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Abstract

We continue the investigation of the spectral graph isomorphism problem (SGI). We intend to give
evidence that the problem is similar in complexity to GI. To this end, we focus on showing relationships
between SGI and its variations that mimic the structure of the relationships between GI and its variations.

1 Introduction

The spectral graph isomorphism problem (SGI) is an approximation version of the graph isomorphism
problem (GI) where the metric of closeness between the two graphs utilizes the Rayleigh quotients of the
Laplacian matrices of the graphs. In particular, we say that two simple weighted graphs, G and H, with

the same vertex set are α-spectrally isomorphic if ∃π ∈ Sn∀x ∈ Rn, 1
α ≤

xTLGx
xTLπ(H)x

≤ α (Here, we assume

for simplicity that 0
0 = 1). We note that if we replace α with 1 in the definition, we get exactly the graph

isomorphism problem, so it truly is a generalization of the problem. We wish to classify the complexity of
SGI. It is already known that SGI is in NP, and that the one-sided version of the problem, Graph Dominance
(GD), is NP-complete. In this paper, we wish to give evidence that SGI may be close to the complexity of
GI by demonstrating many properties of GI also hold for SGI. In particular, we show that reducibilities that
exist between GI and variations of GI also hold for SGI and the equivalent variations of SGI. Specifically, we
consider the prefix problem (PrefixSGI), coloring generalization (CSGI), and the non-trivial automorphism
problem (SGA) each of which is defined in the natural way from their non-spectral counterparts. The main
results are as follows:

Theorem 3.1.1. SGA ≤pT SGI

Theorem 3.3.1. PrefixSGI ∼=p
m SGI

Theorem 4.1.1. CSGI ∼=p
m SGI

2 Preliminaries

Let G = (V,E,w) be a weighted simple graph with non-negative weights (Note we can consider loopless
multi-graphs by letting the weight be the number of multi-edges between two nodes). We will refer to an
edge by (u, v) even though it is undirected. Also, we will commonly think of vectors as functions x : V → R
and denote the set of all such vectors RV . Without loss of generality, we will usually assume that V = [n].
Then,

xTLGx =
∑

(u,v)∈E

wG(u, v)(x(u)− x(v))2
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where

LG(u, v) =

{
−wG(u, v) if u 6= v

dG(u) if u = v

is the Laplacian matrix of G. We define the weighted degree of a vertex, u, by

dG(u) =
∑

(u,v)∈EG

wG(u, v)

We define the weighted maximum degree of G as ∆(G) = maxu∈VG dG(u). If S ⊆ VG, then we define the
vector

δS(u) =

{
1 if u ∈ S
0 if u 6∈ S

Lemma 2.1. δTuLGδu = dG(u)

Proof:

δTuLGδu =
∑

(v,w)∈EG

wG(v, w)(δu(v)− δu(w))2

=
∑

(v,w)∈EG

wG(v, w)(0− 0)2 +
∑

(u,v)∈EG

wG(u, v)(1− 0)2

=
∑

(u,v)∈EG

wG(u, v)

= dG(u)

�

Lemma 2.2. δTu,vLGδu,v = dG(u) + dG(v)− 2wG(u, v)

Proof:

δTu,vLGδu,v =
∑

(x,y)∈EG

wG(x, y)(δu,v(x)− δu,v(y))2

=
∑

(x,y)∈EG

wG(x, y)(0− 0)2 +
∑

(u,w)∈EG,w 6=v

wG(u,w)(1− 0)2 +
∑

(v,w)∈EG,w 6=u

wG(v, w)(1− 0)2

+ wG(u, v)(1− 1)2

=
∑

(u,w)∈EG,w 6=v

wG(u,w) +
∑

(v,w)∈EG,w 6=u

wG(v, w)

= dG(u) + dG(v)− 2wG(u, v)

Note, if (u, v) 6∈ EG, then wG(u, v) = 0 and the two sums in the second to last line are dG(u), dG(v)
respectively, so the claim still holds in this case. �

We will use these two lemmas constantly, so don’t directly refer to them by number. We also note that if G
is a connected graph, then any constant vector x(v) = c for all v ∈ VG, satisfies xTLGx = 0. We denote by
cH the graph H where each weight is multiplied by c. Note if G = cπ(H), then G ∼=c

s H. Also, we note that
if π shows G ∼=α

s H, then π(H) must have the same components as G. Formally, if a component of G and
π(H) have a vertex in common, then these components must have the exact same vertex sets. Consequently,
isolated vertices of H must be mapped to isolated vertices of G.
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3 PrefixSGI

This reduction will lead to the key elements for the remaining reductions, so we start with it. Suppose we
are given weighted simple graphs G and H, α ≥ 1, and a partial injective function ψ : VH → VG. We want
to know if G ∼=α

s H via a permutation π that preserves ψ. Intuitively, our approach is to add a gadget to

the graphs so that if π(i) 6= j, yet ψ(i) = j, then we can find a vector x so that xTLGx
xTLπ(H)x

> α. However, we

must also ensure that if π preserves ψ and G ∼=α
s H is shown by this π that we can define mappings for the

gadget nodes so that the graphs we construct are also α-spectrally isomorphic.

3.1 Single Mapping

First, let us consider just one mapping ψ(i) = j. If exactly one of dG(j), dH(i) is 0, then no spectral
isomorphism can exist preserving ψ as isolated vertices of H must be mapped to isolated vertices of G as
mentioned previously. Thus, we can just output two non-isomorphic graphs and α = 1 in this case. Note
since isolated vertices have no edges incident with them and so don’t affect the Rayleigh quotient, we can
always arbitrarily define mappings from the isolated vertices of H to those of G. In particular, if both
dG(j) = 0, dH(i) = 0, then we can always force π(i) = j, so we can assume for simplicity that no isolated
vertices are mapped by ψ. Now, assume dG(j), dH(i) > 0 and so ∆(H) > 0. We will add a new vertex, vj ,
to both G and H and add an edge (j, vj) to G and (i, vj) in H. We call these new graphs Gout and Hin

respectively to represent the fact that we want i, which is the input to ψ, to be mapped to j, which is the
output of ψ. We will now determine the weights that will be associated with both of these edges.

