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Abstract

We continue the investigation of the spectral graph isomorphism problem (SGI). We intend to give
evidence that the problem is similar in complexity to GI. To this end, we focus on showing relationships
between SGI and its variations that mimic the structure of the relationships between GI and its variations.

1 Introduction

The spectral graph isomorphism problem (SGI) is an approximation version of the graph isomorphism
problem (GI) where the metric of closeness between the two graphs utilizes the Rayleigh quotients of the
Laplacian matrices of the graphs. In particular, we say that two simple weighted graphs, G and H, with

. . . T
the same vertex set are a-spectrally isomorphic if 37 € S,Vx € R",é < IiLLi(CIJ.:)‘I < «a (Here, we assume

for simplicity that % = 1). We note that if we replace a with 1 in the definition, we get exactly the graph
isomorphism problem, so it truly is a generalization of the problem. We wish to classify the complexity of
SGI. It is already known that SGI is in NP, and that the one-sided version of the problem, Graph Dominance
(GD), is NP-complete. In this paper, we wish to give evidence that SGI may be close to the complexity of
GI by demonstrating many properties of GI also hold for SGI. In particular, we show that reducibilities that
exist between GI and variations of GI also hold for SGI and the equivalent variations of SGI. Specifically, we
consider the prefix problem (PrefixSGI), coloring generalization (CSGI), and the non-trivial automorphism
problem (SGA) each of which is defined in the natural way from their non-spectral counterparts. The main
results are as follows:

Theorem 3.1.1. SGA <} SGI
Theorem 3.3.1. PrefizSGI =P SGI

Theorem 4.1.1. CSGI = SGI

2 Preliminaries

Let G = (V, E,w) be a weighted simple graph with non-negative weights (Note we can consider loopless
multi-graphs by letting the weight be the number of multi-edges between two nodes). We will refer to an
edge by (u,v) even though it is undirected. Also, we will commonly think of vectors as functions z : V- — R
and denote the set of all such vectors RY. Without loss of generality, we will usually assume that V = [n].
Then,

?"Lor = we(u,v)(z(u) — 2(v))?

(u,v)EE



where

—wg(u,v) fu#v

Lg(u,v) = {

de(u) ifu=wv
is the Laplacian matrix of G. We define the weighted degree of a vertex, u, by

de(u) = Z we (u,v)

(u,v)EEG

We define the weighted maximum degree of G as A(G) = maxyey, dg(u). If S C Vg, then we define the

vector
1 ifuesS
55(’&) = .
0 ifuegs

Lemma 2.1. §{Lg6, = dg(u)

Proof:
TLobu= 3 wolv,w)(6u(v) — 6,(w))?
(v,w)EEqg
= Y welbw)(0-07+ > we(uv)(l-0)
(v,2w)EEqG (u,w)EEG
= Z we(u,v)
(u,v)EEG
= dg(u)
O
Lemma 2.2. 6] ,Lgby,y = da(u) + da(v) — 2w (u,v)
Proof:
651;LG5u,v = Z W (2, Y) (0u,0(2) = du,0 (y))2
(z,y)€EG
= Z we(z,y)(0 —0)% + Z we(u, w)(1 —0)% + Z wa (v, w)(1 — 0)?
(z,y)€EEG (u,w)EEqg,w#v (v,w)EEg,w#u

+weg(u,v)(1 —1)?

= Z wea (u, w) + Z we (v, w)

(u,w)€Eqg,w#v (v,w)EEqg,w#u
=dg(u) +dg(v) — 2wg(u,v)

Note, if (u,v) € Eg, then wg(u,v) = 0 and the two sums in the second to last line are dg(u),dg(v)
respectively, so the claim still holds in this case. O

We will use these two lemmas constantly, so don’t directly refer to them by number. We also note that if G
is a connected graph, then any constant vector z(v) = ¢ for all v € Vg, satisfies 27 Lgx = 0. We denote by
cH the graph H where each weight is multiplied by c¢. Note if G = cn(H), then G =¢ H. Also, we note that
if 7 shows G =¢ H, then n(H) must have the same components as G. Formally, if a component of G and
m(H) have a vertex in common, then these components must have the exact same vertex sets. Consequently,
isolated vertices of H must be mapped to isolated vertices of G.



3 PrefixSGI

This reduction will lead to the key elements for the remaining reductions, so we start with it. Suppose we
are given weighted simple graphs G and H, o« > 1, and a partial injective function ¢ : Vi — V. We want
to know if G =¢ H via a permutation 7 that preserves 1. Intuitively, our approach is to add a gadget to

2 Loz

the graphs so that if (i) # 4, yet ¢ (i) = j, then we can find a vector = so that T However, we

must also ensure that if 7 preserves ¢ and G =¢ H is shown by this 7 that we can define mappings for the
gadget nodes so that the graphs we construct are also a-spectrally isomorphic.

