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Abstract

We continue the investigation of the spectral graph isomorphism problem (SGI). We mainly focus on
new developments that result from looking at the problem from the perspective of a decision problem.
To begin, we show general properties of the spectrally isomorphic relation. Also, we show general
combinatorial conditions that guarantee or prevent graphs from being spectrally isomorphic with respect
to particular functions. In addition, we show certain graphs to be spectrally isomorphic with specific
bounds. Furthermore, we show lower bounds on the functions for which two graphs may be spectrally
isomorphic. Lastly, we inspect the computational complexity of SGI.

1 Definitions

Let G = (V,EG) and H = (V,EH) be graphs with the same vertex set. We say that G and H are α-spectrally
isomorphic, if there exists a permutation π : V → V so that G and π(H) have the same components,

equivalently, the null space of the Laplacians are the same, and ∀x ∈ RV \N(LG),
1
α ≤ xTLGx

xTLπ(H)x
≤ α, where

π(H) is the graph (π(V ), EH). Equivalently, we define π(H) = (V, {(π−1(u), π−1(v))|(u, v) ∈ EH}), which
merely takes an edge, (u,v), of H and puts the same edge in the permuted graph where the endpoints, u and v,
of the edge are now the vertices that we identify with u and v under the permutation. This characterization
will be more useful in this paper as it immediately shows that H and π(H) are isomorphic with isomorphism
π−1.

Generally, we view α as some function of n = |V |. We say that G and H are spectrally isomorphic if there is
some α so that G and H are α-spectrally isomorphic. Sometimes, we think of the spectral graph isomorphism
problem as the optimization problem that seeks the smallest α so that G and H are α-spectrally isomorphic.

Equivalently, it seeks minπ∈Sym(V ) κ(G, π(H)), where κ(G,H) = max{maxx
xTLGx
xTLHx

,maxx
xTLHx
xTLGx

} is the
relative condition number of G and H. However, more often in this paper, we will treat the spectral graph
isomorphism problem as a variation of a decision problem. Specifically, given some α, are G and H α-
spectrally isomorphic?

2 Spectral Isomorphism

2.1 The Spectral Isomorphism Relation

To begin this section, we introduce the notation G ∼=α
s H to mean that G and H are α-spectrally isomorphic.

Also, we write G ∼=s H if G and H are spectrally isomorphic, equivalently, there is some α so that G ∼=α
s H.

More generally, if F is a set of functions then we say that G and H are F-spectrally isomorphic if G ∼=f
s H
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for some f ∈ F and denote this by G ∼=F H. We will commonly use the subscripts C, L, P to denote the
set of constant, logarithmic, and polynomial functions respectively. Furthermore, we say that G ∼=α

s H is

optimal if α is a solution to SGI for G and H. Note that we always have that G ∼=κ(G,H)
s H and the relative

condition number between two graphs with the same components is always at most a polynomial in n and
so G ∼=s H ⇐⇒ G ∼=P H.

Also, we say that a graph G and a graph H with the same vertices have the same component structure,
if there exists a bijection g from the components of G to the components of H such that for any component,
K, of G we have |VK | = |Vg(K)|. In other words, G and H have the same number of components having the
same number of vertices.

Lemma 2.1. G ∼=s H ⇐⇒ G and H have the same component structure

Proof.

• [ =⇒ ] We have G ∼=s H ⇐⇒ G and π(H) have the the same components for some permutation
π ⇐⇒ G and π(H) have the same component structure =⇒ G and H have the same component
structure since permuting the vertices of H cannot change the order of each component, just the names
of each component’s vertices.

• [ ⇐= ] Suppose g proves that G and H have the same component structure. Let K be a component
of G and consider g(K). We define a permutation π that arbitrarily maps the vertices of g(K) to the
vertices of K. This is always possibly since the number of vertices of K and g(K) are the same by
definition. We notice that G and π(H) now have the same components, so as previously mentioned
G ∼=s π(H). Hence, G ∼=s H by simply composing the two permutations.

Now, we prove a few simple lemmas in order to establish that ∼=s is an equivalence relation.

Lemma 2.2. For any permutation π, if Π is the permutation matrix representing π defined by Π(u, v) =
[π−1(u) = v], then (Πx)(a) = x(π−1(a)) and two graphs G, H are isomorphic with isomorphism π if and
only if ΠAGΠ

T = AH .

Proof. By [4]

Lemma 2.3. For any graph G and any permutation, π, ΠTLGΠ = Lπ(G) where Π is the permutation matrix
representing π as in Lemma 2.2.

Proof. As mentioned in the definitions section, we have that G is isomorphic to π(G) with isomorphism π−1.
Now, if Π is defined as in Lemma 2.2 with respect to π, then ΠT is the permutation matrix representing
π−1. Specifically, we have ΠT (u, v) = Π(v, u) = [π−1(v) = u] = [π(u) = v] = [(π−1)−1(u) = v]. Hence, by
Lemma 2.2, we know that (ΠT )AG(Π

T )T = ΠTAGΠ = Aπ(G). Also, we have that ΠTDGΠ = Dπ(G). In
particular, since π−1 is an isomorphism from G to π(G), we have that ∀u ∈ V, dG(u) = dπ(G)(π

−1(u)) and
so ∀u ∈ V, dG(π(u)) = dπ(G)(u). Consequently, ∀u ∈ V,Dπ(G)(u, u) = dπ(G)(u) = dG(π(u)). In addition,
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∀u ∈ V,

(ΠTDGΠ)(u, u) =
∑
w∈V

∑
y∈V

ΠT (u, y)DG(y, w)Π(w, u) Matrix Multiplication

=
∑
w∈V

∑
y∈V

[π(u) = y]DG(y, w)[π
−1(w) = u] Definition of Π,ΠT

=
∑
w∈V

[π(u) = w]DG(w,w)[π
−1(w) = u] D is diagonal

= DG(π(u), π(u)) = dG(π(u)) = Dπ(G)(u, u)

Hence, since both matrices are diagonal and have the same diagonals, we know that ΠTDGΠ = Dπ(G). Thus,
by definition of the laplacian, we have ΠTLGΠ = ΠT (DG −AG)Π = ΠTDGΠ−ΠTAGΠ = Dπ(G) −Aπ(G) =
Lπ(G).