First, we discuss the restrictions that are induced from the implies direction. Namely, we suppose that
π preserves ψ and shows that G ∼=α

s H. We want to then show that Gout ∼=α
s H

in. If we define π(vj) = vj ,
we get (Note we will abuse notation and use x both for the n+ 1-dimensional vector that has a an entry for
vj and the n-dimensional vector that does not)

xTLGoutx

xTLπ(Hin)x
=

xTLGx+ wGout(j, vj)(x(j)− x(vj))
2

xTLπ(H)x+ wHin(i, vj)(x(π(i))− x(π(vj)))2

=
xTLGx+ wGout(j, vj)(x(j)− x(vj))

2

xTLπ(H)x+ wHin(i, vj)(x(j)− x(vj))2

≤
αxTLπ(H)x+ wGout(j, vj)(x(j)− x(vj))

2

xTLπ(H)x+ wHin(i, vj)(x(j)− x(vj))2

≤ α
xTLπ(H)x+ wHin(i, vj)(x(j)− x(vj))

2

xTLπ(H)x+ wHin(i, vj)(x(j)− x(vj))2
= α

Where the second inequality holds if wGout(j, vj) ≤ αwHin(i, vj). Also, we have

xTLGoutx

xTLπ(Hin)x
=

xTLGx+ wGout(j, vj)(x(j)− x(vj))
2

xTLπ(H)x+ wHin(i, vj)(x(j)− x(vj))2

≥
1
αx

TLπ(H)x+ wGout(j, vj)(x(j)− x(vj))
2

xTLπ(H)x+ wHin(i, vj)(x(j)− x(vj))2

≥ 1

α

xTLπ(H)x+ wHin(i, vj)(x(j)− x(vj))
2

xTLπ(H)x+ wHin(i, vj)(x(j)− x(vj))2
=

1

α

So, for the second inequality to hold we need wGout(j, vj) ≥ 1
αwHin(i, vj). Note if considered other

permutations than the identity on the gadgets, the restrictions just defined would be equivalent to the two
length one paths, (j, vj) and (i, vj), being α-spectrally isomorphic. Now, we will enforce wGout(j, vj) =
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αwHin(i, vj), which satisfies both inequalities above, and so we get that π shows Gout ∼=α
s H

in completing
the implies direction follows. Note we chose this restriction since we will want weights to be larger in Gout

so that we can more easily find an x satisfying
xTLGoutx

xTLπ(Hin)x
> α when π(i) 6= j.

Now, we will look at what we need for the other direction to hold. Namely, if π witnesses that Gout ∼=α
s

Hin, then we want to make sure our new weights guarantee that π(i) = j and the restriction of π on VH

shows G ∼=α
s H. In particular, we will choose the weights so that π(i) 6= j =⇒ ∃x, xTLGoutx

xTLπ(Hin)x
> α which

contradicts our assumption. Also, we will choose the weights so that π(vj) = vj . Let’s see why this is
sufficient.

First, by construction of Gout and Hin,

xTLGoutx

xTLπ(Hin)x
=

xTLGx+ wG(j, vj)(x(j)− x(vj))
2

xTLπ(H)x+ wH(i, vj)(x(π(i))− x(π(vj)))2

If π(i) = j and π(vj) = vj , we can rewrite this equality as:

xTLGoutx

xTLπ(Hin)x
=
xTLGx+ wG(j, vj)(x(j)− x(vj))

2

xTLπ(H)x+ wH(i, vj)(j)− x(vj)2

Now, consider any vector x ∈ Rn. We see if we extend x into an (n + 1)-dimensional vector by setting

x(vj) = x(j) that
xTLGoutx

xTLπ(Hin)x
= xTLGx

xTLπ(H)x
. Also, we know that ∀x ∈ Rn+1, 1

α ≤
xTLGoutx

xTLπ(Hin)x
≤ α. Thus, since

x ∈ Rn was arbitrary, we have ∀x ∈ Rn, 1
α ≤

xTLGx
xTLπ(H)x

≤ α.

There are two cases to consider to ensure π(i) = j,

• Suppose π(i) 6= j and π(vj) 6= j. Let us consider the ratio of Rayleigh quotients with respect to the
vector δj . We note that dGout(j) = dG(j) + wGout(j, vj) since (j, vj) is the only new edge incident to
j in Gout. Consequently, δTj LGoutδj = dGout(j) = dG(j) + wGout(j, vj) > wGout(j, vj) since dG(j) >

0. Now, since π(π−1(j)) = j, j in π(Hin) corresponds to π−1(j) in Hin. In particular, we have
dπ(Hin)(j) = dHin(π−1(j)). Also, since the only edge in Hin that is not in H is incident to i and
vj , and π−1(j) 6∈ {i, vj} by assumption, we know dπ(Hin)(j) = dHin(π−1(j)) = dH(π−1(j)) ≤ ∆(H).

Thus, δTj Lπ(Hin)δj = dπ(Hin)(j) ≤ ∆(H). Consequently,

δTj LGoutδj

δTj Lπ(Hin)δj
=

dGout(j)

dπ(Hin)(j)
=
dG(j) + wGout(j, vj)

dH(π−1(j))
≥ dG(j) + wGout(j, vj)

∆(H)
>
wGout(j, vj)

∆(H)

Hence, to enforce the ratio of Rayleigh quotients is greater than α, it suffices that wGout(j, vj) ≥ α∆(H).

