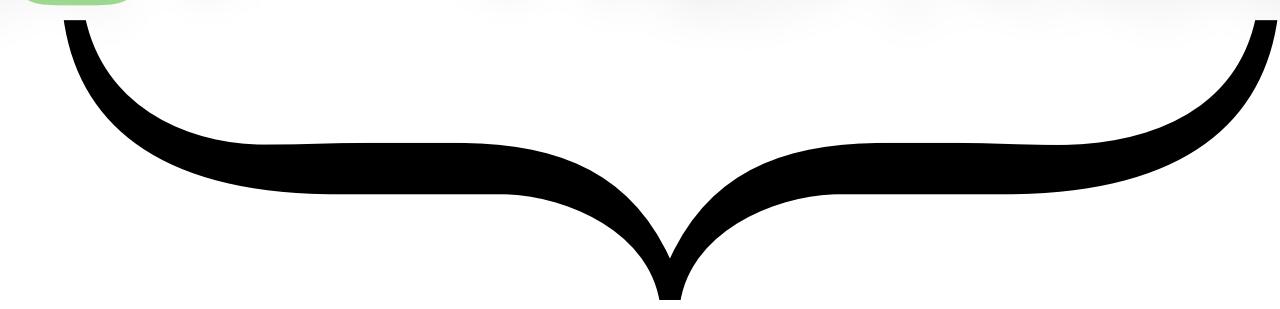
Partial demand

$$g(t, u) = \min_{v_t \in \mathcal{V}} P_h(t \mid s, a) C_{h+1}^*(t, v_t) + g(t + 1, u + P_h(t \mid s, a) v_t)$$

Action-Space Dynamic Programming

$$\min_{\mathbf{v} \in \mathcal{V}^S} \quad P_h(1 \mid s, a) \bar{C}_{h+1}^*(1, v_1) + \dots + P_h(S \mid s, a) \bar{C}_{h+1}^*(S, v_S)$$

$$\text{s.t.} \quad P_h(1 \mid s, a) v_1 + \dots + P_h(S \mid s, a) v_S \geq v - r_h(s, a)$$



Can choose each v_i independently if track the partial demand

Space Recursion!

Partial demand

$$g(t, u) = \min_{v_t \in \mathcal{V}} P_h(t \mid s, a) C_{h+1}^*(t, v_t) + g(t + 1, u + P_h(t \mid s, a) v_t)$$

Value check at end:

$$g(S + 1, u) := \chi_{\{u \geq v\}}$$

Why Deterministic Policies?

Why Deterministic Policies?

- Cheap [1]

Why Deterministic Policies?

- Cheap [1]
- Multi-agent coordination [2]

Why Deterministic Policies?

- Cheap [1]
- Multi-agent coordination [2]
- Trust-worthy [3]

Why Deterministic Policies?

- Cheap [1]
- Multi-agent coordination [2]
- Trust-worthy [3]

Why Deterministic Policies?

- Cheap [1]
- Multi-agent coordination [2]
- Trust-worthy [3]
- Predictable

Why Deterministic Policies?

- Cheap [1]
- Multi-agent coordination [2]
- Trust-worthy [3]
- Predictable

Why Deterministic Policies?

- Cheap [1]
- Multi-agent coordination [2]
- Trust-worthy [3]
 - Predictable
 - Optimal for modern constraints [4]

Value-Demand Augmentation

Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

Value-Demand Augmentation

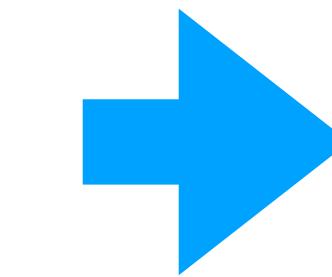
Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) &= \min_{\pi \in \Pi^D} \quad C_h^\pi(\tau_h) \\ \text{s.t.} \quad V_h^\pi(\tau_h) &\geq v\end{aligned}$$

Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$

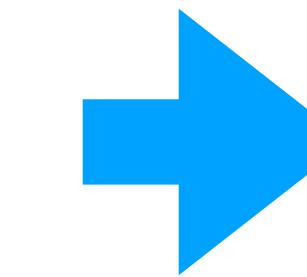


$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$

Value-Demand Augmentation

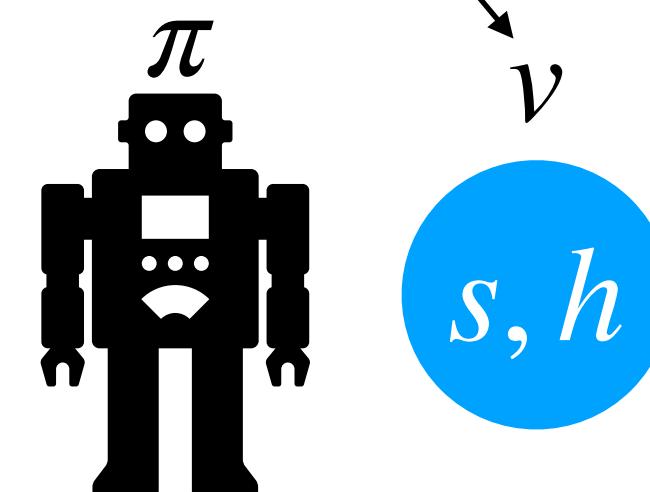
Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$

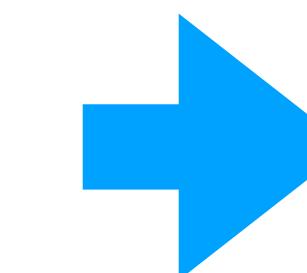
Future value
demand



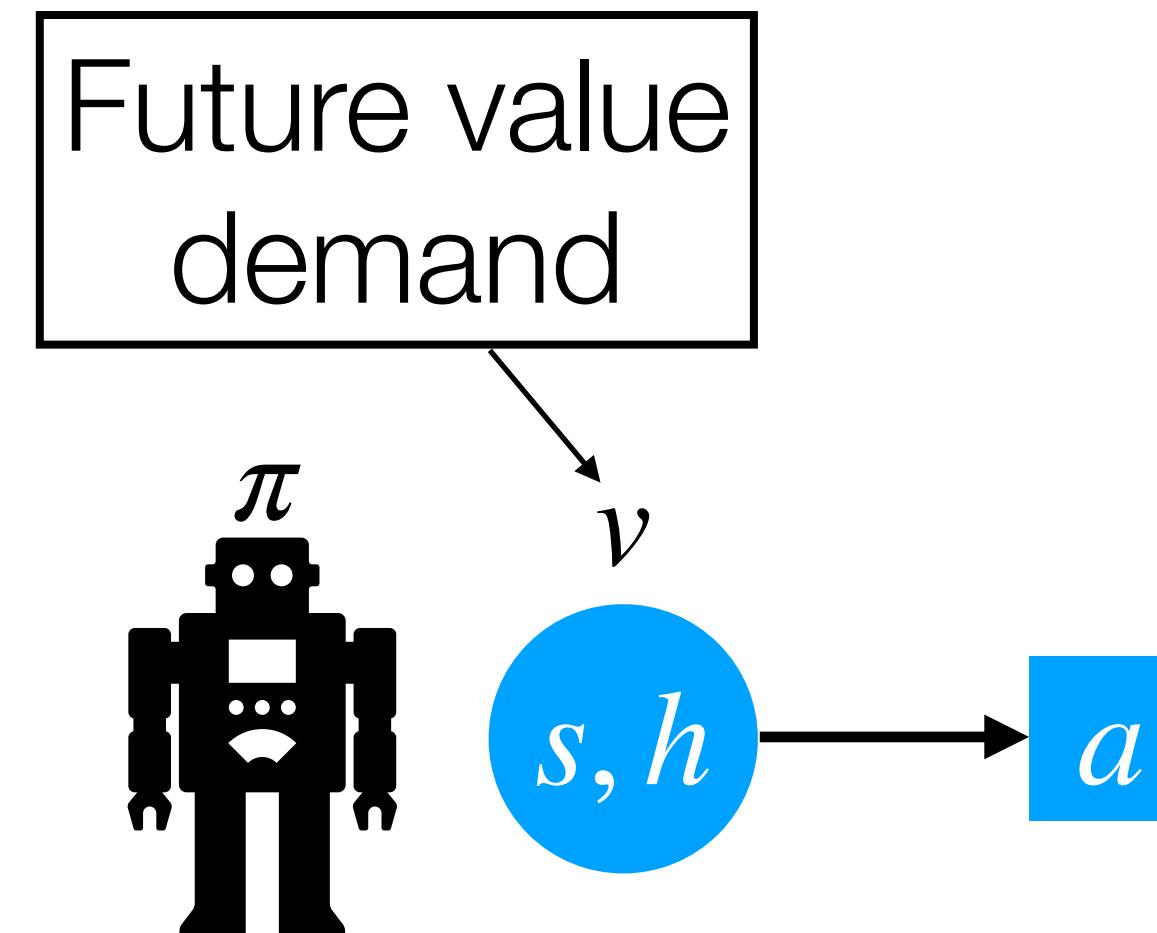
Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