Theorem 2.4. ∼=s is an equivalence relation. Moreover, ∼=F is an equivalence relation for any set of
functions, F, that forms a group under multiplication.

Proof.

1. Reflexive. The identity permutation satisfies that G and id(G) = G are 1-spectrally isomorphic, so
reflexivity holds. Also, since 1 is the multiplicative identity, which is contained in any set of functions
that form a group under multiplication, we see that ∼=F is reflexive.

2. Symmetric. Suppose G ∼=α
s H, then there is some permutation π so that G and π(H)’s Laplacions

have the same null space and ∀x ∈ RV \N(LG),
1
α ≤ xTLGx

xTLπ(H)x
≤ α.

Then we have ∀x ∈ RV \N(LG),

xTLGx

xTLπ(H)x
=

xTLGx

xTΠTLHΠx
By Lemma 2.3

=
xTΠTΠLGΠ

TΠx

xΠTLHΠx
Since Π−1 = ΠT

=
(Πx)TΠLGΠ

T (Πx)

(Πx)TLH(Πx)
Since (AB)T = BTAT

=
(Πx)TLπ−1(G)(Πx)

(Πx)TLH(Πx)
Since ΠT represents π−1

=
yTLπ−1(G)y

yTLHy
By letting y = Πx

Also, we have x /∈ N(LG) ⇐⇒ x /∈ N(Lπ(H)) ⇐⇒ x /∈ N(ΠTLHΠ) ⇐⇒ Πx /∈ N(LH) ⇐⇒ y =
Πx /∈ N(LH) and so the above equality holds ∀y /∈ N(LH). Now, by taking the original inequalities
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and flipping them, we see that ∀y ∈ RV \N(LH), 1
α ≤ yTLHy

yTLπ−1(G)y
≤ α. In addition, we have

x ∈ N(LH) ⇐⇒ LHx = 0 By definition of Null Space

⇐⇒ ΠTLHx = 0 Since ΠT is invertible

⇐⇒ ΠTLHΠΠTx = 0 Since ΠT = Π−1

⇐⇒ Lπ(H)Π
Tx = 0 By Lemma 2.3

⇐⇒ ΠTx ∈ N(Lπ(H)) By definition of Null Space

⇐⇒ ΠTx ∈ N(LG) Since N(LG) = N(Lπ(H))

⇐⇒ LGΠ
Tx = 0 By definition of Null Space

⇐⇒ ΠLGΠ
Tx = 0 Since Π is invertible

⇐⇒ Lπ−1(G)x = 0 By Lemma 2.3

⇐⇒ x ∈ N(Lπ−1(G)) By definition of Null Space

Hence, H and Lπ−1(G) have the same null space. Thus,H ∼=α
s G, so symmetry holds. Since the bound

is the same and α ∈ F implies α ∈ F , we see that ∼=F is also symmetric.

3. Transitive. Suppose G ∼=α
s H and H ∼=β

s K, then there exist permutations π1, π2 so that N(LG) =

N(Lπ1(H)) and N(LH) = N(Lπ2(K)) and ∀x ∈ RV \N(LG),
1
α ≤ xTLGx

xTLπ1(H)x
≤ α and ∀x ∈ RV \N(LH),

1
β ≤ xTLHx

xTLπ2(K)x
≤ β.

Then ∀x ∈ RV \N(LH),

xTLHx

xTLπ2(K)x
=

xTΠ1Π
T
1 LHΠ1Π

T
1 x

xTΠ1ΠT
1 Lπ2(K)Π1ΠT

1 x
Since Π−1

1 = ΠT
1

=
xTΠ1Lπ1(H)Π

T
1 x

xTΠ1Lπ1π2(K)Π
T
1 x

By Lemma 2.3

=
(ΠT

1 x)
TLπ1(H)(Π

T
1 x)

(ΠT
1 x)

TLπ1π2(K)(Π
T
1 x)

Since (AB)T = BTAT

=
yTLπ1(H)y

yTLπ1π2(K)y
By letting y = ΠT

1 x

Also, we have x /∈ N(LH) ⇐⇒ ΠT
1 x /∈ N(ΠT

1 LHΠ) ⇐⇒ ΠT
1 x /∈ N(Lπ1(H)) ⇐⇒ y = ΠT

1 x /∈
N(Lπ1(H)) and so the above equality holds ∀y /∈ N(Lπ1(H)). However, since N(LG) = N(Lπ1(H)), we
have the equality holds ∀y /∈ N(LG).

Thus, we know that ∀y ∈ RV \N(LG),
1
β ≤ yTLπ1(H)y

yTLπ1π2(K)y
≤ β.