• Next, let’s consider the case where π(vj) = j. In this case, we again consider the vector δj . As before,
δTj LGoutδj = dGout(j) = dG(j) + wGout(j, vj) > wGout(j, vj). Also, π(vj) = j =⇒ π−1(j) = vj , so

δTj Lπ(Hin)δj = dπ(Hin)(j) = dHin(vj) = wHin(i, vj) being that (i, vj) is the only edge incident to vj in

Hin by definition. Hence,

δTj LGoutδj

δTj Lπ(Hin)δj
=

dGout(j)

dπ(Hin)(j)
=
dG(j) + wGout(j, vj)

wHin(i, vj)
>
wGout(j, vj)

wHin(i, vj)
=
αwHin(i, vj)

wHin(i, vj)
= α

where we used the fact that we forced wGout(j, vj) = αwHin(i, vj). Hence, no further restrictions on
the weights arise from this case.

Lastly, we will want π(i) = j implies π(vj) = vj as well. Since π is a bijection, we know π(vj) 6= j.
So, suppose π(vj) = k. We will consider the vector δvj . Since (j, vj) is the only edge incident to vj in
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Gout by definition, we know δTvjLGoutδvj = dGout(vj) = wGout(j, vj). Also, π(vj) = k =⇒ π−1(vj) = k, so

δTvjLπ(Hin)δvj = dπ(Hin)(vj) = dH(k). Consequently,

δTvjLGoutδvj

δTvjLπ(Hin)δvj
=

dGout(vj)

dπ(Hin)(vj)
=
wGout(j, vj)

dH(k)
≥ wGout(j, vj)

∆(H)

Hence, to guarantee the ratio of Rayleigh quotients is strictly greater than α, it suffices that wGout(j, vj) >
α∆(H).

Thus, choosing wGout(j, vj) = 2α∆(H), we get strict inequalities in each case. Consequently, we see that
π(i) = j and π(vj) = vj otherwise our assumption that π demonstrates that Gout ∼=α

s H
in is contradicted.

Then, as before, we have π shows G ∼=α
s H and π(i) = j. This completes the reduction for the single mapping

case and its proof.

Theorem 3.1.1. SGA ≤pT SGI

3.2 Technical Lemmas

The remaining reductions will use similar structure to the one above, so we shall state the corresponding
technical lemmas here. Specifically, for the implies direction of the reductions, we will use the following
lemma. Intuitively, this lemma says that if we look at the union of two graphs with no edges in common,
then the α-spectrally isomorphic relation will be preserved. For example, in the previous argument for the
implies direction of the one mapping case of PrefixSGI, we had that G′ was the edge-less graph in addition
to the edge (j, vj) and H ′ was the edge-less graph with edge (i, vj).

Lemma 3.2.1. If G,G′ and H,H ′ are edge-disjoint graphs, π shows that G ∼=α
s H, π′ shows that G′ ∼=α

s H
′,

and ∀v ∈ VH ∩ VH′ , π(v) = π′(v), then π′′ shows

G ∪G′ ∼=α
s H ∪H ′

where π′′ = π on VH and π′′ = π′ on VH′

Proof: Since G,G′ are edge-disjoint, we know EG∪G′ = EG∪̇EG′ , so

xTLG∪G′x =
∑

(u,v)∈EG∪G′

wG∪G′(u, v)(x(u)− x(v))2

=
∑

(u,v)∈EG∪̇EG′

wG∪G′(x(u)− x(v))2

=
∑

(u,v)∈EG

wG(u, v)(x(u)− x(v))2 +
∑

(u,v)∈EG′

wG′(u, v)(x(u)− x(v))2

= xTLGx+ xTLG′x

Also, since π and π′ match on vertices common to both H and H ′, we have that π′′ is a permutation of VH∪H′ .
Consequently, since H,H ′ are edge-disjoint, Eπ′′(H∪H′) = π′′(EH∪H′) = π′′(EH ∪EH′) = π′′(EH)∪π′′(EH′).
Thus, we also have xTLπ′′(H∪H′)x = xTLπ′′(H)x+ xTLπ′′(H′)x. Putting these together, we have:

xTLG∪G′x = xTLGx+ xTLG′x

≤ αxTLπ(H)x+ αxTLπ′(H′)x Assumption on π, π′

= α(xTLπ′′(H)x+ xTLπ′′(H′)x) Definition of π′′

= αxTLπ′′(H∪H′)x
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Similarly,

xTLG∪G′x = xTLGx+ xTLG′x

≥ 1

α
xTLπ(H)x+

1

α
xTLπ′(H′)x Assumption on π, π′

=
1

α
(xTLπ′′(H)x+ xTLπ′′(H′)x) Definition of π′′

=
1

α
xTLπ′′(H∪H′)x

Hence, π′′ shows that G ∪G′ ∼=α
s H ∪H. �

The next lemma will give us the machinery necessary to tackle the implied by direction. In particular,
the lemma shows that under certain conditions, if we attach gadgets to the vertices of two graphs, then it
will not affect if the original graphs were α-spectrally isomorphic.