3.1 Single Mapping

First, let us consider just one mapping (i) = j. If exactly one of dg(j),dg (i) is 0, then no spectral
isomorphism can exist preserving 1 as isolated vertices of H must be mapped to isolated vertices of G as
mentioned previously. Thus, we can just output two non-isomorphic graphs and a = 1 in this case. Note
since isolated vertices have no edges incident with them and so don’t affect the Rayleigh quotient, we can
always arbitrarily define mappings from the isolated vertices of H to those of G. In particular, if both
de(j) = 0,dg (i) = 0, then we can always force m(i) = j, so we can assume for simplicity that no isolated
vertices are mapped by . Now, assume d¢(j),dm (7)) > 0 and so A(H) > 0. We will add a new vertex, v,
to both G and H and add an edge (j,v;) to G and (i,v;) in H. We call these new graphs G°** and H™
respectively to represent the fact that we want 4, which is the input to v, to be mapped to j, which is the
output of ». We will now determine the weights that will be associated with both of these edges.

First, we discuss the restrictions that are induced from the implies direction. Namely, we suppose that
7 preserves ¢ and shows that G 2% H. We want to then show that G°* = H™. If we define 7(v;) = v;,
we get (Note we will abuse notation and use = both for the n + 1-dimensional vector that has a an entry for
v; and the n-dimensional vector that does not)

J;TLGoutx TLGJ? + wgout (]7”])($(3) .23(1)]))2

mTLﬂ(Hm)x T TLrmyx + wyin (i, v5) (z(m(i) — 2(

_ a" Lax 4 wgouw (J,v;) (x(5) — x(v;))?

T Loy + wgin (4,05) (2(5) — 2(vy)

i) (@(5) — z(v;

2T Lr(mx + wpin (4,v5)(2(f) — 2(v;

AT L g i,0,)(0(G)
T 2T Ly + wipen (1, v3) (2() —

ozl L@ + wegout (§,v;)

Where the second inequality holds if wgout (j,v;) < awgin(4,v;). Also, we have

e Lgowa  aT Lox 4+ wgow (5,v;) (2(4) — (v;))?
2T Lygimyr 2T Lygya 4+ wyin (i, v5) (2(5) — 2(v5))?

22T Ly + wegout (j,v; j
I‘TLTr(H)'r + wyin (Za UJ)(J:(]) - I(Uj))z

12T L@ + wirin (i, v;
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T axTLygyx 4+ wyin (i,v;

So, for the second inequality to hold we need wgout(j,v;) > in (¢,v5). Note if considered other

permutations than the identity on the gadgets, the restrictions just defined would be equivalent to the two
length one paths, (j,v;) and (i,v;), being a-spectrally isomorphic. Now, we will enforce wgout(j,v;) =



awgin (i,v;), which satisfies both inequalities above, and so we get that = shows G°** =% H " completing
the implies direction follows. Note we chose this restriction since we will want weights to be larger in G°%

T
¢ Lgowi® o when (i) # J.

so that we can more easily find an x satisfying —z—=—
T L (miny®

Now, we will look at what we need for the other direction to hold. Namely, if 7 witnesses that Go%t ~¢
H" then we want to make sure our new weights guarantee that 7(¢) = j and the restriction of = on Vg

T
x LGoutz .
,m > « which

contradicts our assumption. Also, we will choose the weights so that 7(v;) = v;. Let’s see why this is
sufficient.

shows G =% H. In particular, we will choose the weights so that 7(i) # j — Iz

First, by construction of G°“* and H™,

<
=
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.’ETLG()utSC xTLG-T + wG(ja Uj)(x( ]

T L gimya B 2T Ly +wr (4, v5) (2(7 (i) — x(m(vy)))?

If 7(i) = j and 7(v;) = vj, we can rewrite this equality as:

e Lgowa 2" Lgz + we(j,v;) () — 2(v;))?
l‘TLﬂ.(Hin)x .’ETLW(H).’E—FMH(’L',U]‘) ]) —ac(vj)Q

Now, consider any vector € R". We see if we extend z into an (n + 1)-dimensional vector by setting

T T
N . z' Lgoutr T Lgax n+l 1 r_ Lgout® i
z(v;) = z(j) that ST s = T Also, we know that Vx € R""-, = < T grin) < . Thus, since

1 < xTLgx <

n : n 1
x € R™ was arbitrary, we have Vz € R", ~ < T s =

There are two cases to consider to ensure (i) = j,

e Suppose (i) # j and 7(v;) # j. Let us consider the ratio of Rayleigh quotients with respect to the
vector 0;. We note that dgout (j) = dg(j) + wgout (j,v;) since (j,v;) is the only new edge incident to
j in GOUt. COHSunBHﬂy7 (S;rLgoutdj = dGout (j) = dG(]) + wgout (j, Uj) > Wqout (], ’Uj) since dG(]) >
0. Now, since m(7~1(j)) = j, j in m(H™) corresponds to 7~ 1(j) in H. In particular, we have
driny(j) = dgin (7=1(4)). Also, since the only edge in H® that is not in H is incident to i and
v;, and 1 (j) & {i,v;} by assumption, we know dy(gin)(j) = dgin(7=1(j)) = da(77(j)) < A(H).
Thus, 5J»TL7T(HM)6J- = drginy(j) < A(H). Consequently,

0 Lowdy _ dgow(j) _ de(h) +weew (G,v;) _ da(f) + ween (4,0) o Weeu (], V)
8T L(rriny0j  do(ariny (4) dp(r=1(j) A(H) A(H)

Hence, to enforce the ratio of Rayleigh quotients is greater than «, it suffices that wgout (j,vj) > aA(H).