Hence, ∀z ∈ RV \N(LG),
zTLGz

zTLπ1(H)z
× zTLπ1(H)z

zTLπ1π2(K)z
= zTLGz

zTLπ1π2(K)z
. Now, by multiplying all the inequal-

ities together we see that ∀x ∈ RV \N(LG),

1

αβ
≤ xTLGx

xTLπ1π2(K)x
≤ αβ

Now, we argue that N(LG) = N(Lπ1π2(K)), by showing that N(Lπ1(H)) = N(Lπ1π2(K)).
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x ∈ N(Lπ1(H)) ⇐⇒ Lπ1(H)x = 0 By definition of Null Space

⇐⇒ ΠT
1 LHΠ1x = 0 By Lemma 2.3

⇐⇒ LHΠ1x = 0 Since ΠT
1 is invertible

⇐⇒ Π1x ∈ N(LH) By definition of Null Space

⇐⇒ Π1x ∈ N(Lπ2(K)) Since N(LH) = N(Lπ2(K))

⇐⇒ Lπ2(K)Π1x = 0 By definition of Null Space

⇐⇒ ΠT
1 Lπ2(K)Π1x = 0 Since ΠT is invertible

⇐⇒ Lπ1π2(K)x = 0 By Lemma 2.3

⇐⇒ x ∈ N(Lπ1π2(K)) By definition of Null Space

Hence, by transitivity of equality we have N(LG) = N(Lπ1π2(K)). Thus, G ∼=αβ
s K, so transitivity

holds. Now, if α, β ∈ F , then since F is closed under multiplication, being that it is a group under
multiplication, we see that G ∼=F H, so ∼=F is transitive.

We will frequently use the stronger facts exhibited by the proof that symmetry of the relation actually
preserves the function and transitivity merely multiplies the two functions. In fact, we can show a further
strengthening.

Corollary 2.4.1. G ∼=α
s H is optimal ⇐⇒ H ∼=α

s G is optimal.

Proof. We show the implication, the converse is identical. We proceed by contradiction. Suppose that
G ∼=α

s H is optimal, yet H ∼=β
s G for some β < α. Then, we have by symmetry of ∼=s that G ∼=β

s H, which
contradicts the minimality of α.

However, cannot derive a similar strengthening for transitivity of this form being that it does not hold
in general (almost never, in fact).

2.2 Complexity Theoretic Perspective

We define the spectral isomorphism class of a function α(n), where n is the number of vertices of graphs
we are considering, as SI(α) = {(G,H)|G ∼=α

s H}. Also, for a set of functions, F, we define the F-spectral
isomorphism class, FSI, as the union over all functions f ∈ F of SI(f). Equivalently, this is the set of all
pairs of graphs that are F-spectrally isomorphic. In particular, we will use the same letters as in Section
2.1 to denote the more common classes of functions. Specifically, we consider CSI = SI(O(1)), LSI =
SI(O(logn)), and PSI = SI(nO(1)). Also, notice that PSI = ∪αSI(α) encapsulates all graphs that are
spectrally isomorphic since G ∼=s H ⇐⇒ G ∼=P H. Naturally, we are more interested in the constant
spectral isomorphism class, as these graphs have more in common.

Another important set we will consider is the α-edge difference class, ED(α), where ED(α) = {(G,H)|
G and H have the same component structure and EG∆EH = α(n)}. Also, for any set of functions F, we
define FED = ∪f∈FED(f). In addition, if (G,H) ∈ FED, then we say that G and H differ by F-many
edges. Also, for any graph G, we let FED(G) be the set of all graphs with the same components as G that
differ in F-many edges from G. Similarly, for each class, C, defined, we define Cs to be the restriction of C
over pairs of graphs with the same components. Note that any two graphs with n vertices can differ by at
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most
(
n
2

)
edges and so PED is exactly the set of all pairs of graphs of n vertices with the same component

structure. Thus, PED = PSI. We explore further relationships between theses classes later on.

3 Optimization Lemmas

In this section, we establish several optimization results that will be later useful in deriving functions for
which two graphs may be spectrally isomorphic.

Definition 3.1. Let G be a graph, S ⊆ EG, and T ⊆ VG. Then, V (S) = {u|(u, v) ∈ S} is the set of all
vertices of G incident to S. Also, we say some set of subgraphs of G, K, is T -internally disjoint if each
subgraph has only vertices of T in common, i.e. ∀H, J ∈ K,VH ∩ VJ ⊆ T .

Definition 3.2. Let G be a graph, S ⊆ EG, and H = G − S. Then, we define C(H) to be the set of all
subgraphs of H formed by taking a component, K, of G− V (S) that has edges to both u and v in H for some
(u, v) ∈ S and adding to it each vertex of V (S) with edges to K in H along with those edges. Also, we let
CS(H) = ∪K∈CK.

The idea behind defining C(H) is it abstracts away much of the parts of H that do not really affect xTLGx
xTLHx

in the case when H is a subgraph of G.

Definition 3.3. We say that a set of edges, S, is maximal if it is transitive when viewing it as a relation.

3.1 Results for general graphs

Our first result allows us to consider arbitrary subgraphs of a graph G by expanding the vectors we are
considering to match the vertices of G.

Lemma 3.4. Let G be a graph and H ⊆ G, then G ⪰ H

Proof. By [2], we already know that the claim holds when VH = VG. If VH ̸= VG, then we can simply
consider the graph H’ that that has the same edges as H, but vertex set being the same as G. Then, this
expanded graph has the same laplacian quadratic form as H, being that no new edges were introduced, and
has the same vertex set as G and so G ⪰ H.