Lemma 3.2.2. Suppose G,G′ and H,H ′ are edge-disjoint graphs and π shows G ∪ G′ ∼=α
s H ∪H ′. Also,

suppose each component of G′ has exactly one vertex of G and let G′v denote the component incident with
v ∈ VG, and similarly for H ′. Furthermore, suppose π(VH ∩ VH′) = VG ∩ VG′ and π(VH′v ) = VG′

π(v)
for all

v ∈ VH ∩ VH′ , then π (specifically the restriction of π on VH) shows

G ∼=α
s H

Proof: First, since G,G′ and H,H ′ are edge disjoint, we know

xTLG∪G′x

xTLπ(H∪H′)x
=

xTLG + xTLG′x

xTLπ(H)x+ xTLπ(H′)x

Also, since each component of G′ and H ′ are incident to exactly one vertex of G and H respectively, we can
partition the Laplacian of G′ as

xTLG′x =
∑

v∈VG∩VG′

xTLG′vx

and similarly for H ′. Furthermore, applying π to H ′ just applies π to each component of H ′, so

xTLπ(H′)x =
∑

v∈VH∩VH′

xTLπ(H′v)x

Now, since π(VH ∩ VH′) = VG ∩ VG′ , we have v ∈ VG ∩ VG′ ⇐⇒ π−1(v) ∈ VH ∩ VH′ . Hence, we can rewrite
the previous equality as

xTLπ(H′)x =
∑

v∈VG∩VG′

xTLπ(H′
π−1(v)

)x

Putting all these equalities together then gives

xTLG∪G′x

xTLπ(H∪H′)x
=

xTLG +
∑
v∈VG∩VG′

xTLG′vx

xTLπ(H)x+
∑
v∈VG∩VG′

xTLπ(H′
π−1(v)

)x

Now, if we consider any vector x with x(w) = x(v) for each w ∈ VG′v , then x is just a constant vector over
VG′v , so we know that xTLG′vx = 0. Also, by assumption, we have π(VH′

π−1(v)
) = VG′v , so for this x we also

know xTLπ(H′
π−1(v)

)x = 0. Consequently, if we consider all vectors x so that x(v) is arbitrary for any v ∈ VG,

and x(w) = x(v) for all w ∈ VG′v where v ∈ VG ∩ VG′ , we get

xTLG∪G′x

xTLπ(H∪H′)x
=

xTLGx+
∑
v∈VG∩VG′

xTLG′vx

xTLπ(H)x+
∑
v∈VG∩VG′

xTLπ(H′
π−1(v)

)x
=

xTLGx

xTLπ(H)x
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Since π shows G ∪G′ ∼=α
s H ∪H ′, we know for all such x,

1

α
≤ xTLG∪G′x

xTLπ(H∪H′)x
=

xTLGx

xTLπ(H)x
≤ α

Lastly, since each x ∈ RVG can be uniquely extend into a vector of the form above, we have

1

α
≤ xTLGx

xTLπ(H)x
≤ α

holds for all x ∈ RVG .

�

3.3 Multiple Mappings

Now, we consider the case when more than one mapping is defined. The critical difference is now we could
have just mapped all of the inputs of ψ to all of the outputs of ψ, but not in the correct way. Specifically,
suppose π(i) = k, where k is something else that is mapped to in ψ, i.e. ψ(`) = k, and π(`) = r where r
is something else mapped to and so on. The most difficult case is if two numerically adjacent vertices are
swapped, so we just consider this case. Specifically, say π(i) = j and π(`) = j−1, but ψ(i) = j−1, ψ(`) = j.
We consider the vector δj . Again, δTj LGoutδj = dGout(j) = dG(j) + wGout(j, vj) > wGout(j, vj). Now,

since π(i) = j, j in π(Hin) corresponds to i in Hin. In particular, we have dπ(Hin)(j) = dHin(i). Also,
since ψ(i) = j − 1, we have the edge (i, vj−1) is incident to i in Hin in addition to the edges incident
to i in H by construction. Consequently, dHin(i) = dH(i) + wHin(i, vj−1) ≤ ∆(H) + wHin(i, vj−1), so
δTj Lπ(Hin)δj ≤ ∆(H) + wHin(i, vj−1). Lastly, we will still ensure that wGout(j − 1, vj−1) = αwHin(i, vj−1).
Putting this all together we see,

δTj LGoutδj

δTj Lπ(Hin)δj
=

dGout(j)

dπ(Hin)(j)
=

dG(j) + wGout(j, vj)

dH(i) + wHin(i, vj−1)
>

wGout(j, vj)

∆(H) + wHin(i, vj−1)
=

wGout(j, vj)

∆(H) + 1
αwGout(j − 1, vj−1)

We want the last quantity to be at least α, and so we want wGout(j, vj) ≥ α∆(H) + wGout(j − 1, vj−1).
Now, noting that we already derived the restriction that each new weight in Gout is ≥ 2α∆(H) to ensure
π(vj) 6= k for any k, we get a recursive inequality for the weights: wGout(1, v1) ≥ 2α∆(H) and for j ≥
2, wGout(j, vj) ≥ α∆(H) +wGout(j− 1, vj−1). Solving this recurrence leads to: wGout(j, vj) ≥ (j+ 1)α∆(H).
Now we summarize the final reduction from PrefixSGI to SGI:

Theorem 3.3.1. PrefixSGI ∼=p
m SGI

SGI ≤pm PrefixSGI is immediate, so we show PrefixSGI ≤pm SGI.

Proof: Given G,H,α, ψ, for each mapping ψ(i) = j, we add a vertex vj to both G and H and edges (j, vj)
and (i, vj) with weights (j + 1)α∆(H) and (j + 1)∆(H), respectively, and call these new graphs Gout and
Hin. Our reduction outputs are then Gout, Hin, and α. As before, if any mapping ψ(i) = j satisfies
dH(i) > 0⊕ dG(j) > 0, then this constraint can’t be satisfied, so we just output two non-isomorphic graphs
and α = 1. Also, recall if dH(i) = 0, dG(j) = 0, then since values of these vertices don’t affect the Rayleigh
quotients, we can always force π(i) = j, so we will for simplicity assume dH(i) > 0, dG(j) > 0 throughout
the proof. Consequently, we can also assume ∆(H) > 0.