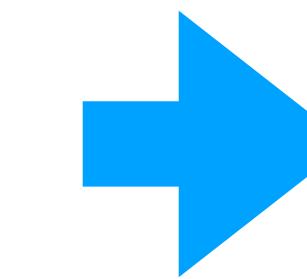
$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$



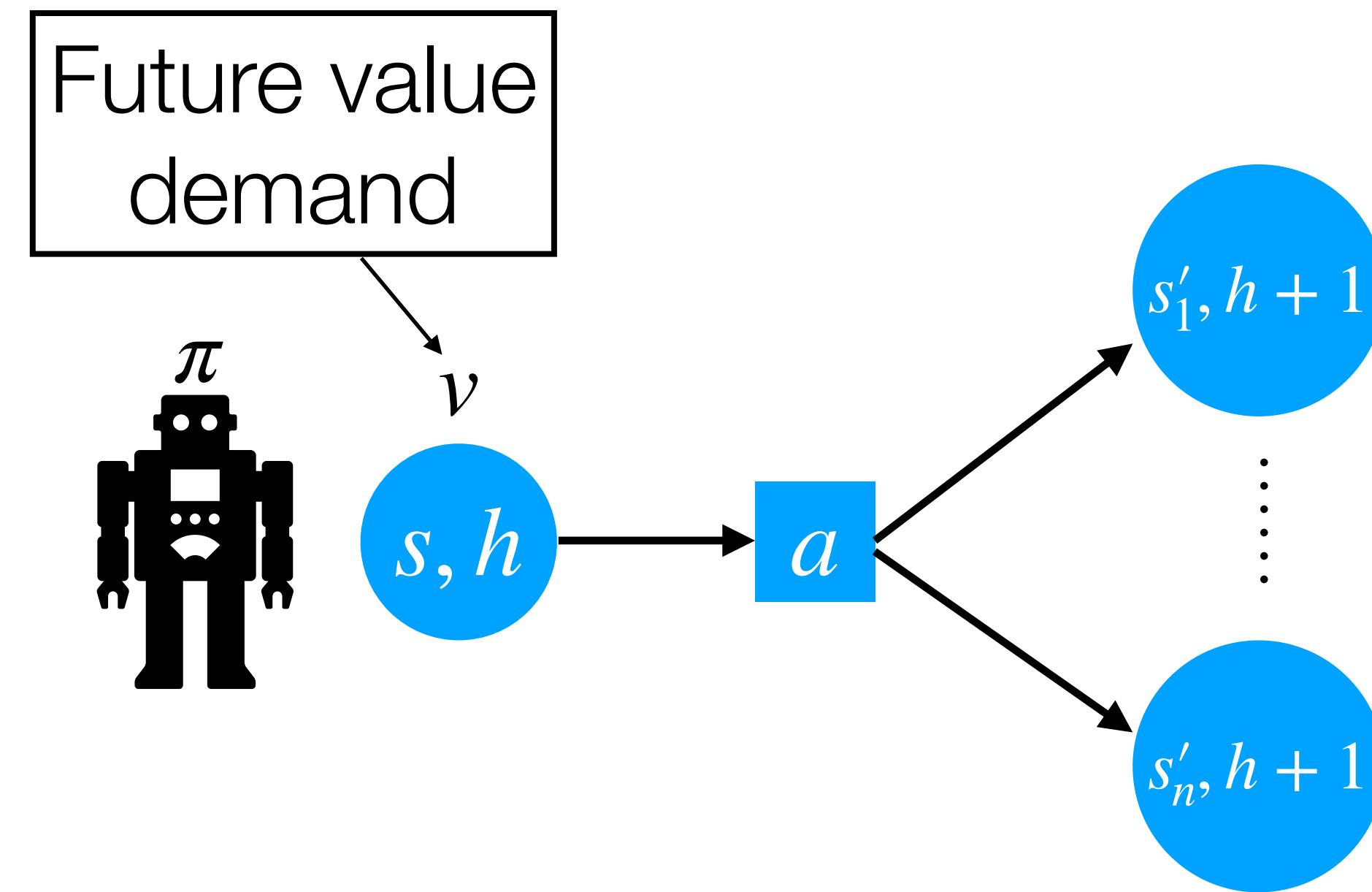
Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



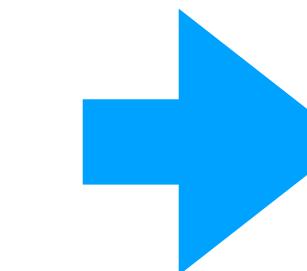
$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$



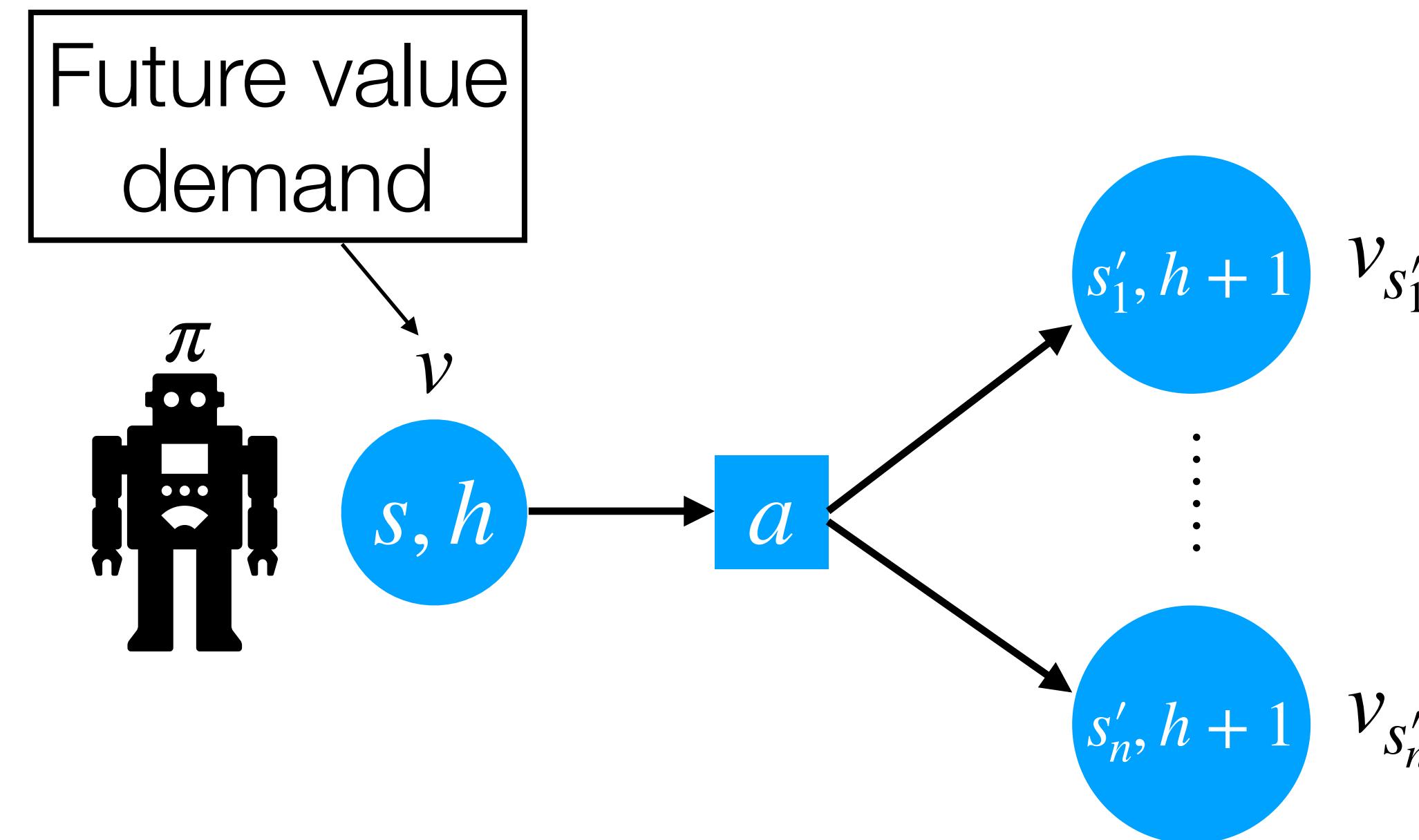
Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



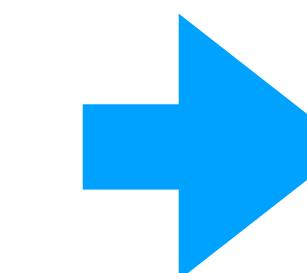
$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$