e Next, let’s consider the case where 7(v;) = j. In this case, we again consider the vector J;. As before,
(SJTLGout(Sj = dGout(j) = dG(]) + U}Gout<j,1]j) > U)cht(j,vj). AISO, W(Uj) = _] — W_l(j) = vj, SO
6?_L,r(HM)5j = dr(giny(j) = dgin (vj) = wgin (i, v;) being that (i,v;) is the only edge incident to v; in
H™ by definition. Hence,

(SJTLGout5j . dGout(j) _ dg(]) + wgout (], Uj) > wgout(j, Uj) _ Oszin,(i,Uj) —

(%TLTF(HM)(SJ- B dﬂ—(H’L’n)(j) Wgin (i,vj) me(ij) wHin(i,’l)j>

where we used the fact that we forced wgout (j,v;) = awpgin(i,v;). Hence, no further restrictions on
the weights arise from this case.

Lastly, we will want 7(i) = j implies 7(v;) = v; as well. Since 7 is a bijection, we know 7(v;) # j.
So, suppose 7(v;) = k. We will consider the vector d,,. Since (j,v;) is the only edge incident to v; in



G°* by definition, we know 8y Lgoutdy; = dgout (v5) = wgout (§,v;). Also, w(vj) =k = 7 (v;) =k, so
53;L7T(Hin)§vj = dﬂ.(Hm)(Uj) = dH(k) Consequently,

5;{;LG°“‘5W _ dGout(’l}j) :wGout(j7’Uj> wGout(j7Uj)
6'1,1);L7T(Hi")5vj dﬂ,(Hm)(’Uj) dH(k) o A(H)

Hence, to guarantee the ratio of Rayleigh quotients is strictly greater than «, it suffices that wgout (j,v;) >
aA(H).

Thus, choosing wgout (j,v;) = 2aA(H), we get strict inequalities in each case. Consequently, we see that
m(i) = j and 7(vj) = v; otherwise our assumption that 7 demonstrates that G°“* =% H'" is contradicted.
Then, as before, we have 7 shows G =% H and 7 (i) = j. This completes the reduction for the single mapping
case and its proof.

Theorem 3.1.1. SGA <} SGI

3.2 Technical Lemmas

The remaining reductions will use similar structure to the one above, so we shall state the corresponding
technical lemmas here. Specifically, for the implies direction of the reductions, we will use the following
lemma. Intuitively, this lemma says that if we look at the union of two graphs with no edges in common,
then the a-spectrally isomorphic relation will be preserved. For example, in the previous argument for the
implies direction of the one mapping case of PrefixSGI, we had that G’ was the edge-less graph in addition
to the edge (j,v;) and H' was the edge-less graph with edge (4, v;).

Lemma 3.2.1. If G,G’" and H, H' are edge-disjoint graphs, = shows that G ¢ H, 7’ shows that G’ =& H’,
and Yv € Vg N Vg, w(v) = 7’(v), then 7 shows

GUG 2 HUH'

where 7/ = 7 on Vi and 7" = 7’ on Vi

Proof: Since G, G’ are edge-disjoint, we know Equg: = EqgUEg, so
z" Louara = Z waue (u,v)(x(u) — z(v))?
(uw,v)EEGya!
= ) weue(@(u) - 2(v))?
(u,w)EEGUEq/
= > welwv)(@w) —z@)*+ Y wer(uv)(@(u) - x(v))
(u,v)EEG (u,v)EEq
=2'Legr+ 2" Lo
Also, since 7 and 7’ match on vertices common to both H and H’, we have that 7' is a permutation of Vgg-.

Consequently, since H, H' are edge-disjoint, B (guny = 7" (Egunr) = 7" (Eg UE) = 7" (Ex)Ur" (Eg).
Thus, we also have :ETLW//(HuH/)x = xTLﬂ//(H)x + xTL,r//(H/)x. Putting these together, we have:

2T Laugx =2 Loz + 2T Lo
< ozz:TL,r(H)z + oszLﬂ,(H/):c Assumption on , 7’
= a(@" Lynmyz + 2" L) Definition of 7"

= a2’ Lo



Similarly,

2T Lavgx =2 Lax + 2T Lavx

1 1

> fxTLW(H)x + —xTL,r/(H/)ac Assumption on 7, 7’
e e
1

= *( TLTF//(H):E —+ .ITLﬂ,u(H/)l‘) Deﬁnition Of 7T'N
Q@
1

R A
a
Hence, ©” shows that GUG’' =% HU H. O

The next lemma will give us the machinery necessary to tackle the implied by direction. In particular,
the lemma shows that under certain conditions, if we attach gadgets to the vertices of two graphs, then it
will not affect if the original graphs were a-spectrally isomorphic.