[ =⇒ ] Suppose π preserves ψ and shows G ∼=α
s H. We note that Gout = G ∪G′ where G′ is the disjoint

union of weighted edges (j, vj) and isolated vertices v ∈ VG \ Range(ψ). Formally, G′ = ([n] ∪ {vj |j ∈
Range(ψ)}, {(j, vj)|j ∈ Range(ψ)}) with wG′(j, vj) = (j + 1)α∆(H). Also, Hin = H ∪ H ′ where H ′
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is the disjoint union of weighted edges (i, vψ(i)) and isolated vertices v ∈ VH \ Domain(ψ). Formally,
H ′ = ([n] ∪ {vj |j ∈ Range(ψ)}, {(i, vψ(i))|i ∈ Domain(ψ)}) with wH′(i, vψ(i)) = (ψ(i) + 1)∆(H). Define π′

to be π on VH ∩ VH′ = [n] and the identity otherwise. In particular, we have π′(vj) = vj for any gadget
vertex vj ∈ VH′ and π′(i) = π(i) for any non-gadget vertex i ∈ VH′ . Then, απ′(H ′) = G′ since for any
edge (i, vψ(i)) ∈ EH′ , π′((i, vψ(i))) = (π(i), id(vψ(i))) = (ψ(i), vψ(i)) ∈ EG′ being that π preserves ψ and by
construction

αwπ(H′)(ψ(i), vψ(i)) = αwH′(i, vψ(i)) = αwHin(i, vψ(i)) = wGout(ψ(i), vψ(i)) = wG′(ψ(i), vψ(i))

Thus, π′ shows G′ ∼=α
s H

′. Also, by construction, π and π′ match on VH ∩ VH′ = [n]. Thus, Lemma 3.2.1
gives Gout = G ∪G′ ∼=α

s H ∪H ′ = Hin.

[ ⇐= ] Suppose π shows Gout ∼=α
s Hin. Note that dG(j) = 0 ⊕ dπ(H)(j) = 0 can never happen since

this would imply the components of G and π(H) differ contradicting that π shows Gout ∼=α
s H

in. Hence, all
vertex degrees we consider below are all positive since we are assuming for simplicity that isolated vertices
aren’t mapped in ψ.

Lemma 3.3.2. π preserves ψ

Proof: We proceed by contradiction and utilize the well ordering principle. Suppose π does not preserve ψ
and consider the largest j for which π(i) 6= j but ψ(i) = j. We will consider the three possibilities for where
j ends up in π(Hin), i.e. π−1(j).

• If π(`) = j and ` ∈ [n]\Domain(ψ), then consider vector, δj . Recall, dGout(j) = dG(j)+wGout(j, vj) =
dG(j) + (j + 1)α∆(H) by construction of Gout. Now, since π(`) = j, dπ(Hin)(j) = dHin(`). Also, since
` 6∈ Domain(ψ), we know ` is not incident to any of the new edges not in H by construction, so
dHin(`) = dH(`). Consequently,

δTj LGoutδj

δTj Lπ(Hin)δj
=

dGout(j)

dπ(Hin)(j)
=
dG(j) + (j + 1)α∆(H)

dH(`)
>

(j + 1)α∆(H)

∆(H)
= (j + 1)α > α

• If π(`) = j and ψ(`) = k (so ` ∈ Domain(ψ)), then by maximality of j we know that k < j, i.e. k+1 ≤ j.
Consider the vector δj . Again, dGout(j) = dG(j)+wGout(j, vj) = dG(j)+(j+1)α∆(H) by construction
of Gout. Now, since π(`) = j, dπ(Hin)(j) = dHin(`). Also, since ` ∈ Domain(ψ), we know ` is incident
to a new edge not in H by construction, so dHin(`) = dH(`) + wHin(`, vk) = dH(`) + (k + 1)∆(H).
Hence,

δTj LGoutδj

δTj Lπ(Hin)δj
=

dGout(j)

dπ(Hin)(j)
=
dG(j) + (j + 1)α∆(H)

dH(`) + (k + 1)∆(H)
>

(k + 2)α∆(H)

∆(H) + (k + 1)∆(H)
=

(k + 2)α∆(H)

(k + 2)∆(H)
= α

• If π(vk) = j, there are two further cases to consider:

– If k ≤ j, then again consider the vector δj . Once more, dGout(j) = dG(j) +wGout(j, vj) = dG(j) +
(j+1)α∆(H) by construction of Gout. Now, since π(vk) = j, dπ(Hin)(j) = dHin(vk) = (k+1)∆(H)
by construction. Thus,

δTj LGoutδj

δTj Lπ(Hin)δj
=

dGout(j)

dπ(Hin)(j)
=
dG(j) + (j + 1)α∆(H)

(k + 1)∆(H)
>

(j + 1)α∆(H)

(k + 1)∆(H)
≥ α

– If k > j, then by maximality of j, we know that if ψ(`) = k then π(`) = k. Hence, we consider
the vector δk,j . Since j, k ∈ Range(ψ), dGout(j) = dG(j) + wGout(j, vj) = dG(j) + (j + 1)α∆(H)
and dGout(k) = dG(k) +wGout(k, vk) = dG(k) + (k+ 1)α∆(H). Also, wGout(j, k) = wG(j, k) since
any edge in G is the same in Gout by construction. Thus, δTk,jLGoutδk,j = dGout(j) + dGout(k) −
2wGout(j, k) = dG(j) + dG(k)− 2wG(j, k) + (j + 1)α∆(H) + (k + 1)α∆(H). Now, we know that