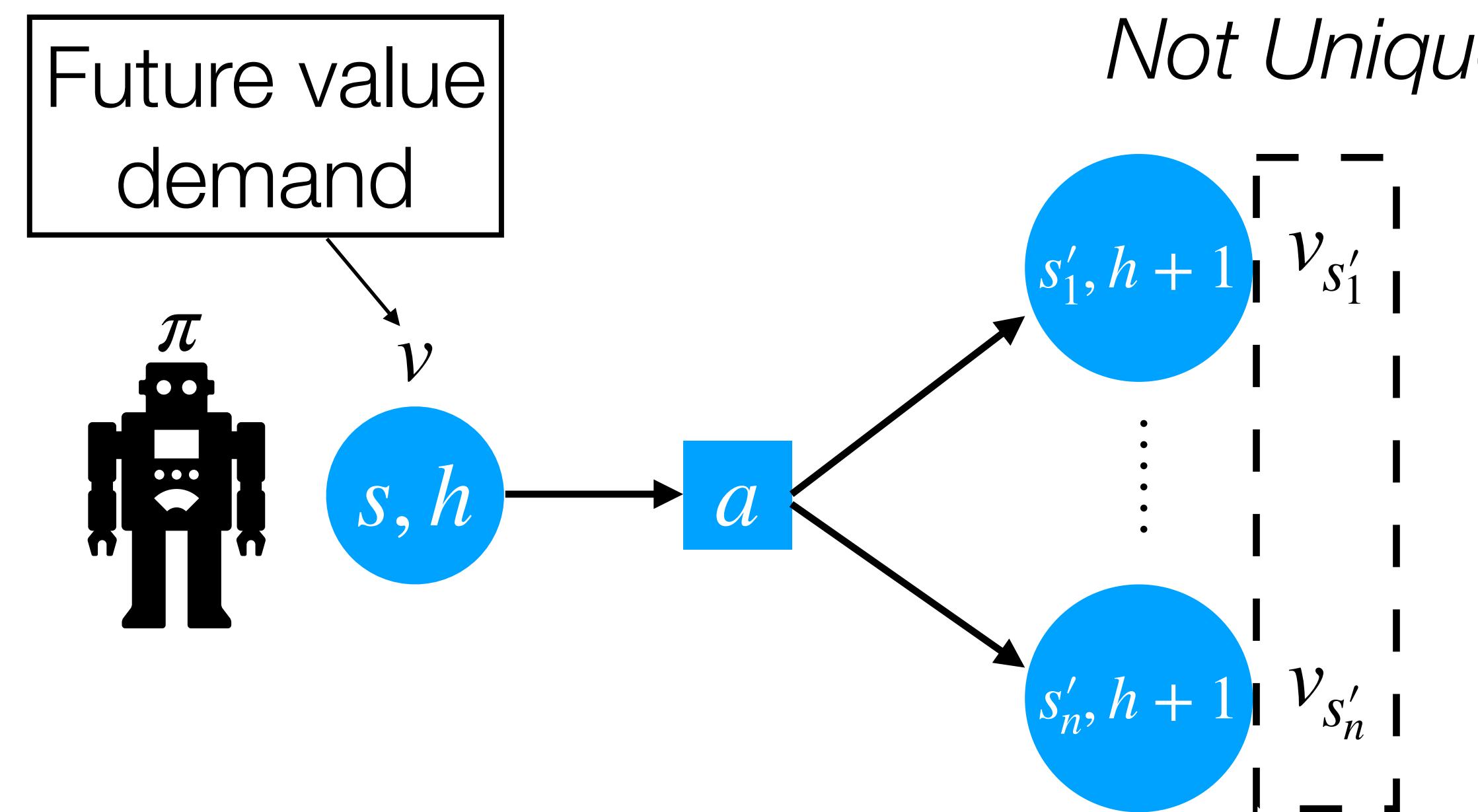
Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



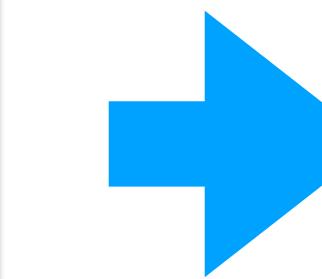
$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$



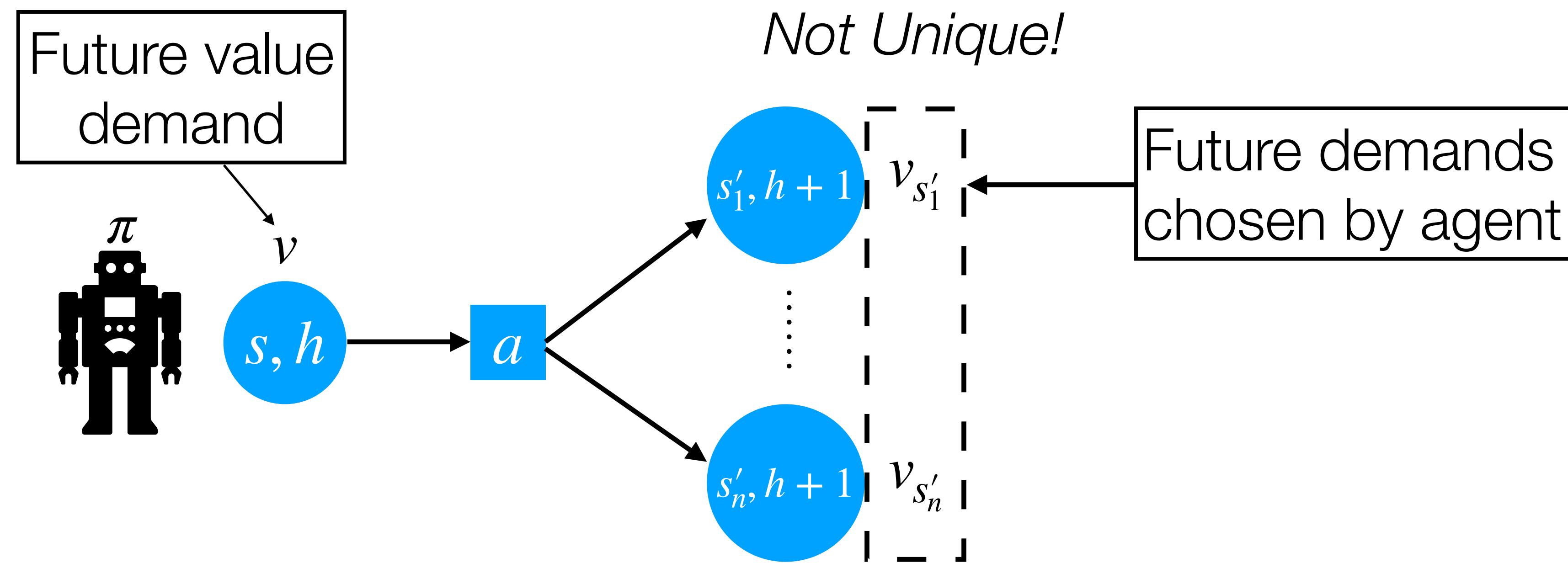
Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



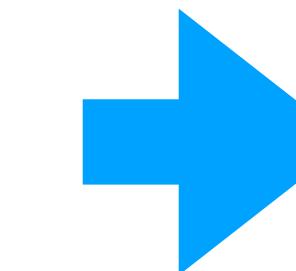
$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$



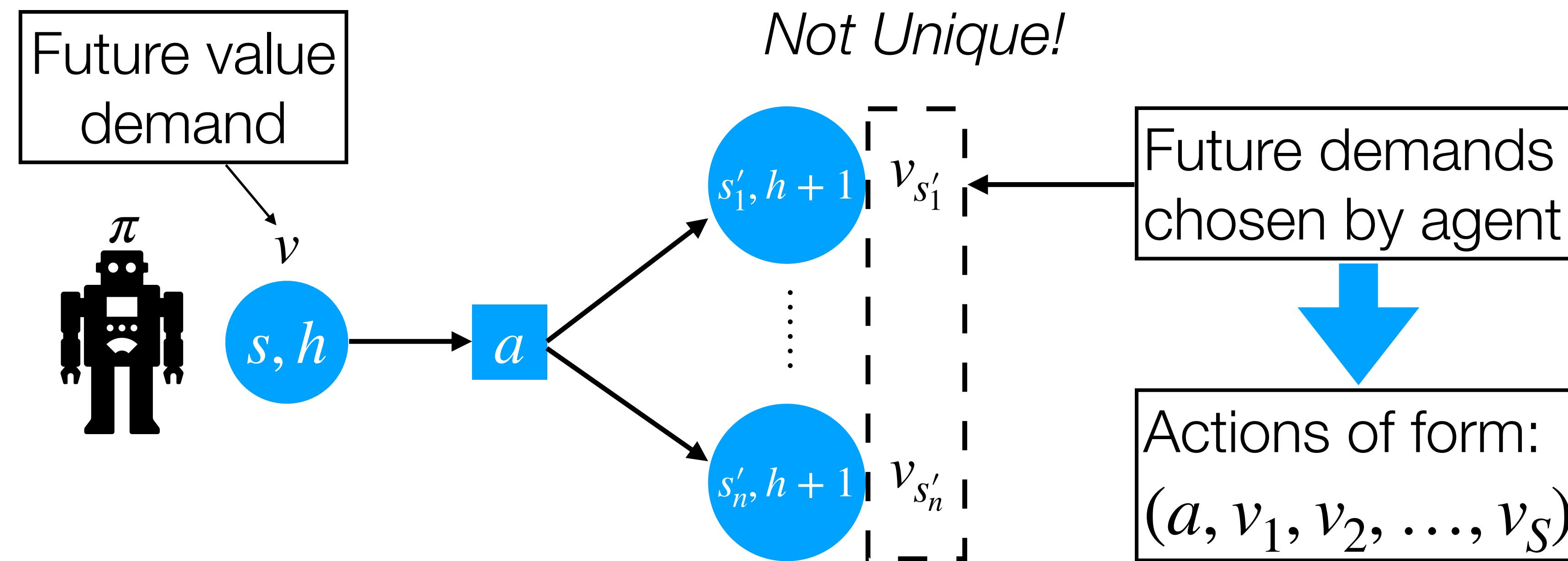
Value-Demand Augmentation

Intuition: Build \bar{M} satisfying,

$$\begin{aligned}\bar{C}_h^*(s, v) = \min_{\pi \in \Pi^D} \quad & C_h^\pi(\tau_h) \\ \text{s.t.} \quad & V_h^\pi(\tau_h) \geq v\end{aligned}$$