Lemma 3.2.2. Suppose G,G’ and H, H' are edge-disjoint graphs and 7 shows GU G’ =% H U H'. Also,
suppose each component of G’ has exactly one vertex of G and let G’ denote the component incident with
v € Vg, and similarly for H'. Furthermore, suppose 7(Vg N Vi) = Vg N Vg and 71(Vy) = Vg/( ) for all
v € Vg N Vs, then 7 (specifically the restriction of 7 on Vi) shows

G2 H

Proof: First, since G,G’' and H, H' are edge disjoint, we know

2T Lauar _ 2TLe+xTLax
J?TLﬂ-(HuHI).I‘ N .TZ‘TLﬂ-(H)x + $TL7T(H/)$

Also, since each component of G’ and H' are incident to exactly one vertex of G and H respectively, we can
partition the Laplacian of G’ as

2T Leva = E xTngUx
veVagNVgr

and similarly for H’. Furthermore, applying m to H’ just applies 7 to each component of H’, so

mTLﬂ(H/)x = Z scTLﬂ(HL)x

veEVENVi

Now, since 7(Vg N Vi) = Vo NV, we have v € Vg N Vg <= 7 1(v) € Vg N V. Hence, we can rewrite
the previous equality as

a:TLﬂ(H/)x = Z xTLW(H/ )l‘

—1(v)
veVaNVgr

Putting all these equalities together then gives

T T
e Louera r* Lo + Zvevcﬁvc/ x* Loy

xTL'n'(HUH/):E o ZCTLW(H)ZC + Z’UGVQQVG/ -Z'TLTr(H;fl(v))x

Now, if we consider any vector & with z(w) = x(v) for each w € Vi, then x is just a constant vector over
Vg, so we know that mTLGQx = 0. Also, by assumption, we have 7(Vy . )) = Vg, so for this x we also
know xTLW( m_, = 0. Consequently, if we consider all vectors z so that x(v) is arbitrary for any v € Vg,

(v)

and z(w) = x(v) for all w € Vg, where v € Vg N Vs, we get

T T
2T Laugrx ' Lax + 3 evonv,, 0 Loy 2T Lo

CL‘TLW(HuH/)CL' N .’L'TLW(H)CL' + ZUEVGOVG/ QCTL,,T(H;A(U))CL' B .T:TLW(H)JJ



Since 7 shows G UG’ =% H U H', we know for all such z,

1 < e'Louere aTLgx
o = 2T Lygupne a7 Ly

Lastly, since each x € RS can be uniquely extend into a vector of the form above, we have

holds for all z € RV<.

3.3 Multiple Mappings

Now, we consider the case when more than one mapping is defined. The critical difference is now we could
have just mapped all of the inputs of ¢ to all of the outputs of 1, but not in the correct way. Specifically,
suppose (i) = k, where k is something else that is mapped to in ¢, i.e. ¥(¢) = k, and w(£) = r where r
is something else mapped to and so on. The most difficult case is if two numerically adjacent vertices are
swapped, so we just consider this case. Specifically, say (i) = j and 7(¢) = j— 1, but (i) = j—1,9() = j
We consider the vector §;. Again, 5jTLGom,5j = dgout(j) = da(j) + wgeut (j,vj) > wgout (j,vj). Now,
since 7(i) = j, j in m(H™) corresponds to i in H™. In particular, we have dr(riny(j) = dpin(i). Also,
since (i) = j — 1, we have the edge (i,v;_1) is incident to ¢ in H* in addition to the edges incident
to ¢ in H by construction. Consequently, dyin (i) = du (i) + wgyin(i,vj-1) < A(H) + wyin(t,vj-1), so
(5jTL,r(Hin)6j < A(H) 4+ wyin (i,vj—1). Lastly, we will still ensure that wgout (j — 1,vj_1) = qwgin (4, vj-1).
Putting this all together we see,

6?Lcout5j _ dGout(j) dG( )+wGout(]7U]) wGout(j,vj) o wGout(j,vJ)

_ - )
5 Lm0 do(riny(§) A (0) +wpin (i,0-1) ~ AH) + wpan (i,v5-1) — A(H) + 2wgou (j — 1,0;-1)

We want the last quantity to be at least «, and so we want wgout (j,vj) > aA(H) 4+ wgout (§ — 1,vj-1).
Now, noting that we already derived the restriction that each new weight in G°“! is > 2aA(H) to ensure
7(v;) # k for any k, we get a recursive inequality for the weights: wgout(1,v1) > 2aA(H) and for j >
2, wgout (§,vj) > aA(H) +wgout (§ — 1,vj-1). Solving this recurrence leads to: wgout (§,v;) > (j+ 1)aA(H).
Now we summarize the final reduction from PrefixSGI to SGI:

Theorem 3.3.1. PrefizSGI =P SGI
SGI <P PrefixSGI is immediate, so we show PrefixSGI <P SGI.

Proof: Given G, H,a, 1, for each mapping ¢(i) = j, we add a vertex v; to both G and H and edges (j,v;)
and (4,v;) with weights (j + 1)aA(H) and (j + 1)A(H), respectively, and call these new graphs G°** and
H™. Our reduction outputs are then G°“*, H" and «. As before, if any mapping (i) = j satisfies
dp (i) > 0® dg(j) > 0, then this constraint can’t be satisfied, so we just output two non-isomorphic graphs
and o = 1. Also, recall if di (i) = 0,dg(j) = 0, then since values of these vertices don’t affect the Rayleigh
quotients, we can always force 7(i) = j, so we will for simplicity assume dg (i) > 0,dg(j) > 0 throughout
the proof. Consequently, we can also assume A(H) > 0.