Our next result gives a simple upper bound of the condition number between a graph and a subgraph,
H, of it that can be strengthened under certain conditions when we consider C(H).

Lemma 3.5. Let G be a graph, S ⊆ EG, and H = G − S having the same components as G. If J is a set
of connected subgraphs of H satisfying ∀(u, v) ∈ S∃K ∈ J, u, v ∈ VK and H ′ = ∪K∈JK ⊆ H, then

1 ≤ κ(G,H) ≤ 1 + max
x∈RV

H′

∃(u,v)∈S
x(u)̸=x(v)

∑
(u,v)∈S(x(u)− x(v))2∑

K∈J 2EK(x)
< ∞

Furthermore, if J = C(H) and some maximizing vector satisfies
∑

(u,v)/∈Su,v∈V (S)(x(u)−x(v))2 = 0 and for

each component of G− S having edges to only vertices of V(S) that have no edge in S we have x(u) = x(v)
for each u,v in V(S) with edges to this component in G, then second inequality is an equality. Moreover, if
S is maximal, then the equality holds.
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Proof. If S = ∅, then G = H and κ(G,H) = 1. Consequently since the expression on the right is 1 + a non-
negative number, we have that κ(G,H) is at most this expression. On the other hand, suppose S ̸= ∅. We
note that since G and H have the same components, N(LG) = N(LH). Now, ∀x /∈ N(LG), with x(u) ̸= x(v)
for some (u, v) ∈ S,

xTLGx

xTLHx
=

∑
(w,y)∈EG

(x(w)− x(y))2∑
(w,y)∈EH

(x(w)− w(y))2
Property of the Laplacian

=

∑
(w,y)∈EH

(x(w)− x(y))2 +
∑

(u,v)∈S(x(u)− x(v))2∑
(w,y)∈EH

(x(w)− w(y))2
By definition of H

= 1 +

∑
(u,v)∈S(x(u)− x(v))2∑

(w,y)∈EH
(x(w)− x(y))2

Since x /∈ N(LG) = N(LH)

≤ 1 +

∑
(u,v)∈S(x(u)− x(v))2∑

(w,y)∈EH′ (x(w)− x(y))2
By Lemma 3.3 since H ′ ⊆ H

= 1 +

∑
(u,v)∈S(x(u)− x(v))2∑

K∈J

∑
(w,y)∈EK

(x(w)− x(y))2
By Definition of H ′

= 1 +

∑
(u,v)∈S(x(u)− x(v))2∑

K∈J 2EK(x)
By definition of Energy

Since x(u) ̸= x(v), we have by definition of J that there is some K ∈ J satisfying u, v ∈ VK and K is
connected implying it must contain a u-v path. Now, this u-v path must have at least one non-zero edge
since its endpoints are not the same. Hence, the denominator of the last expression is not 0, so is defined.
In addition, only the values of vertices in H ′ are used in the last expression, and hence the last expression
need only consider x ∈ RVH′ .

Now, for the case when x(u) = x(v) for every (u, v) ∈ S, we have that xTLGx
xTLHx

= 1, which we know is
not the maximum since this would imply G is isomorphic to H which is impossible since S ̸= ∅. Hence, if
x(u) = x(v) or every (u, v) ∈ S, we know that the vector cannot be a maximizer for the original expression.

Thus, for any vector that could maximize xTLGx
xTLHx

we have that the last expression derived is defined and is
larger, so the max over the last expression is larger. In other words,

κ(G,H) = max{1, max
x/∈N(LG)

xTLGx

xTLHx
} = max

x/∈N(LG)

xTLGx

xTLHx
≤ 1 + max

x∈RV
H′

∃(u,v)∈S
x(u)̸=x(v)

∑
(u,v)∈S(x(u)− x(v))2∑

K∈J 2EK(x)

In fact, the inequality can be made into an equality when J = C(H) and the conditions on a maximizing
vector hold. Specifically, suppose that x ∈ RVCS(H) with x(u) ̸= x(v) for some (u, v) ∈ S maximizes the
second expression and satisfies the given conditions. We show how to construct a vector y from x that gives

the same value in yTLGy
yTLHy

. In particular, we show how to set the values of y so that the denominator becomes

exactly xTLCSx and since the two expressions have the same numerators this will complete the proof.

• First, we know that any vertex in a different component than a component containing some u ∈ V (S)
does not affect the second expression, so we remove them from the original expression by setting
y(w) = 0 for each such vertex, w.

• Also, if w is a vertex in a component of G− S having edges to only one vertex t ∈ V (S), then we set
y(w) = x(t). This zeros out all the edges of that section of the component containing t.

• Similarly, if w is a vertex in some component of G− S that has edges to vertices of V(S) that do not
have corresponding edges in S, then we set y(w) = x(t) where t is one such vertex of V(S) with edges
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to the component. By assumption, each of these vertices have the same x value, and so this component
is zeroed out.

• The remaining vertices not assigned a value are exactly the vertices belonging to CS(H) and we set
y(w) = x(w) for any w ∈ CS(H).

Consequently, the only remaining edges that differ between the two expressions are the edges between vertices
of V (S) that are not in S. However, by assumption x satisfies

∑
(u,v)/∈Su,v∈V (S)(x(u)− x(v))2 = 0, so these

edges are all zeroed out. Hence, we have that yTLGy
yTLHy

= 1 +
∑

(u,v)∈S(x(u)−x(v))2∑
K∈C 2EK(x) , so the maximum value of

the second expression is achieved by the first. Hence, equality holds.