8



π(`) = k and π(vk) = j, so the edge (`, vk) in Hin becomes (k, j) in π(Hin). Consequently,
dπ(Hin)(k) = dH(`) + wHin(`, vk) and dπ(Hin)(j) = dHin(vk) = wHin(`, vk), so δTk,jLπ(Hin)δk,j =
dπ(Hin)(j) + dπ(Hin)(k) − 2wπ(Hin)(j, k) = (dH(`) + wHin(`, vk)) + wHin(`, vk) − 2wHin(`, vk) =
dH(`). So,

δTk,jLGoutδk,j

δTk,jLπ(Hin)δk,j
=
dG(j) + dG(k)− 2wG(j, k) + (j + 1)α∆(H) + (k + 1)α∆(H)

dH(`)
>

(k + 1)α∆(H)

∆(H)
> α

Thus, in any case we reach a contradiction of the assumption that π shows Gout ∼=α
s Hin, so the claim

holds. �

Lemma 3.3.3. If π preserves ψ, then π is the identity on the gadget vertices

Proof: Suppose not and let j be the largest vertex satisfying π(vj) 6= vj . Since π preserves ψ by Lemma
3.3.2 we know that nothing in the domain of ψ can map to vj , so there are only two cases to consider:

• If π(k) = vj where k is not in the domain of ψ, then consider δvj . By construction of Gout, dGout(vj) =
wGout(j, vj) = (j+1)α∆(H). Now, since π(k) = vj , dπ(Hin)(vj) = dHin(k). Also, since k 6∈ Domain(ψ),
we know k is not incident to any of the new edges not in H by construction, so dHin(k) = dH(k).
Consequently,

δTvjLGoutδvj

δTvjLπ(Hin)δvj
=

dGout(vj)

dπ(Hin)(vj)
=

(j + 1)α∆(H)

dH(k)
≥ (j + 1)α∆(H)

∆(H)
= (j + 1)α > α

• If π(vk) = vj , then by assumption of maximality, we have k < j (since otherwise we’d have π(vk) 6= vk
yet k > j), so j ≥ k + 1. Now, consider the vector δk,vj . We know k ∈ Range(ψ) since vk exists, so
suppose ψ(`) = k. First, we know that (k, vj) is not an edge of Gout, so wGout(k, vj) = 0. Consequently,
δTk,vjLGoutδk,vj = dGout(k) + dGout(vj) = (dG(k) + (k + 1)αδ(H)) + (j + 1)α∆(H). Now, we know

that π(vk) = vj and π(`) = k, so the edge (`, vk) in Hin becomes (k, vj) in π(Hin). Consequently,
dπ(Hin)(k) = dH(`) + wHin(`, vk) and dπ(Hin)(vj) = dHin(vk) = wHin(`, vk), so δTk,vjLπ(Hin)δk,vj =

dπ(Hin)(vj)+dπ(Hin)(k)−2wπ(Hin)(vj , k) = (dH(`)+wHin(`, vk))+wHin(`, vk)−2wHin(`, vk) = dH(`).

δTk,vjLGoutδk,vj

δTk,vjLπ(Hin)δk,vj
=
dG(k) + (j + 1)α∆(H) + (k + 1)α∆(H)

dH(`)
>

(j + k + 2)α∆(H)

∆(H)
> α

Thus, in either case we reach a contradiction of the assumption that π shows Gout ∼=α
s Hin, so the claim

holds. �

Hence, we have that ψ is preserved by π by Lemma 3.3.2 and π is the identity on the gadgets by Lemma
3.3.3. As mentioned previously, we have Gout = G ∪G′ and Hin = H ∪H ′ except now we will not have the
isolated vertices in G′ and H ′. Formally, G′ = (Range(ψ)∪{vj |j ∈ Range(ψ)}, {(j, vj)|j ∈ Range(ψ)}) with
wG′(j, vj) = (j+1)α∆(H) and Formally, H ′ = (Domain(ψ)∪{vj |j ∈ Range(ψ)}, {(i, vψ(i))|i ∈ Domain(ψ)})
with wH′(i, vψ(i)) = (ψ(i) + 1)∆(H). Now, we note that by construction VH ∩ VH′ = Domain(ψ) and
VG ∩ VG′ = Range(ψ). Consequently, Since π preserves ψ, we have π(VH ∩ VH′) = π(Domain(ψ)) =
Range(ψ) = VG ∩ VG′ . Also, each component of H ′ is just a single edge (i, vψ(i)) containing a single vertex
i ∈ VH . Each such edge forms the component V ′i in the setting of Lemma 3.2.2. Similarly, each component
of G′ is just a single edge (j, vj) containing a single vertex j ∈ VG. Since π is the identity on the gadget
vertices and preserves ψ, π(VH′i) = π({i, vψ(i)}) = {ψ(i), vψ(i)} = VG′

ψ(i)
= VG′

π(i)
. Thus, by Lemma 3.2.2 we

have π shows G ∼=α
s H and by Lemma 3.3.2, π preserves ψ.
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4 Coloring

4.1 CSGI

We approach CSGI similarly to PrefixSGI. Now, we have a coloring function c : VH → [n] that we need to
preserve. We will attach a gadget to every vertex in both graphs. Specifically, for every j, we add edges
(j, vj) to both G and H to form Gc and Hc. The idea is we want to assign the same weights to the added
edges for each vertex in the same color class so that they can be interchanged with each other. However,
we will ensure weights of other classes are different in order to get a ratio of Rayleigh quotients that is too
large in the case where we map a vertex of one color to another. Before, we considered preimages, namely,
where did j end up. Here, it is more natural to look at images, namely, where does i go. We will end up
using well-ordering, so there are two relevant cases to consider.