[ = ] Suppose 7 preserves 1) and shows G =% H. We note that G°** = G U G’ where G’ is the disjoint
union of weighted edges (j,v,) and isolated Vertlceb v € Vg \ Range(v). Formally, G' = ([n] U {v,]j €
Range(¥)},{(j,v;)li € Range()}) with wg: (j,v;) = (j + 1)aA(H). Also, H"™ = H U H' where H'



is the disjoint union of weighted edges (i,vy(;) and isolated vertices v € Vg \ Domain(v). Formally,
H' = ([n] U {vj|j € Range()}, {(i,vy))|i € Domain(y)}) with wg (4, vyiy) = (¥ (i) + 1)A(H). Define 7’/
to be m on Vi N Vi = [n] and the identity otherwise. In particular, we have 7’'(v;) = v, for any gadget
vertex v; € Vg and 7'(i) = w(¢) for any non-gadget vertex ¢ € Vy/. Then, an’(H') = G’ since for any
edge (i,vy3)) € Enr, 7' ((4,vp0))) = (m(i),id(vy))) = (¥(i), vy)) € B being that 7 preserves ¢ and by
construction

QW (g (Y (1), vy(i)) = QWi (i, V(i) = Qwirin (i, Vy()) = waout (P(E), vy()) = war (P(E), vy (i))

Thus, 7’ shows G’ =& H'. Also, by construction, 7 and 7’/ match on Vg N Vg, = [n]. Thus, Lemma 3.2.1
gives G = GUG' 2> HUH' = H™.

[ <= ] Suppose 7 shows G =& H'™. Note that dg(j) = 0@ dr(m)(j) = 0 can never happen since
this would imply the components of G and «(H) differ contradicting that 7 shows G°%* =% H". Hence, all
vertex degrees we consider below are all positive since we are assuming for simplicity that isolated vertices
aren’t mapped in .

Lemma 3.3.2. 7 preserves ¢

Proof: We proceed by contradiction and utilize the well ordering principle. Suppose 7 does not preserve
and consider the largest j for which 7 (i) # j but ¥ (i) = j. We will consider the three possibilities for where
j ends up in 7(H™), i.e. 7 1(5).

o If 7(¢) = j and ¢ € [n]\ Domain(y), then consider vector, d;. Recall, dgout (j) = dq(j) + wgout (j,vj) =
da(j) + (j + 1)aA(H) by construction of G°“*. Now, since 7r(€) = J, dx(uiny(j) = dpin (£). Also, since
¢ ¢ Domain(v)), we know £ is not incident to any of the new edges not in H by construction, so
dgin(£) = dp (£). Consequently,

0 Loowdy _ dgonl) _ da(i) + G+ DaAH) _ (j+1aA(H)
6T Luimy0;  de(riny () A (0) A(H)

=@{+Da>a

o If7(¢) = jand ¥ (¢) = k (so £ € Domain(1)), then by maximality of j we know that k < j,i.e. k+1 < j.
Consider the vector 6;. Again, dgout (j) = dq(j) +wgeut (j,vj) = da(j)+ (7 +1)aA(H) by construction
of G°“*. Now, since 7r(€) = J, da(miny(j§) = dgin (€). Also, since £ € Domain(y), we know £ is incident
to a new edge not in H by construction, so dyin(¢) = dg(€) + wyin (¢, v) = dg(€) + (k + 1)A(H).
Hence,

O Latdy _ dgow(j) _ do() + (G +DaAWH) _ (k+2)aAH) _ (k+2aA(H) _
0 Laginy0j  deqiny(j)  du(0) + (k+1)AH) ~ AH) + (k+1)AH)  (k+2)A(H)

o If w(vy) = j, there are two further cases to consider:

— If k < j, then again consider the vector §;. Once more, dgout(j) = dg(j) +wgout (4, v;) = da(j) +
(j+1)aA(H) by construction of G***. Now, since 7(vx) = j, dr(priny(j) = dpgin (vi) = (k+1)A(H)
by construction. Thus,

lowds _ dorl) _ dol)+ 4 Dod(H) |+ DAl

_ — > >«

8 La(riny0j — durny(5) (k+1DA(H) (k+DAH) —

— If k > j, then by maximality of j, we know that if ¢¥)(¢) = k then w(¢) = k. Hence, we consider
the vector 8 ;. Since j,k € Range(1)), dgout (j) = da(j) + wgout (j,v5) = da(j) + ( + 1)aA(H)
and dgout (k) = dg (k) + wgout (k,vg) = dg(k) + (k+ 1)aA(H ) Also, wgout (4, k) = wa (4, k) since
any edge in G is the same in G°“* by construction. Thus, §7 kjLGoutdy,j = dgout (§) + dgout (k) —
2wgout (j, k) = dg(j) + da(k) — 2wa (4, k) + (j + 1)aA(H ) (k + 1)aA(H). Now, we know that



7(f) = k and 7w(vg) = j, so the edge (¢,v;) in H™ becomes (k,7) in 7(H™). Consequently,

dﬂ-(Hin)(k) = dH(K) + sz‘n(ﬂ,’Uk) and d.,r(Hz‘n)(j) = dgin (’Uk> = me(f Uk) SO (5 Lﬂ(Hln)ék] =

dﬂ.(Hm)( )+ dy Hin)(k) - Qwﬂ(Hm)(j,k) = (dg(l) + wgin (L, vg)) + wrpin (6, vg) — Qme (b, v) =
du(£). So,