Now, for the moreover, we note that if S is a maximal set of edges, then any maximizing vector satisfies∑
(u,v)/∈Su,v∈V (S)(x(u)−x(v))2 = 0 since the sum is over the empty set. Also, if S is maximal then there are

no components of G−S having edges to vertices of V(S) that have no edges in S, so that claim is vacuously
true. Hence, we may apply the furthermore to achieve equality.

Our next lemma is merely a restating of a result from calculus that allows us to split a max into two
maxes that partitions the vectors into vectors of smaller dimension. In particular, it states that when we fix
a certain set of vertices and maximize an expression over the remaining vertices, then maximize the resulting
expression, we end up with the maximum over all the vertices assuming the maximum of the non-fixed vertex
set is finite.

Lemma 3.6. Suppose G is a graph and S ⊂ EG. If minx∈RV \V (S)

∑
(s,t)∈S(x(s) − x(t))2 > 0 ∀x ∈ RV (S)

with x(u) ̸= x(v) for some (u, v) ∈ S, then

max
x∈RV

∃(u,v)∈S
x(u) ̸=x(v)

∑
(s,t)∈S(x(s)− x(t))2∑
(s,t)∈EG

(x(s)− x(t))2
= max

x∈RV (S)

∃(u,v)∈S
x(u) ̸=x(v)

∑
(s,t)∈S(x(s)− x(t))2

min
x∈RV \V (S)

∑
(s,t)∈EG

(x(s)− x(t))2

Proof. First note, that for any non-negative function f, maxx
a

f(x) = a
minx f(x) . Hence, we have that when

each u ∈ V (S) is held constant,

max
x∈RV \V (S)

∑
(s,t)∈S(x(s)− x(t))2∑
(s,t)∈EG

(x(s)− x(t))2
=

∑
(s,t)∈S(x(s)− x(t))2

min
x∈RV \V (S)

∑
(s,t)∈EG

(x(s)− x(t))2

Thus, we just need to show that the first expression in this equality is equal to our original expression. But,
from Calculus, we know that if the max restricted over certain variables exists, then we can maximize the
entire expression by maximizing over the other variables of the partially maximized function. Hence, since
the min always exists, and so the partial max always exists we have that the claim holds.

Lemma 3.7. Let G be a graph, S ⊆ EG, and H = G − S having the same components as G. If J is a
V (S)-internally disjoint set of connected subgraphs of H satisfying ∀(u, v) ∈ S∃K ∈ J, u, v ∈ VK and H ′ =
∪K∈JK ⊆ H and ∀K ∈ J∀x ∈ RV (S)∩VK with x(u) ̸= x(v) for some (u, v) ∈ S,minx∈RVK\V (S) 2EK(x) > 0,
then

1 ≤ κ(G,H) ≤ 1 + max
x∈RV (S)

∃(u,v)∈S
x(u)̸=x(v)

∑
(u,v)∈S(x(u)− x(v))2∑

K∈J min
x∈RVK\V (S)

2EK(x)
< ∞

Furthermore, if J = C and some maximizing vector satisfies
∑

(u,v)/∈Su,v∈V (S)(x(u) − x(v))2 = 0 and for

each component of G− S having edges to only vertices of V(S) that have no edge in S we have x(u) = x(v)
for each u,v in V(S) with edges to this component in G, then the second inequality is an equality. Moreover,
if S is maximal, then the equality holds.
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Proof. This is an application of Lemma 3.5 and then Lemma 3.6 to H ′ and S. We note that the min can be
pulled into the first sum being that the variables over which the inner sums are defined are different when
the vertices incident to S are held fixed being that the subgraphs are all V (S)-internally disjoint.

3.2 Results for specific graphs

We introduce the notation [n] = {0, ..., n} and [n]+ = {1, ..., n}.

Lemma 3.8. Suppose u = p0, p1, ..., pℓ = v is a path of length ℓ. If ∀i ∈ [ℓ − 1]+, x(pi) =
x(pi−1)+x(pi+1)

2 ,

then ∀i ∈ [ℓ− 1]+, x(pi) =
(ℓ−i)x(pi−1)+x(v)

ℓ−i+1 .

Proof by Induction on i.

• Basis: if i = ℓ− 1, then we have x(pi) = x(pℓ−1) =
x(pℓ−2)+x(pℓ)

2 = (ℓ−i)x(pi−1)+x(v)
ℓ−i+1

• Inductive Step: Let i > 0 and suppose ∀i < j ≤ ℓ− 1, x(pj) =
(ℓ−j)x(pj−1)+x(v)

ℓ−j+1 . We have

x(pi) =
x(pi−1) + x(pi+1)

2
By assumption

=
x(pi−1) +

(ℓ−(i+1))x(p(i+1)−1)+x(v)

ℓ−(i+1)+1

2
By the Induction Hypothesis

=
(ℓ− i)x(pi−1) + (ℓ− i+ 1)x(pi) + x(v)

2(ℓ− i)

=⇒ (1− ℓ− i+ 1

2(ℓ− i)
)x(pi) =

2(ℓ− i)− (ℓ− i+ 1)

2(ℓ− i)
x(pi) =

ℓ− i+ 1

2(ℓ− i)
x(pi)

=
(ℓ− i)x(pi−1) + x(v)

2(ℓ− i)

=⇒ x(pi) =
(ℓ− i)x(pi−1) + x(v)

ℓ− i+ 1

Lemma 3.9. Suppose u = p0, p1, ..., pℓ = v is a path of length ℓ. If ∀i ∈ [ℓ − 1]+, x(pi) =
x(pi−1)+x(pi+1)

2 ,

then ∀i ∈ [ℓ], x(pi) =
(ℓ−i)x(u)+ix(v)

ℓ .