$$\text{Dual} = \bar{C}_1^*(s_0, V^*)$$



Constraint Landscape

Put the formulas in here

Constraint Landscape

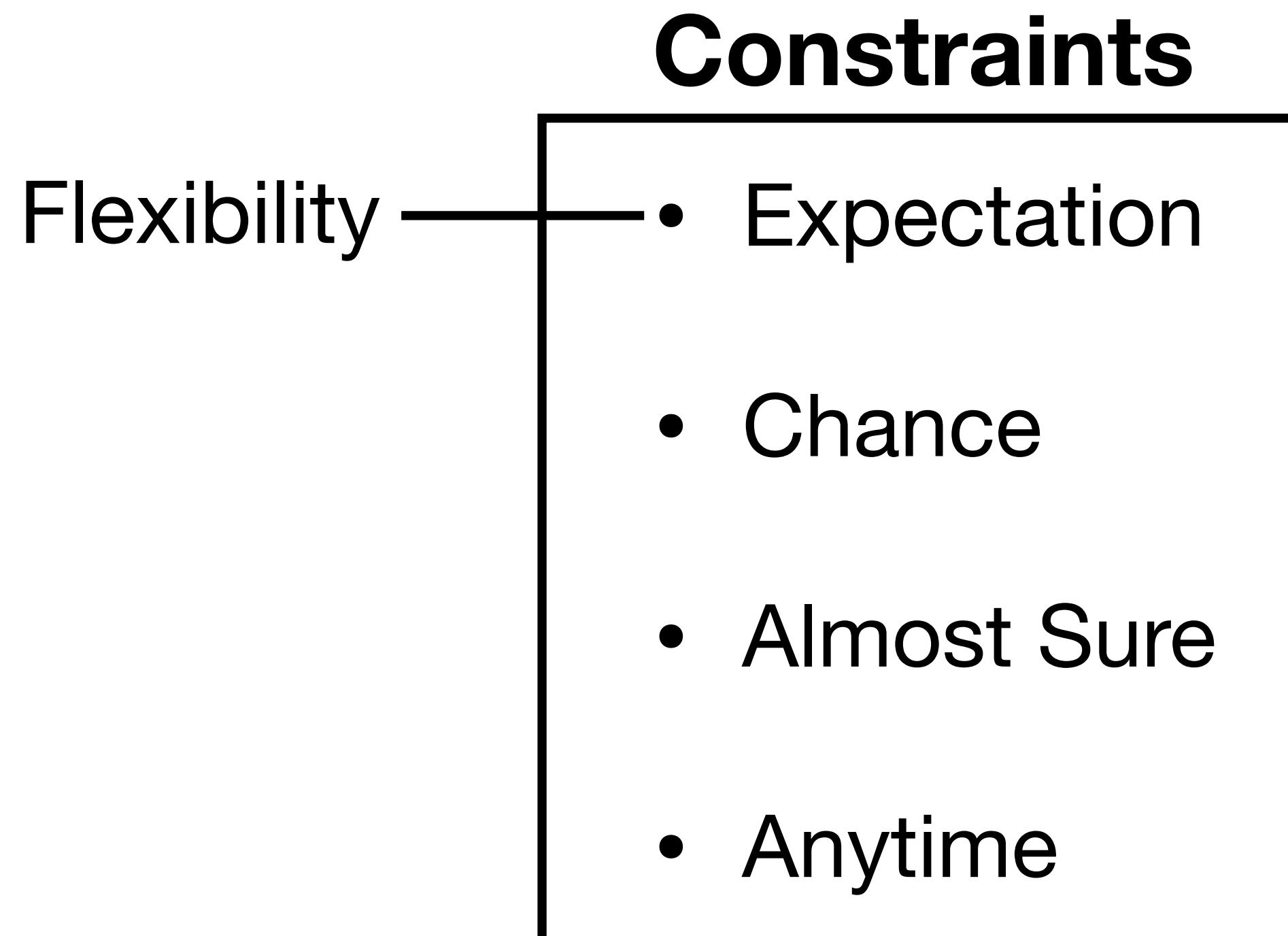
Put the formulas in here

Constraints

- Expectation
- Chance
- Almost Sure
- Anytime

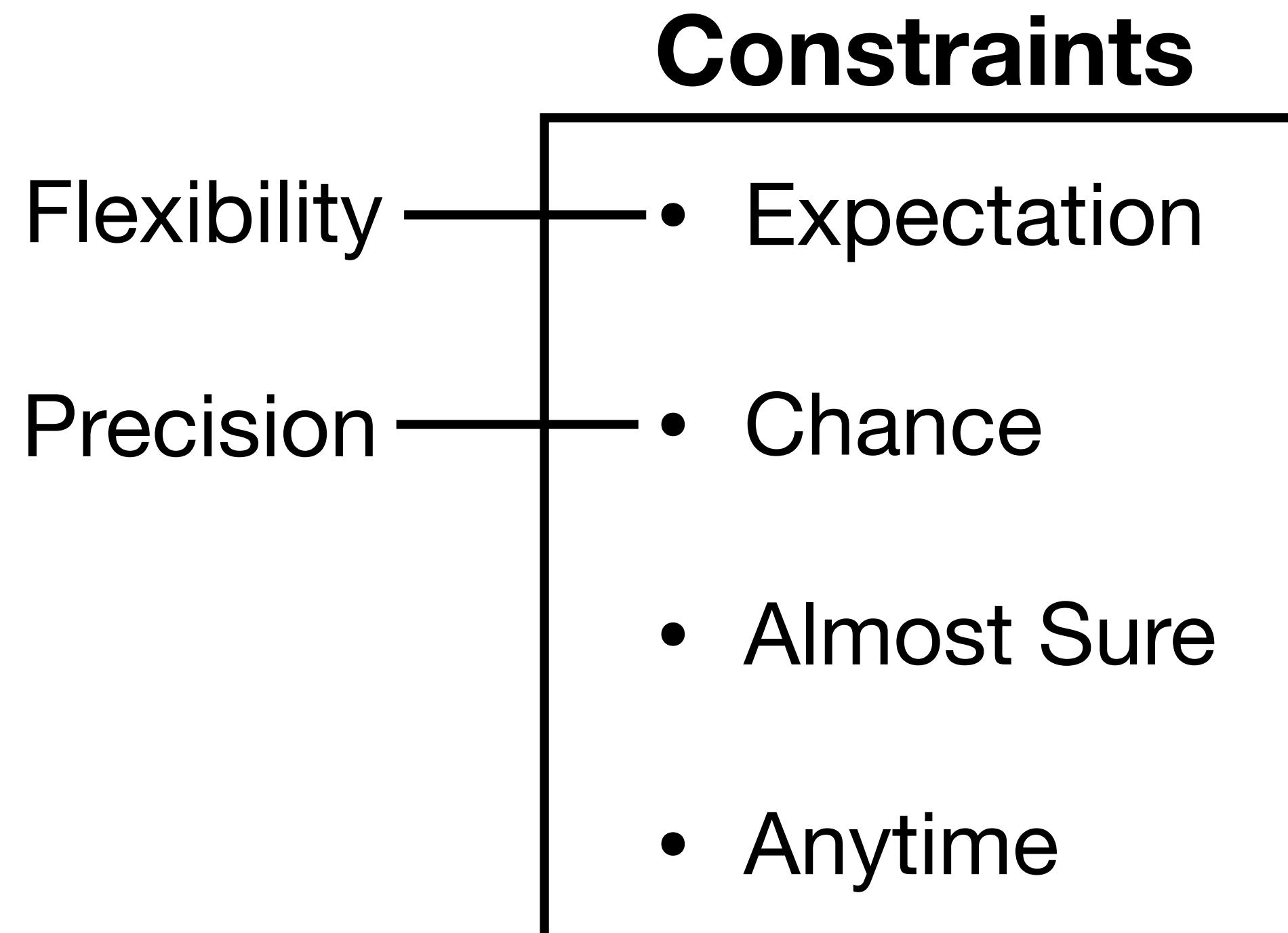
Constraint Landscape

Put the formulas in here