• Suppose π(i) = j and c(i) < c(j). Consider the vector δj . Since each vertex j of G is incident
to the edge (j, vj) in Gc, dGc(j) = dG(j) + wGc(j, vj) by construction of Gc. Now, since π(i) = j,
dπ(Hc)(j) = dHc(i) = dH(i) + wHc(i, vi) by construction of Hc. Consequently,

δTj LGcδj

δTj Lπ(Hc)δj
=

dGc(j)

dπ(Hc)(j)
=
dG(j) + wG(j, vj)

dH(i) + wH(i, vi)
≥ wGc(j, vj)

∆(H) + wHc(i, vi)

We want the last term to be > α. This leads to the condition that wGc(j, vj) > α∆(H) + wGc(i, vi)

• Suppose π(i) = vj and c(i) < c(j). Now, we consider δvj .

δTvjLGcδvj

δTvjLπ(Hc)δvj
=

wGc(j, vj)

dH(i) + wHc(i, vi)
≥ wGc(j, vj)

∆(H) + wHc(i, vi)

Again, we want the last term to be > α. This leads to the inequality wGc(j, vj) > α∆(H) +wGc(i, vi).
Hence, it is sufficient that wGc(j, vj) = 2α∆(H) + wGc(i, vi). Now, we want that the weights of
each vertex in the same color class is the same, so we can rewrite this equation more generally as
wGc(class c(j)) = 2α∆(H) + wGc(class c(i)). We no longer have any condition on individual weights,
just how they relate to one another, so we can choose wGc(class 1) to be an arbitrary non-negative
number. To give us a fairly clean reduction, we choose wGc(class 1) = 2α∆(H). Solving this recurrence
gives wGc(class i) = 2iα∆(H). In other words, wGc(i, vi) = 2c(i)α∆(H)

Now we show the reduction is correct.

Theorem 4.1.1. CSGI ∼=p
m SGI

SGI ≤pm CSGI is immediate, so we show CSGI ≤pm SGI.

Proof:

Given G,H,α, c, we construct graphs Gc, Hc, where Gc is G in addition to edges (i, vi) with weights
2c(i)α∆(H) and Hc is H in addition to edges (i, vi) with weights 2c(i)∆(H). The output of the reduction
is then Gc, Hc, α. If ∆(H) = 0, then the only way G ∼=α

s H regardless of c is if G is also the edgeless graph.
Hence, we will not add gadgets in that case. Thus, we assume that ∆(H) > 0.

[ =⇒ ] Suppose π preserves color and shows G ∼=α
s H. We note that Gc = G ∪ G′ where G′ = ([n] ∪

{vi|i ∈ [n]}, {(i, vi)|i ∈ [n]}) with wG′(i, vi) = 2c(i)α∆(H). Also, Hc = H ∪ H ′ where H ′ = ([n] ∪ {vi|i ∈
[n]}, {(i, vi)|i ∈ [n]}) with wH′(i, vi) = 2c(i)∆(H). Define π′ to be π on VH ∩VH′ = [n] and π′(vi) = vπ(i) for
each i ∈ [n]. Then, απ′(H ′) = G′ since for any edge (i, vi) ∈ EH′ , π′((i, vi)) = (π(i), π(vi)) = (π(i), vπ(i)) ∈
EG′ by construction. Also, since π preserves color, c(i) = c(π(i)), so

αwπ(H′)(π(i), vπ(i)) = αwH′(i, vi) = α2c(i)∆(H) = 2c(π(i))α∆(H) = wG′(π(i), vπ(i))
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Thus, π′ shows G′ ∼=α
s H

′ being that απ(H ′) = G′. Now, by construction, π and π′ match on VH ∩VH′ = [n].
Thus, Lemma 3.2.1 gives Gc = G ∪G′ ∼=α

s H ∪H ′ = Hc.

[⇐= ] Suppose π shows that Gc ∼=α
s H

c.

Lemma 4.1.2. π preserves colors

Proof: Suppose not and let i be the smallest vertex for which c(π(i)) 6= c(i). There are three main cases to
consider

• if π(i) = j and c(i) 6= c(j), then by assumption that i is the smallest vertex not having its color
preserved, we know c(i) < c(j). Now, we consider δj . Since each vertex j of G is incident to the edge
(j, vj) in Gc, dGc(j) = dG(j) + wGc(j, vj) = dG(j) + 2c(j)α∆(H) by construction of Gc. Now, since
π(i) = j, dπ(Hc)(j) = dHc(i) = dH(i) + wHc(i, vi) = dH(i) + 2c(i)∆(H). Consequently,

δTj LGcδj

δTj Lπ(Hc)δj
=

dGc(j)

dπ(Hc)(j)
=
dG(j) + 2c(j)α∆(H)

dH(i) + 2c(i)∆(H)
≥ 2c(j)α∆(H)

(2c(i) + 1)∆(H)
≥ 2(c(i) + 1)α

2c(i) + 1
> α

• π(i) = vj and c(i) < c(j), then consider δvj . By construction, vj is only incident to the edge (j, vj)
in Gc. Hence, dGc(vj) = wGc(j, vj) = 2c(j)α∆(H). Now, since π(i) = vj , dπ(Hc)(vj) = dHc(i) =
dH(i) + wHc(i, vi) = dH(i) + 2c(i)∆(H). Hence,

δTvjLGcδvj

δTvjLπ(Hc)δvj
=

dGc(vj)

dπ(Hc)(vj)
=

2c(j)α∆(H)

dH(i) + 2c(i)∆(H)
≥ 2c(j)α∆(H)

(2c(i) + 1)∆(H)
≥ 2(c(i) + 1)α

2c(i) + 1
> α

• π(i) = vj and c(i) ≥ c(j), then there are two further cases to consider.

– If π(vi) = j and c(i) = c(j), so i and vi have been shifted and swapped, then consider δj if
dG(j) > 0.