Proof by induction on i.

• Basis: if i = 0, then x(pi) = x(p0) = x(u) = (ℓ−ℓ)x(u)−0x(v)
ℓ = (ℓ−i)x(u)−ix(v)

ℓ

• Inductive Step: Let 0 < i ≤ ℓ and suppose ∀0 ≤ j < i, x(pj) =
(ℓ−j)x(u)+jx(v)

ℓ

– if i = ℓ, then x(pi) = x(v) = (ℓ−ℓ)x(u)+ℓx(v)
ℓ = (ℓ−i)x(u)+ix(v)

ℓ

9



– if i < ℓ, then

x(pi) =
(ℓ− i)x(pi−1) + x(v)

ℓ− i+ 1
By Lemma 3.8

=
(ℓ− i) (ℓ−(i−1))x(u)+(i−1)x(v)

ℓ + x(v)

ℓ− i+ 1
By the Induction Hypothesis

=
(ℓ−i)(ℓ−i+1)x(u)+((ℓ−i)(i−1)+ℓ)x(v)

ℓ

ℓ− i+ 1

=
(ℓ− i)(ℓ− i+ 1)x(u) + i(ℓ− i+ 1)x(v)

ℓ(ℓ− i+ 1)
(ℓ− i)(i− 1) + ℓ = i(ℓ− i+ 1)

=
(ℓ− i)x(u) + ix(v)

ℓ

Lemma 3.10. Suppose u = p0, p1, ..., pℓ = v is a path of length ℓ. Then, if we fix x(u), x(v), we have

minx∈RV \{u,v} 2EPℓ
(x) = (x(u)−x(v))2

ℓ

Proof. We know that the minimizer of the energy when x(u), x(v) are fixed is given by the function that is
harmonic for the corresponding spring network where the fix set is F = {u, v}. Hence, the solution gives
each vertices’ value to be the degree weighted average of its neighbors. Since we are considering a path,

we have ∀i ∈ [ℓ − 1]+, x(pi) = x(pi−1)+x(pi+1)
2 . Thus, by Lemma 3.9, we know that ∀i ∈ {0, ..., ℓ}, x(pi) =

(ℓ−i)x(u)+ix(v)
ℓ . Thus,

ℓ∑
i=1

((x(pi−1)− x(pi))
2 =

ℓ∑
i=1

(
(ℓ− (i− 1))x(u) + (i− 1)x(v)

ℓ
− (ℓ− i)x(u) + ix(v)

ℓ
)2

=

ℓ∑
i=1

(
(ℓ− i+ 1− ℓ+ i)x(u) + (i− 1− i)x(v)

ℓ
)2

=

ℓ∑
i=1

(
x(u)− x(v)

ℓ
)2

=
1

ℓ2

ℓ∑
i=1

(x(u)− x(v))2

=
ℓ

ℓ2
(x(u)− x(v))2 =

(x(u)− x(v))2

ℓ

Lemma 3.11. Let S be a set and f, x be functions defined on the elements of S. Then,

1

(
∑

u∈S f(u))2

∑
u∈S

f(u)(
∑

v∈S\{u}

f(v)x(u)−
∑

v∈S\{u}

f(v)x(v))2 =
1∑

u∈S f(u)

∑
{u,v}⊆S

f(u)f(v)(x(u)− x(v))2

Proof. We first note that both expressions are multivariate polynomials over x(S) where each variable has
exponent at most 2. Hence, we prove the claim by showing for each variable x(u), the coefficient of x(u) and
x(u)2 are the same in both expressions. We start by categorizing the coefficients of the first expression.

• for x(u)2, there are two cases to consider:

10



– When we consider the section of the outer sum defined over element u, we see the only way of
forming x(u)2 is with the (

∑
v∈S\{u} f(v)x(u))

2 term that appears when expanding the square.

This = (
∑

v∈S\{u} f(v))
2x(u)2 giving rise to total coefficient 1

(
∑

u∈S f(u))2 f(u)(
∑

v∈S\{u} f(v))
2 in

this case.

– Now, suppose we consider the section of the outer sum defined over some element v ̸= u. In this
case, the only way to get x(u)2 is with the (−f(u)x(u))2 term that appears when expanding the
square. This gives rise to total coefficient 1

(
∑

u∈S f(u))2 f(v)f(u)
2 in this case.

Hence, if we some over each coefficient that arises from each element over which the sum is defined,
we get the total coefficient of x(u)2 in the first expression is 1

(
∑

u∈S f(u))2 (f(u)(
∑

v∈S\{u} f(v))
2 +∑

v∈S\{u} f(v)f(u)
2) =

f(u)
∑

v∈S\{u} f(v)

(
∑

u∈S f(u))2 (
∑

v∈S\{u} f(v) + f(u)) =
f(u)

∑
v∈S\{u} f(v)

(
∑

u∈S f(u))2

∑
u∈S f(u) =

f(u)
∑

v∈S\{u} f(v)∑
u∈S f(u) .