5LiLoobei _ doi) +do(k) = 2uG (k) + (G + DaA(H) + (k+1)aA(H) _ (k+DaA(H)
08 Ln(r1imy Ok g dp(0) A(H)

Thus, in any case we reach a contradiction of the assumption that m shows G°* =% H™ g0 the claim
holds. ]

Lemma 3.3.3. If 7 preserves ¢, then 7 is the identity on the gadget vertices

Proof: Suppose not and let j be the largest vertex satisfying m(v;) # v;. Since 7 preserves ¢ by Lemma
3.3.2 we know that nothing in the domain of 1 can map to v;, so there are only two cases to consider:

o If (k) = v; where k is not in the domain of ¢, then consider d,,. By construction of G, dgout (v;) =
wgout (§,v;) = (j+1)aA(H). Now, since (k) = v,, d,r(Hm)(v]) = dgyin (k). Also, since k & Domain(v),
we know k is not incident to any of the new edges not in H by construction, so dyin(k) = dg(k).
Consequently,

0y, Laoudy;  dgowe(vy) _ (j+ DaA(H)
517;;L7r(Hin)6vj d,r(Hm)(Uj) dH(k)

(j + 1)aA(H)
A(H)

> =@+la>a

o If w(v) = vj, then by assumption of maximality, we have k < j (since otherwise we’d have m(vy) # vg
yet k > j), so j > k + 1. Now, consider the vector 0 ,,. We know k € Range(v) since vy exists, so
suppose ¥ (¢) = k. First, we know that (k, v;) is not an edge of G°“*, s0 wgout (k,v;) = 0. Consequently,
6I€ijGout6k,Uj = dgout (k) + dgout (vj) = (dg(k) + (k+ 1)ad(H)) + (j + 1)aA(H). Now, we know
that m(v;) = v; and 7(¢) = k, so the edge (¢,v;) in H™ becomes (k,v;) in m(H™). Consequently,
dﬂ(Hm)(k‘) = dH(g) + me(ﬁ Uk) and dﬂ-(HnL (U]) = de(’Uk) = wHin(g, ’Uk) SO 5kv W(Hln)é]g v, =
dTr(Hin)(Uj)+d7r(Hin)(k) 2w (Hln)(/l)j, )—( ( )—l—wHin(&’Uk))-i-me(f,’Uk) 2me(€ ’Uk) = dH(Z)

Ok, LaowOho;  da(k) + (j + 1)aAH) + (k+1)aA(H) _ Gtkt2ad@)
5£vj L (prin)Ok v, dm (€) A(H)

Thus, in either case we reach a contradiction of the assumption that 7 shows G°% =% H" so the claim
holds. ([l

Hence, we have that 1 is preserved by 7 by Lemma 3.3.2 and 7 is the identity on the gadgets by Lemma
3.3.3. As mentioned previously, we have G°* = G UG’ and H™ = H U H' except now we will not have the
isolated vertices in G’ and H'. Formally, G’ = (Range(¥)U{v;|j € Range()},{(j,v;)|j € Range(y)}) with
wer (j,v5) = (j+1)aA(H) and Formally, H" = (Domain(¢)U{v;|j € Range(y)}, {(i, vy))|t € Domain(i))})
with wg (i, vy)) = (¥(i) + 1)A(H). Now, we note that by construction Vi N Vi = Domain(s)) and
Ve N Voo = Range(y). Consequently, Since 7 preserves v, we have 7(Vyg N Vi) = w(Domain(y)) =
Range(y) = Vg N V. Also, each component of H' is just a single edge (7, vy(;)) containing a single vertex
i € V. Each such edge forms the component V; in the setting of Lemma 3.2.2. Similarly, each component
of G’ is just a single edge (j,v;) containing a single vertex j € V. Since 7 is the identity on the gadget
vertices and preserves ¢, m(Vg:) = 7({i,v40)}) = {¥(i), vy} = Ve, = Var - Thus, by Lemma 3.2.2 we
have 7 shows G = H and by Lemma 3.3.2, m preserves w.



4 Coloring

4.1 CSGI

We approach CSGI similarly to PrefixSGI. Now, we have a coloring function ¢ : Vi — [n] that we need to
preserve. We will attach a gadget to every vertex in both graphs. Specifically, for every j, we add edges
(4,v;) to both G and H to form G° and H°. The idea is we want to assign the same weights to the added
edges for each vertex in the same color class so that they can be interchanged with each other. However,
we will ensure weights of other classes are different in order to get a ratio of Rayleigh quotients that is too
large in the case where we map a vertex of one color to another. Before, we considered preimages, namely,
where did j end up. Here, it is more natural to look at images, namely, where does ¢ go. We will end up
using well-ordering, so there are two relevant cases to consider.

e Suppose 7(i) = j and c(i) < c(j). Consider the vector d;. Since each vertex j of G is incident
to the edge (j,v;) in GC dgc( 1) = da(j) + wae(j,v;) by construction of G°. Now, since (i) = j,
dr(ey(j) = dpe(i) = dy (i) + wye(i,v;) by construction of H¢. Consequently,