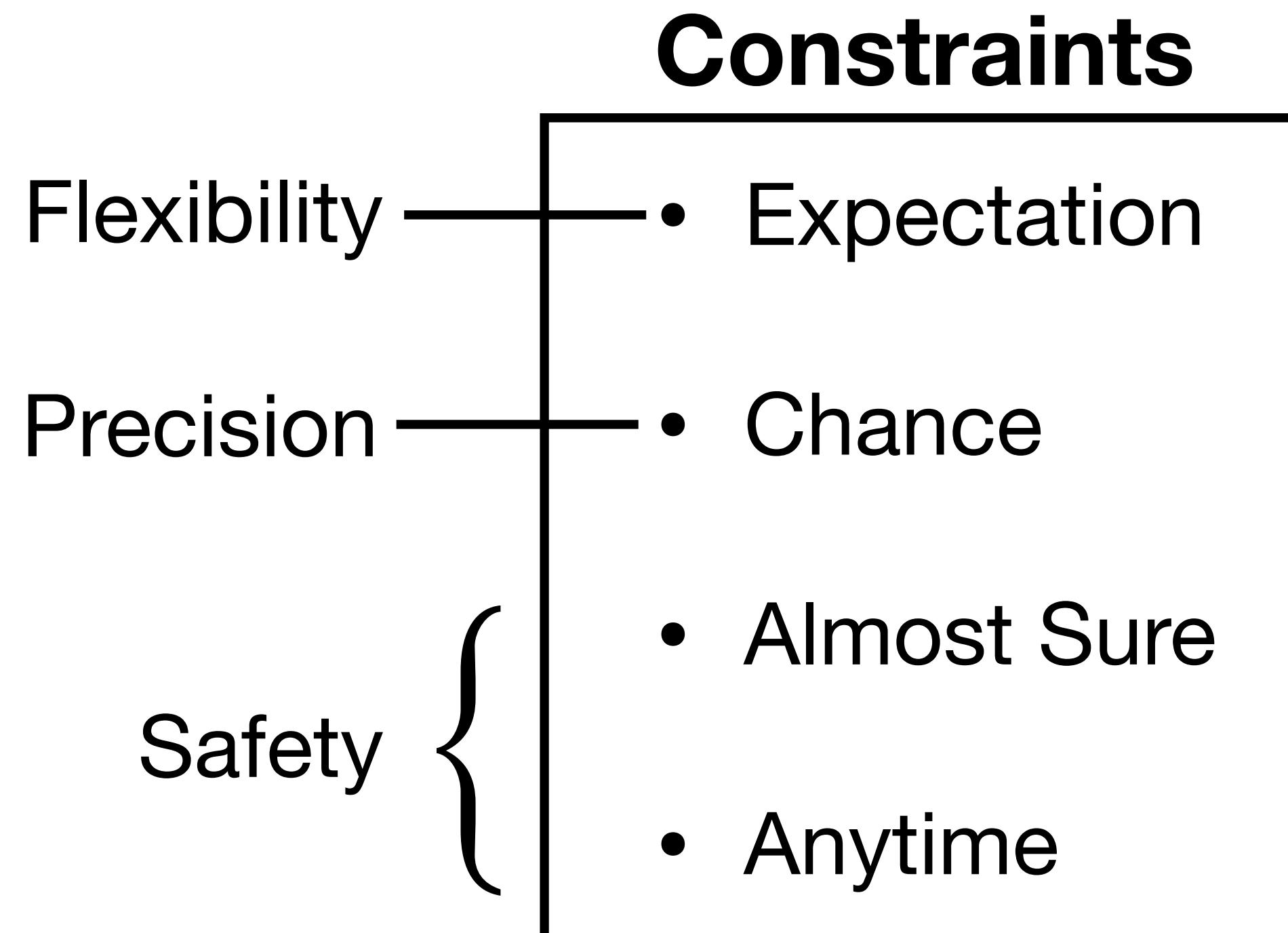
Constraint Landscape

Put the formulas in here



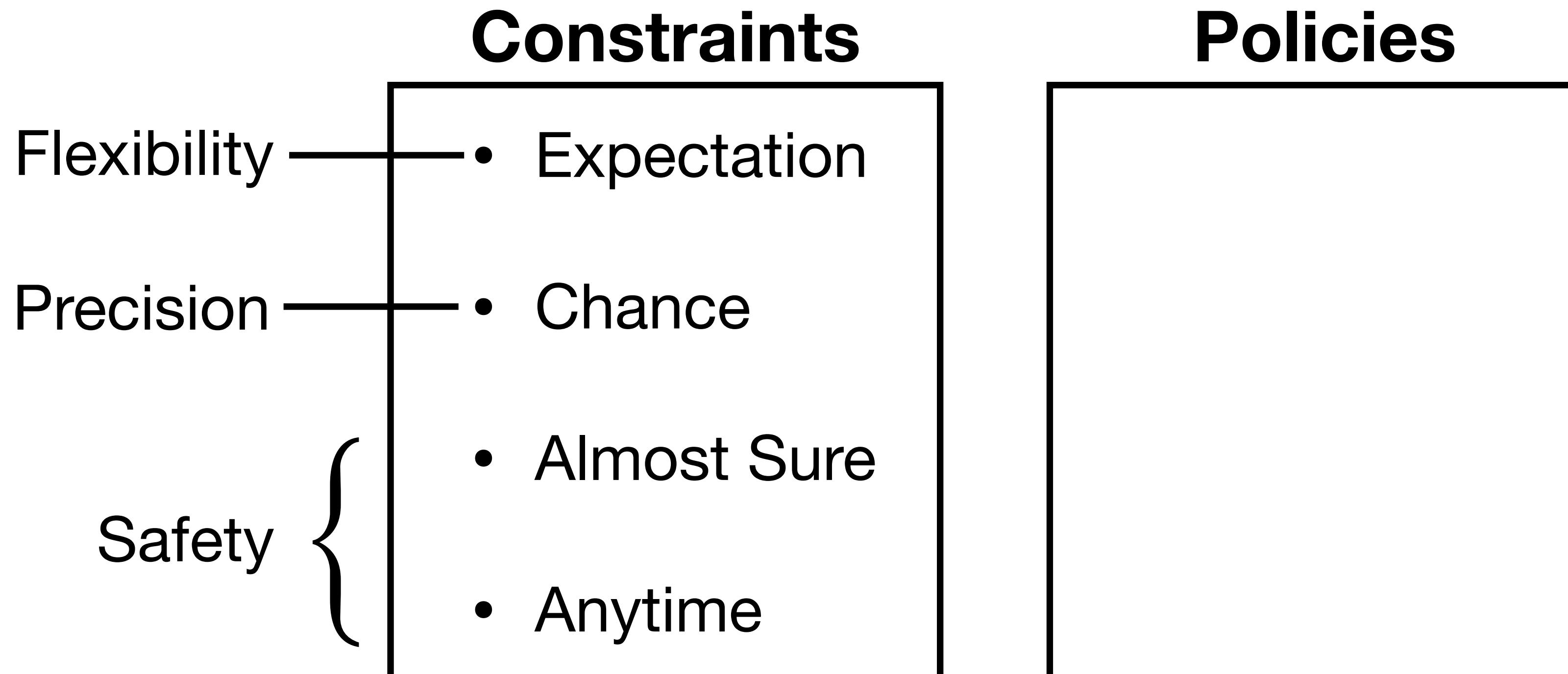
Constraint Landscape

Put the formulas in here



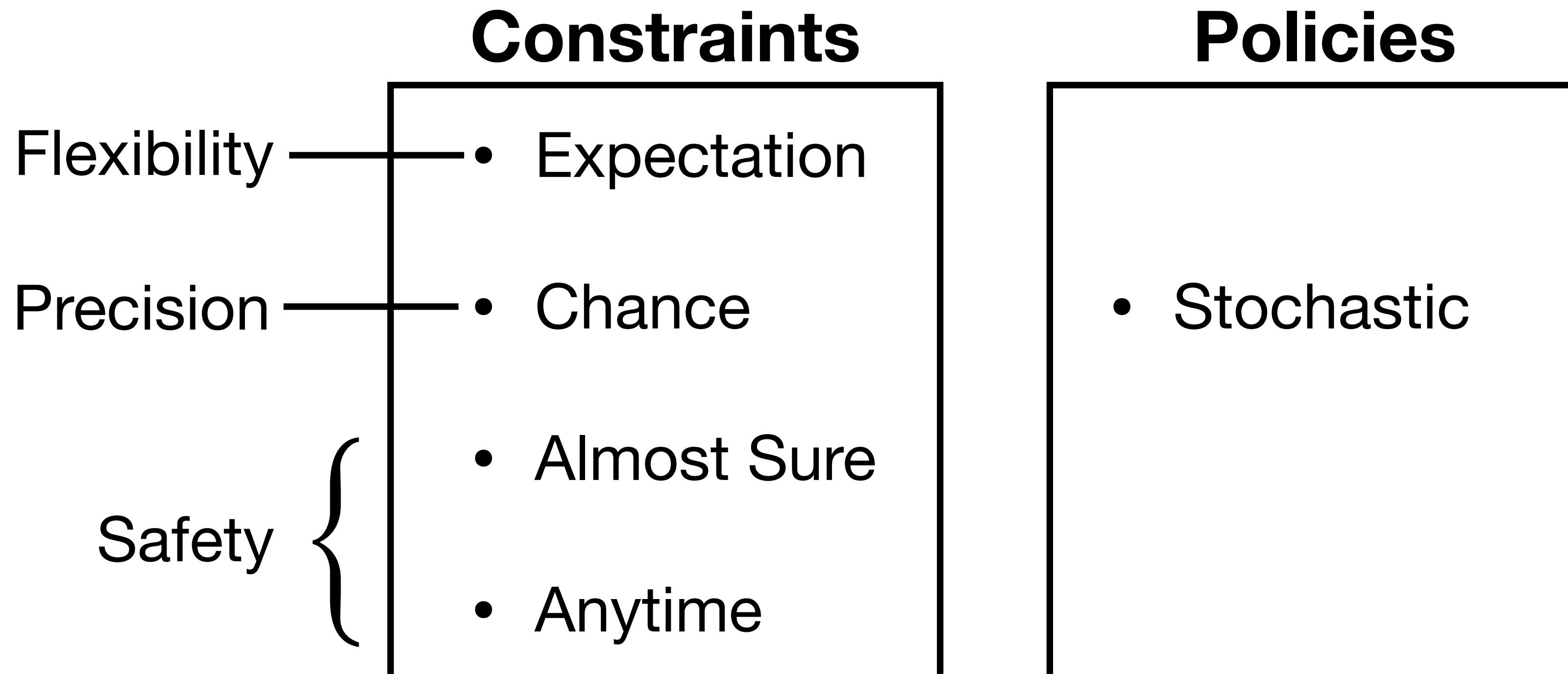
Constraint Landscape

Put the formulas in here



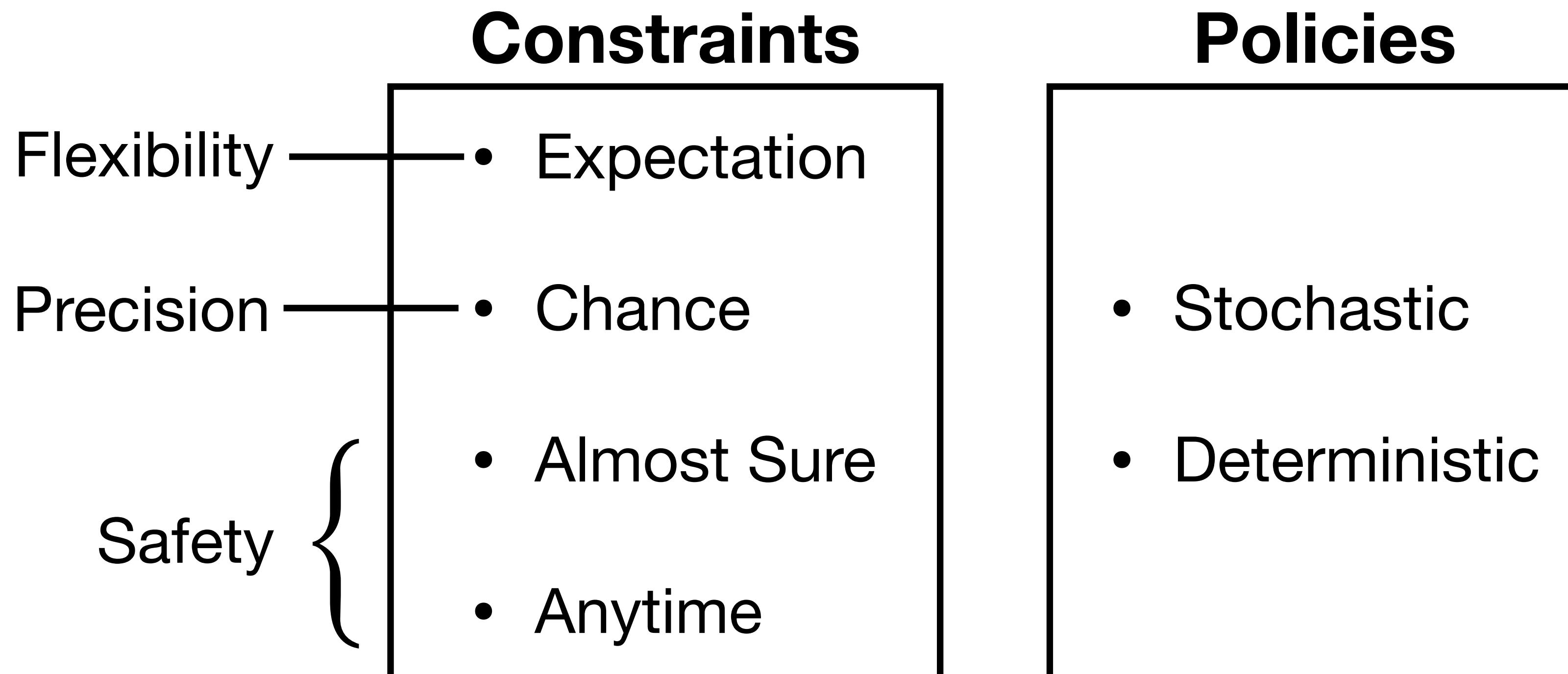
Constraint Landscape

Put the formulas in here