• for x(u) there are three cases to consider:

– When we consider the section of the outer sum defined over element u we see the only way of
forming x(u) is by multiplying the term

∑
v∈S\{u} f(v)x(u) with a term of form −f(v)x(v) for

some v ̸= u in S that appears when expanding the square. Hence, the total coefficient’s numerator
in this case is −2f(u)(

∑
v∈S\{u} f(v))(

∑
v∈S\{u} f(v)x(v)). Note, it will be convenient to use the

distributive law to get = −2f(u)
∑

v∈S\{u} f(v)
∑

w∈S\{u} f(w)x(w)

= −2f(u)(
∑

v∈S\{u} f(v)
∑

w∈S\{u,v} f(w)x(w) +
∑

v∈S\{u} f(v)
2x(v)) by pulling v out of the

inner sum and then out of the outer sum.

– Now, consider the section of the outer sum defined over some element v ̸= u and consider only the
negative coefficients that may arise. In particular, any such term must result from multiplying
the term −f(u)x(u) with the term

∑
w∈S\{v} f(w)x(v) that appears when expanding the square.

Thus, the total numerator of the coefficient in this case is −2f(v)f(u)
∑

w∈S\{v} f(w)x(v).

– Now we consider the positive coefficients for such v. These coefficients are all formed by mul-
tiplying the term −f(u)x(u) with a term of the form −f(w)x(w) for some w ∈ S \ {u, v} that
appears when expanding the square. Hence, the total numerator of the coefficient in this case is
2f(v)f(u)

∑
w∈S\{u,v} f(w)x(w).

Thus, if we sum over all of the numerators for each element of the outer sum, we get the total numerator
coefficient is

− 2f(u)(
∑

v∈S\{u}

f(v)
∑

w∈S\{u,v}

f(w)x(w) +
∑

v∈S\{u}

f(v)2x(v))− 2f(u)
∑

v∈S\{u}

f(v)
∑

w∈S\{v}

f(w)x(v)

+ 2f(u)
∑

v∈S\{u}

f(v)
∑

w∈S\{u,v}

f(w)x(w)

= −2f(u)(
∑

v∈S\{u}

f(v)2x(v) +
∑

v∈S\{u}

f(v)
∑

w∈S\{v}

f(w)x(v))

= −2f(u)
∑

v∈S\{u}

f(v)x(v)(f(v) +
∑

w∈S\{v}

f(w))

= −2f(u)(
∑
w∈S

f(w))(
∑

v∈S\{u}

f(v)x(v))

Hence, the total coefficient is
−2f(u)(

∑
w∈S f(w))(

∑
v∈S\{u} f(v)x(v))

(
∑

w∈S f(w))2 =
−2f(u)

∑
v∈S\{u} f(v)x(v)∑
w∈S f(w)

11



Now, we have that

1∑
u∈S f(u)

∑
{u,v}⊆S

f(u)f(v)(x(u)− x(v))2

=
1

2
∑

u∈S f(u)

∑
u∈S

∑
v∈S\{u}

f(u)f(v)(x(u)− x(v))2

=
1

2
∑

u∈S f(u)

∑
u∈S

∑
v∈S\{u}

f(u)f(v)(x(u)2 + x(v)2 − 2x(u)x(v))

=
1

2
∑

u∈S f(u)
(
∑
u∈S

∑
v∈S\{u}

f(u)f(v)x(u)2 +
∑
u∈S

∑
v∈S\{u}

f(u)f(v)x(v)2 − 2
∑
u∈S

∑
v∈S\{u}

f(u)f(v)x(u)x(v))

=
1

2
∑

u∈S f(u)
(2

∑
u∈S

∑
v∈S\{u}

f(u)f(v)x(u)2 − 2
∑
u∈S

∑
v∈S\{u}

f(u)f(v)x(u)x(v))

=
1∑

u∈S f(u)
(
∑
u∈S

∑
v∈S\{u}

f(u)f(v)x(u)2 −
∑
u∈S

∑
v∈S\{u}

f(u)f(v)x(u)x(v))

=

∑
u∈S f(u)(

∑
v∈S\{u} f(v))x(u)

2 − 2
∑

{u,v}⊆S f(u)f(v)x(u)x(v)∑
u∈S f(u)

From this alternate representation, it is easily seen that for any u ∈ S, the coefficient of x(u)2 is exactly the
one derived previously and similarly for x(u). Hence, the two expressions are equal.

Lemma 3.12. Let S ⊆ EKℓ
. If x(V (S)) are fixed, then minx∈RV \V (S) 2EKℓ−S(x) =

ℓ−|V (S)|
|V (S)|

∑
{u,v}⊆V (S)(x(u)−

x(v))2 +
∑

(u,v)/∈S
u,v∈V (S)

(x(u)− x(v))2

Proof. Again, the minimizer is exactly the function that is harmonic for the spring network where the fixed
set F = S. Hence, we have that each vertices’ value is the degree weighted average of its neighbors. That
is, ∀w ∈ V \ V (S), x(w) = 1

ℓ−1

∑
y∈V \{w} x(y). Now, for any two vertices, w and y, not in V (S), consider

x(w)− x(y):

x(w)− x(y) =

∑
s∈V \{w} x(s)−

∑
t∈V \{y} x(t)

ℓ− 1

=
x(y)− x(w)

ℓ− 1

=⇒ (x(w)− x(y)) +
x(w)− x(y)

ℓ− 1
= 0

=⇒ ℓ

ℓ− 1
(x(w)− x(y)) = 0

=⇒ x(w) = x(y)

12



Hence, we have:

x(w) =
1

ℓ− 1

∑
s∈V \{w}

x(s)

=
1

ℓ− 1
(

∑
s∈V \{w}∪V (S)

x(w) +
∑

u∈V (S)

x(u))

=
ℓ− 1− |V (S)|

ℓ− 1
x(w) +

1

ℓ− 1
(

∑
u∈V (S)

x(u))