07 Laed; _ dge(j) _ da(j) + walj,vs) o wGe(J,v5)
01 Lu(r¢)0; deaey(§)  du (i) +wr(i,v;) ~ A(H) +wpge(i,v;)
We want the last term to be > a. This leads to the condition that wge(j,v;) > aA(H) + wge(i,v;)

e Suppose 7(i) = v; and ¢(i) < c¢(j). Now, we consider J,,

6’17); LGC 6'”]' o wgqGe (.73 vj) > wgqGe (.73 vj)
(53;_Lﬂ(Hc)5vJ ~dy(i) +wge(i,v;) T AH) + wge(i,v;)

Again, we want the last term to be > «. This leads to the inequality wge(j, v;) > aA(H) + wge (4, v;).
Hence, it is sufficient that wge(j,v;) = 20A(H) + wge(i,v;). Now, we want that the weights of
each vertex in the same color class is the same, so we can rewrite this equation more generally as
wee(class ¢(j)) = 2aA(H) 4+ wge(class ¢(i)). We no longer have any condition on individual weights,
just how they relate to one another, so we can choose wge(class 1) to be an arbitrary non-negative
number. To give us a fairly clean reduction, we choose wge(class 1) = 2aA(H). Solving this recurrence
gives wge(class i) = 2iaA(H). In other words, wge (i, v;) = 2¢(i)aA(H)

Now we show the reduction is correct.
Theorem 4.1.1. CSGI =P SGI
SGI <P CSGI is immediate, so we show CSGI <P SGI.

Proof:

Given G, H,a, ¢, we construct graphs G¢, H¢, where G¢ is G in addition to edges (i,v;) with weights
2¢(i)aA(H) and H is H in addition to edges (i,v;) with weights 2¢(i)A(H). The output of the reduction
is then G°, H¢, «v. If A(H) = 0, then the only way G =¢ H regardless of ¢ is if G is also the edgeless graph.
Hence, we will not add gadgets in that case. Thus, we assume that A(H) > 0.

[ = | Suppose 7 preserves color and shows G =% H. We note that G° = G U G’ where G' = ([n] U
{vili € [n]},{(,vi)|i € [n]}) with wg(i,v;) = 2¢(i )aA( ) Also, H® = H U H' where H' = ([n] U {v;]i €
[n]}, {(3,v:)|i € [n]}) with wgy (i,v;) = 2¢(i) A(H). Define 7’ to be 7 on Vg NV = [n] and 7' (v;) = vy for
each i € [n]. Then, an’(H') = G’ since for any edge (i,v;) € Ep, ©'((i,v;)) = (7(i), 7(v;)) = (7(i),vz(5)) €
E¢ by construction. Also, since 7 preserves color, ¢(i) = ¢(n (7)), so

ozw,r(H/)(ﬂ'(i),vﬂ(i)) = awg (i,v;) = a2c¢(i)A(H) = 2¢(n(i))aA(H) = wer (ﬂ'(i),vﬂ(i))
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Thus, 7’ shows G’ =% H' being that am(H') = G'. Now, by construction, 7 and 7’ match on Vg NV = [n].
Thus, Lemma 3.2.1 gives G° = GUG’' =¢ HUH' = H".

[ <= Suppose 7w shows that G = H®.
Lemma 4.1.2. 7 preserves colors

Proof: Suppose not and let ¢ be the smallest vertex for which ¢(m(7)) # ¢(i). There are three main cases to
consider

e if m(i) = j and c(i) # ¢(j), then by assumption that i is the smallest vertex not having its color
preserved, we know c(i) < ¢(j). Now, we consider §;. Since each vertex j of G is incident to the edge
(4,v) in G°, dg-(j) = da(j) + wgv(j,vj) =dg(j )—I— 2¢(j)aA(H) by construction of G¢. Now, since
(i) = j, dr(mey(J) = due (i) = du (i) + wge(i,v;) = dp (i) + 2¢(i) A(H). Consequently,

0fLaed;  doe(j) _ da(j) +2¢()aAH) | 2e(j)ad(H) _ 2(c(i) + Da
(SJTLW(Hc)(Sj dﬂ(Hc)(j) dr (i) +2c¢()A(H) — (2¢(i) + DA(H) = 2c(i)+1

e (i) = v; and c(i) < ¢(j), then consider d,,. By construction, v; is only incident to the edge (j,v;)
in G°. Hence, dg-(v;) = wge(j,v;) = 20( )aA(H). Now, since 7(i) = vj, dr(ge)(vj) = dye(i) =
A (i) + whe(i,v;) = dH(z) + 2c(i)A(H). Hence,

OuLeeds,  dge(vy) _ 2e(aAH)  _ 2e(j)ad(H) _ 2(c(i) + o
5T Lotrioyde, Aoy (vy) — dr() + 2e()A(H) ~ (26(0) + DAH) = 2e(i) + 1

e (i) = v; and c(i) > c(j), then there are two further cases to consider.

— If n(v;) = j and ¢(i) = ¢(j), so ¢ and v; have been shifted and swapped, then consider ¢; if
da(j) > 0.