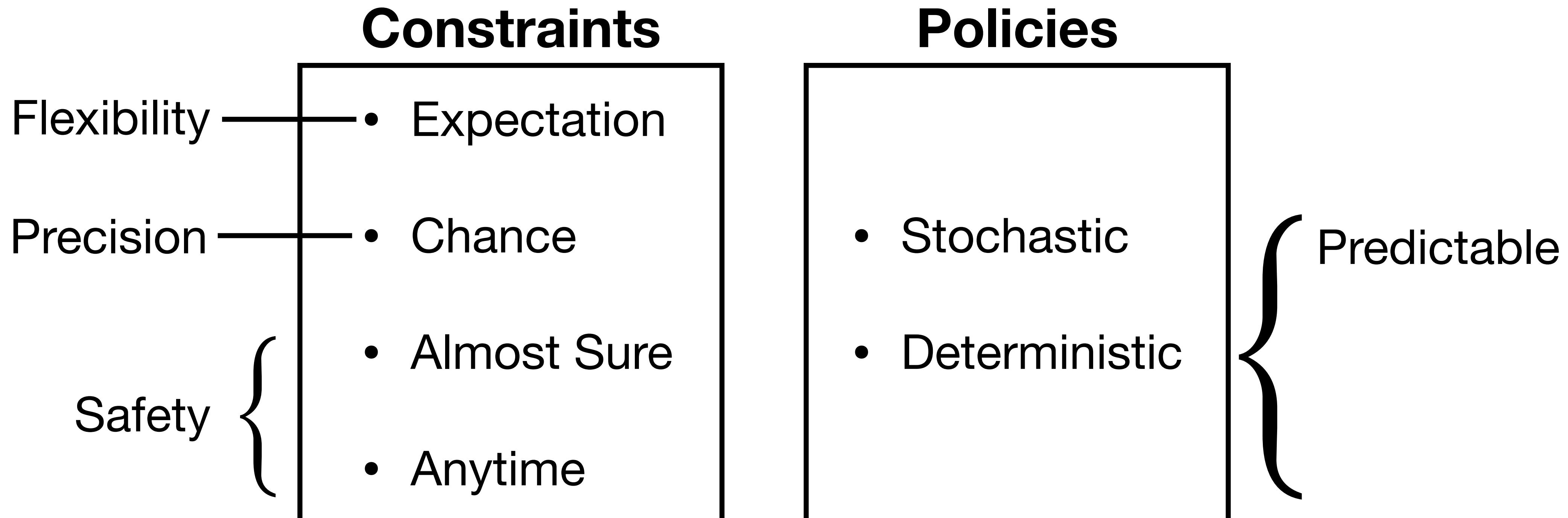
Constraint Landscape

Put the formulas in here



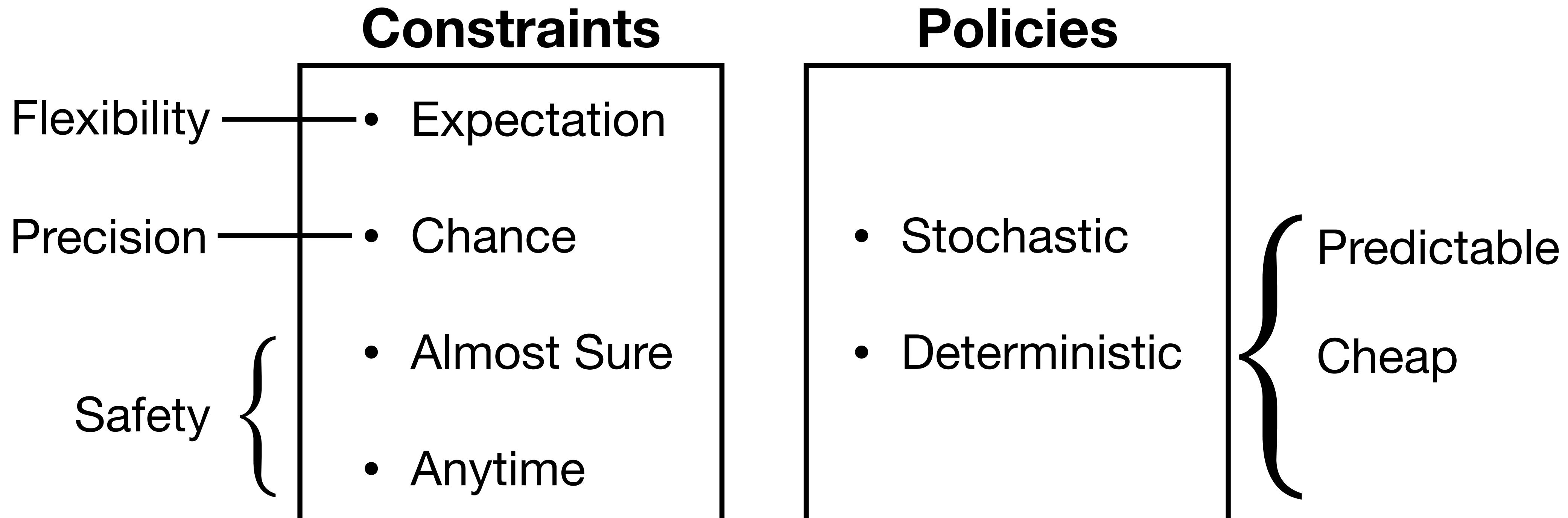
Constraint Landscape

Put the formulas in here



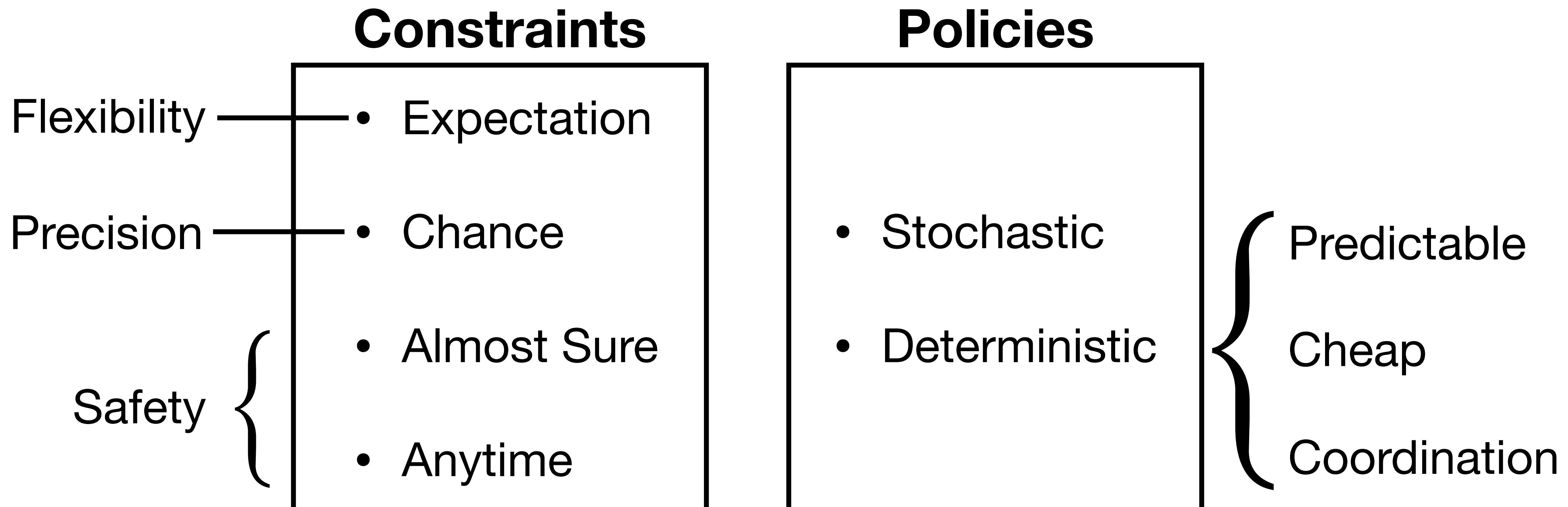
Constraint Landscape

Put the formulas in here



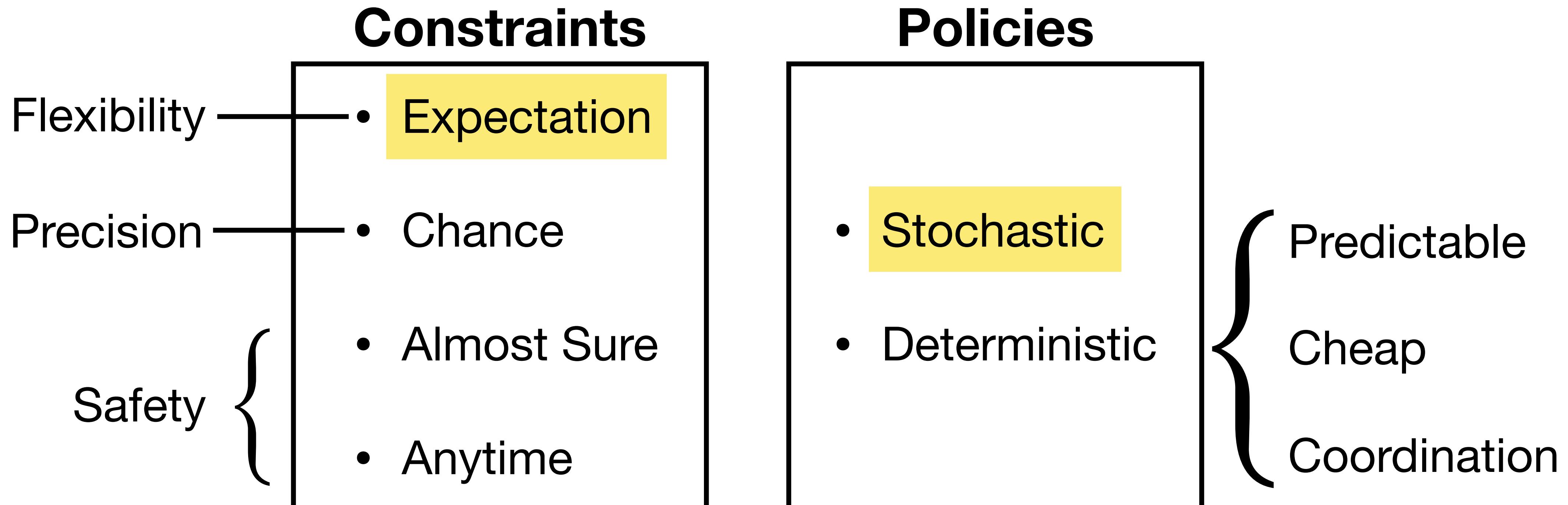
Constraint Landscape