δTj LGcδj

δTj Lπ(Hc)δj
=

dGc(j)

dπ(Hc)(j)
=
dG(j) + 2c(j)α∆(H)

2c(i)∆(H)
>

2c(i)α∆(H)

2c(i)∆(H)
= α

However, if dH(i) = 0 = dG(j), then only the edge incident to j in π(Hc) is (j, vj). Hence, j only
contributes wHc(i, vi)(x(j) − x(vj))

2 to xTLπ(Hc)x. Consequently, we can just consider the new
permutation π′ that is π except π′(i) = j, π′(vi) = vj . Since wHc(i, vi)(x(π′(i)) − x(π′(vi)))

2 =
wHc(i, vi)(x(j)−x(vj))

2 = wHc(i, vi)(x(vj)−x(j))2 = wHc(i, vi)(x(π(i))−x(π(vi))
2 and π′ agrees

with π on all other vertices, xTLπ(Hc)x = xTLπ′(Hc)x. Hence, π′ also shows Gc ∼=α
s H

c, yet has
i’s color preserved since π′(i) = j and by assumption c(i) = c(j). We can then continue the proof
using π′ instead of π, so we can without loss of generality assume this case does not occur.

– If π(vi) 6= j or c(i) > c(j), then we note that in the latter case when c(i) > c(j), we know by
minimality of i, that c(π(j)) = c(j). Hence, π(vi) 6= j being that they have different colors.
Consequently, we just assume π(vi) 6= j. We consider δvj ,π(vi). Since π(vi) 6= j, and only j is
adjacent to vj in Gc, we know that π(vi) and vj are not adjacent in Gc, so wGc(vj , π(vi)) = 0.
So, δTvj ,π(vi)LGcδvj ,π(vi) = dGc(vj) + dGc(π(vi)). Next, we know every vertex is incident to a

weighted edge, and each weighted edge is at least 2α∆(H) in Gc, so dGc(π(vi)) ≥ 2α∆(H).
Thus, δTvj ,π(vi)LGcδvj ,π(vi) = dGc(vj) + dGc(π(vi)) ≥ 2c(j)α∆(H) + 2α∆(H). Now, we know that

π(i) = vj , so the edge (i, vi) in Hc becomes (vj , π(vi)) in π(Hc). Therefore, dπ(Hc)(vj) = dH(i) +
wHc(i, vi) and dπ(Hin)(π(vi)) = dHc(vi) = wHc(i, vi), so δTvj ,π(vi)Lπ(Hc)δvj ,π(vi) = dπ(Hc)(vj) +

dπ(Hc)(π(vi)))− 2wπ(Hin)(vj , k) = (dH(i) +wHc(i, vi)) +wHc(i, vi)− 2wHc(i, vi) = dH(i). Hence,

δTvj ,π(vi)LGcδvj ,π(vi)

δTvj ,π(vi)Lπ(Hc)δvj ,π(vi)
=

dGc(vj) + dGc(π(vi))

dπ(Hc)(vj) + dπ(Hc)(π(vi))− 2wHc(i, vi)
≥ 2c(j)α∆(H) + 2α∆(H)

∆(H)
> α
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Hence, in all cases, we found a vector that makes the ratio of Rayleigh quotients > α contradicting our
assumption that π shows Gc ∼=α

s H
c. Thus, π must preserve color. �

Lemma 4.1.3. ∀i, j ∈ [n], π(i) = j =⇒ π(vi) = vj , i.e. π(vi) = vπ(i)

Proof: Suppose there exists i, j with π(i) = j, but π(vi) 6= vj consider the vector δj,π(vi). The argu-
ment is almost identical to before. Since π(vi) 6= vj , we have by definition that δj,π(vi)(vj) = 0 and
δj,π(vi)(j) = 1. Thus, the term wGc(j, vj)(x(j)− x(vj))

2 from δTj,π(vi)LGcδj,π(vi) becomes wGc(j, vj). Hence,

δTj,π(vi)LGcδj,π(vi) ≥ wGc(j, vj) = 2c(j)α∆(H). Now, we know that π(i) = j, so the edge (i, vi) in Hc becomes

(j, π(vi)) in π(Hc). Therefore, dπ(Hc)(j) = dH(i) + wHc(i, vi) and dπ(Hin)(π(vi)) = dHc(vi) = wHc(i, vi), so

δTvj ,π(vi)Lπ(Hc)δvj ,π(vi) = dπ(Hc)(vj) + dπ(Hc)(π(vi)))− 2wπ(Hin)(vj , k) = (dH(i) + wHc(i, vi)) + wHc(i, vi)−
2wHc(i, vi) = dH(i). Thus,

δTj,π(vi)LGcδj,π(vi)

δTj,π(vi)Lπ(Hc)δj,π(vi)
≥ wGc(j, vj)

dH(i)
≥ 2c(j)α∆(H)

∆(H)
> α

Hence, we found a vector that makes the ratio of Rayleigh quotients > α contradicting our assumption that
π shows Gc ∼=al

s Hc. Thus, π(vi) = vπ(i) for all i. �

As mentioned previously, we have Gc = G ∪ G′ and Hc = H ∪H ′. Now, we note that by construction
VH∩VH′ = VG∩VG′ = [n]. Consequently, Since π preserves ψ, we have π(VH∩VH′) = π([n]) = [n] = VG∩VG′ .
Also, each component of H ′ is just a single edge (i, vi) containing a single vertex i ∈ VH . Each such edge
forms the component V ′i in the setting of Lemma 3.2.2. Similarly, each component of G′ is just a single edge
(i, vi) containing a single vertex i ∈ VG. By Lemma 4.1.3, π(VH′i) = π({i, vi}) = {π(i), vπ(i)} = VG′

π(i)
. Thus,

by Lemma 3.2.2 we have π shows G ∼=α
s H and by Lemma 4.1.2, π preserves color.
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