0fLaedj _ dge(j) _ da(j) +2c(j)oA(H) _ 2e(oAH) _

(SjTLﬂ-(Hc)(SJ dﬂ-(Hc)(j) 20( )A(H) QC(Z)A(H)

However, if dg (i) = 0 = dg(j), then only the edge incident to j in 7(H®) is (j,v;). Hence, j only
contributes wge (i,v;)(x(j) — 2(v;))? to @7 Ly (geyx. Consequently, we can just consider the new
permutation 7’ that is 7 except 7/(i) = j,7'(v;) = vj. Since wye(i,v;)(z(7' (1)) — z(7'(v;)))? =
wie (i, 0:) (2(f) —2(v5))* = whe (6, vi) (@(v;) —JJ(J’))2 = wpe (i, v;)(z(n (i) —2(m(v;))* and 7’ agrees
with 7 on all other vertices, z Lﬂ(Hc)x =aTL, r(aeyx. Hence, m' also shows G¢ =¢ H€, yet has
i’s color preserved since 7'(i) = j and by assumption ¢(i) = ¢(j). We can then continue the proof
using 7’ instead of 7, so we can without loss of generality assume this case does not occur.

— If w(v;) # j or (i) > ¢(j), then we note that in the latter case when c(i) > ¢(j), we know by
minimality of ¢, that ¢(n(j)) = ¢(j). Hence, 7(v;) # j being that they have different colors.
Consequently, we just assume 7(v;) # j. We consider d, (). Since m(v;) # j, and only j is
adjacent to v; in G°, we know that 7(v;) and v; are not adjacent in G°, so wge(vj,m(v;)) = 0.
So, 5v,~,w(v7: LGL&,J,W(M) dge(vj) + dge(m(v;)). Next, we know every vertex is incident to a
weighted edge, and each weighted edge is at least 2aA(H) in G¢, so dge(m(v;)) > 2aA(H).
Thus, (5 (o) LG 00 m(vr) = dae () + dae (m(v3)) = 2¢(j)aA(H) + 20A(H). Now, we know that
(i) = U], so the edge (i,v;) in H¢ becomes (vj, m(v)) in w(H¢). Therefore, dy(gey(v;) = dp (i) +
wre(4,v;) and dy(giny(m(vi)) = dge(vi) = wye(i,v;), so 55;JT(vi)Ij,r(Ij[c)(SvJ)7T = d mey(v5) +
Ar(rey(T(V:))) = 2wWr(giny (v, k) = (g (1) +whe(i,v;)) +whe (i, v;) — Zch(z,vz) = dH( ) Hence,

T .
Oy m(ws) LG 0v, m(vy) _ dge(vy) + dge(m(v;)) - 2¢(j)aA(H) 4+ 2aA(H) ~
(Sq,l);,ﬂ(vi)Lﬁ(HC)(svj,w(vi) A () (V) + do(mey (m(0i) = 2wpe (i, v;) — A(H)
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Hence, in all cases, we found a vector that makes the ratio of Rayleigh quotients > a contradicting our
assumption that 7 shows G¢ =% H¢. Thus, 7 must preserve color. O

Lemma 4.1.3. Vi,j € [n],7(i) = j = w(v;) = vj, i.e. 7(v;) = v

Proof: Suppose there exists i,j with 7(i) = j, but m(v;) # v; consider the vector §; r(,,). The argu-
ment is almost identical to before. Since m(v;) # v;, we have by definition that 6; r(,,)(v;) = 0 and
8j.x(vs)(j) = 1. Thus, the term wge (4, v;)(x(j) — z(v;))? from 5fw(vi)LGc(5j7ﬂ(vi) becomes wge(j,v;). Hence,
537‘:77(1;1-)[’0“ i r(vy) = wae(J,v5) = 2¢(j)aA(H). Now, we know that (i) = 7, so the edge (4, v;) in H® becomes
(4, m(vi)) in w(H€). Therefore, dr(gey(j) = du (i) + wge(i,v;) and dygin)(7(v;)) = dpe(vi) = wae(i,v;), 50
61,1);,7r(vi)L7T(HC)5'Uj77T(Ui) = d,r(Ha)(Uj) + d,r(Hc)<7T(Ui))) — Qwﬁ(Hm)(Uj, k) = (dH(’L') + Wye (i,’l}i)) + ch(’i, Ui> —

2wpe(i,v;) = dg(i). Thus,

T . .
0 (o LaeOinw)  _ wage(j,v;) o 2c(j)aA(H)

= . = >«
5}:7{'(’Ui)L7r(HC)§j77T(Ui) dH(’L) A(H)
Hence, we found a vector that makes the ratio of Rayleigh quotients > « contradicting our assumption that
7 shows G¢ =% He. Thus, m(v;) = vy ;) for all i. O

As mentioned previously, we have G° = GU G’ and H® = H U H'. Now, we note that by construction
VuNVy = VeNVe = [n]. Consequently, Since 7 preserves v, we have 71(VyNVy) = w([n]) = [n] = VaeNVer.
Also, each component of H' is just a single edge (i,v;) containing a single vertex i € V. Each such edge
forms the component V; in the setting of Lemma 3.2.2. Similarly, each component of G’ is just a single edge
(4,v;) containing a single vertex i € V. By Lemma 4.1.3, 7(Vyy) = m({3,vi}) = {7 (i), vr(5)} = ngw). Thus,
by Lemma 3.2.2 we have 7 shows G =% H and by Lemma 4.1.2, m preserves color.
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