Put the formulas in here



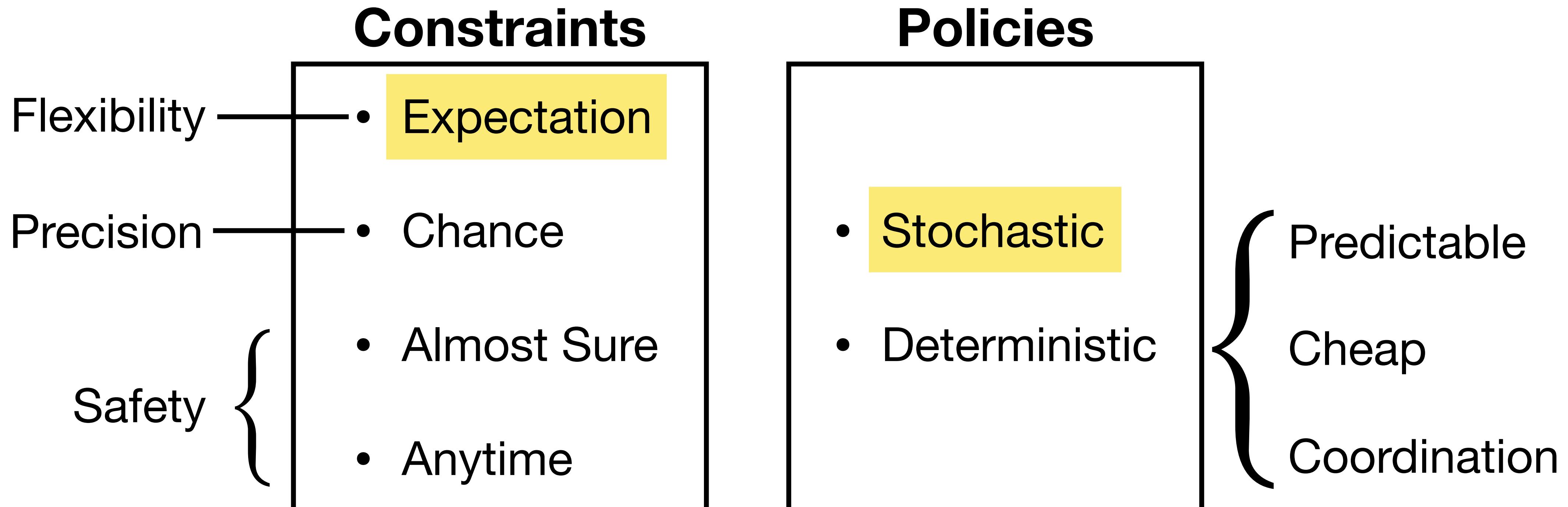
Constraint Landscape

Put the formulas in here



Constraint Landscape

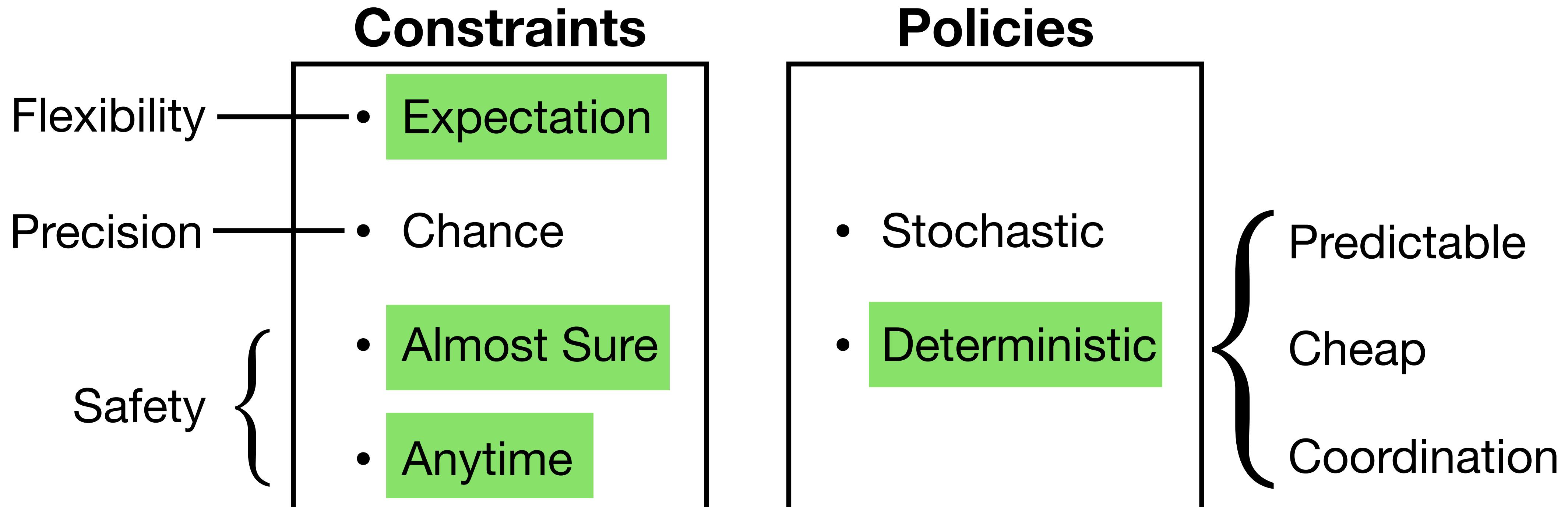
Put the formulas in here



Are any of the others ever **value-approximable**?

Constraint Landscape

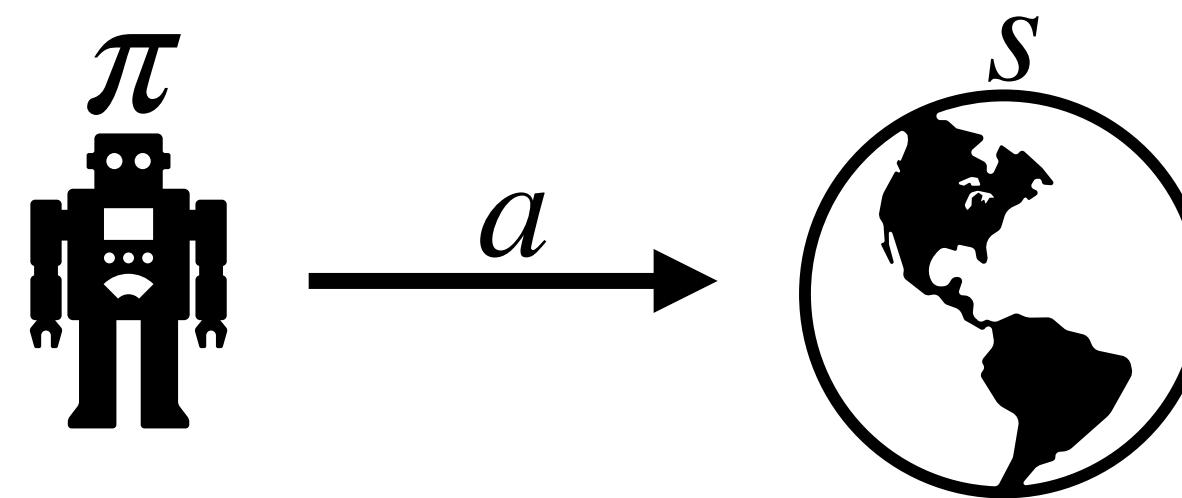
Put the formulas in here



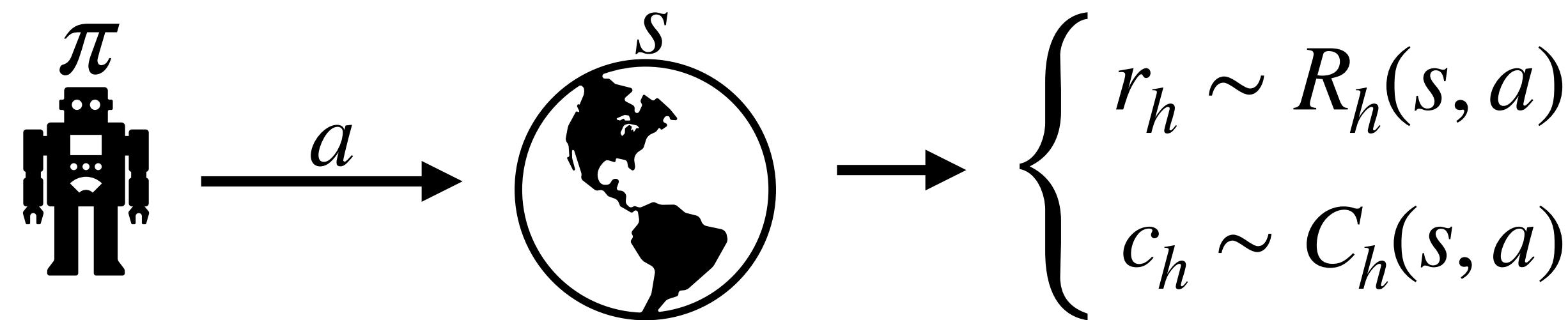
Are any of the others ever **value-approximable**?

General Formulation

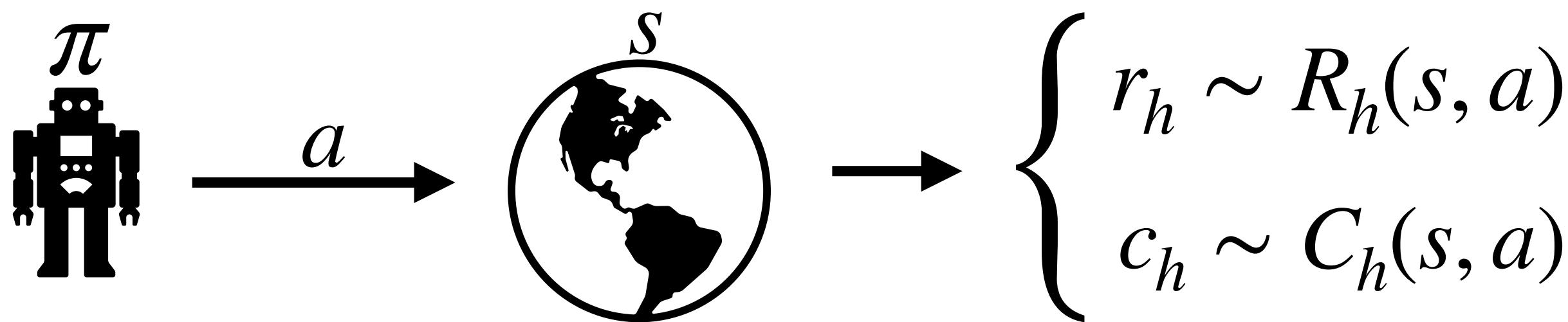
General Formulation



General Formulation



General Formulation



Agent's goal:

$$\begin{aligned} & \max_{\pi} V^{\pi} \\ \text{s.t. constraints on } & \sum_{h=1}^H c_h \end{aligned}$$