=⇒ |V (S)|
ℓ− 1

x(w) =
1

ℓ− 1
(

∑
u∈V (S)

x(u))

=⇒ x(w) =

∑
u∈V (S) x(u)

|V (S)|

Hence, if we plug in this minimizer into the sum we will get the minimum value.∑
(s,t)∈EG

(x(s)− x(t))2 =
∑

u∈V (S)

∑
w/∈V (S)

(x(u)− x(w))2 +
∑

w∈V \V (S)

∑
y∈V \V (S)∪{w}

(x(w)− x(y))2 +
∑

(u,v)/∈S
u,v∈V (S)

(x(u)− x(v))2

=
∑

u∈V (S)

(ℓ− |V (S)|)(x(u)− x(w))2 +
∑

(u,v)/∈S
u,v∈V (S)

(x(u)− x(v))2

=
∑

u∈V (S)

(ℓ− |V (S)|)(x(u)−
∑

v∈V (S) x(v)

|V (S)|
)2 +

∑
(u,v)/∈S
u,v∈V (S)

(x(u)− x(v))2

=
ℓ− |V (S)|
|V (S)|2

∑
u∈V (S)

((|V (S)| − 1)x(u)−
∑

v∈V (S)\{u}

x(v))2 +
∑

(u,v)/∈S
u,v∈V (S)

(x(u)− x(v))2

=
ℓ− |V (S)|
|V (S)|

∑
{u,v}⊆V (S)

(x(u)− x(v))2 +
∑

(u,v)/∈S
u,v∈V (S)

(x(u)− x(v))2

Where the last equality comes from applying Lemma 3.11 with f = 1, S = V (S), and x being the same
x.

Lemma 3.13. If G is a connected graph, S ⊆ EG, x(V (S)) are fixed, and dS(u) = d(u)− |{(u, v) ∈ EG|v ∈
V (S)}|, then if 2EG(x) is minimized when ∀w, y ∈ V \ V (S), x(w) = x(y), we have

min
x∈RV \V (S)

2EG(x) =
∑

{u,v}⊆V (S) d
S(u)dS(v)(x(u)− x(v))2∑
u∈V (S) d

S(u)
+

∑
(u,v)/∈S
u,v∈V (S)

(x(u)− x(v))2

Proof.∑
(s,t)∈EG

(x(s)− x(t))2 =
∑

(u,w)∈EG

u∈V (S),w/∈V (S)

(x(u)− x(w))2 +
∑

(s,t)∈EG

s,t/∈V (S)

(x(s)− x(t))2 +
∑

(u,v)/∈S
u,v∈V (S)

(x(u)− x(v))2

=
∑

u∈V (S)

dS(u)(x(u)− x(w))2 +
∑

(u,v)/∈S
u,v∈V (S)

(x(u)− x(v))2
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Now, we will find the optimal value of x(w) for each w not in V(S) in terms of the vertices of V(S).

∂

∂x(w)

∑
u∈V (S)

dS(u)(x(u)− x(w))2 = 0

=⇒
∑

u∈V (S)

dS(u)(x(w)− x(u)) = 0

=⇒
∑

u∈V (S)

dS(u)x(w) =
∑

u∈V (S)

dS(u)x(u)

=⇒ x(w) =

∑
u∈V (S) d

S(u)x(u)∑
u∈V (S) d

S(u)

Hence, plugging in the minizimizer yields the minimum value. First, consider just the first sum.

∑
u∈V (S)

dS(u)(x(u)− x(w))2 =
∑

u∈V (S)

dS(u)(x(u)−
∑

v∈V (S) d
S(v)x(v)∑

u∈V (S) d
S(u)

)2

=
1

(
∑

u∈V (S) d
S(u))2

∑
u∈V (S)

dS(u)(
∑

v∈V (S)\{u}

dS(v)x(u)−
∑

v∈V (S)\{u}

dS(v)x(v))2

=
1∑

u∈V (S) d
S(u)

∑
{u,v}⊆V (S)

dS(u)dS(v)(x(u)− x(v))2

Where the last equality follows from Lemma 3.11 with f = dS , S = V (S), and x being the same x. Hence,
by adding back the sum on the right the claim holds.

Corollary 3.13.1. If S = {(u, v)}, then the minimum from Lemma 3.13 is ≥ 1
2 (x(u)− x(v))2.

Proof. We know that d(u), d(v) ≥ 1 since G is connected, so there is some u− v path in G. Now, there are
three cases to consider:

• If d(u), d(v) ≥ 2, then d(u)d(v) ≥ d(u) + d(v). Thus, d(u)d(v)
d(u)+d(v) ≥ 1 ≥ 1

2

• If without loss of generality d(u) = 1 and d(v) > 1, then d(u)d(v)
d(u)+d(v) = d(v)

1+d(v) . Now, mink∈Z+
k

k+1 = 1
2

since its an increasing function over the positive integers, so the minimum value results from plugging

in the minimum value of the domain. Hence, d(v)
1+d(v) ≥

1
2 .

• If d(u) = d(v) = 1, then d(u)d(v)
d(u)+d(v) =

1×1
1+1 = 1

2

4 Upper Bounds

In this section we present several functions for which graphs G and H are spectrally isomorphic that are
defined with respect to various combinatorial properties of G and H.

14



4.1 Results for general graphs

We begin with our main result that describes a function dependent on the subgraphs present in the graph
H.

Theorem 4.1 (Subtracting Lemma). Let G be a graph, S ⊆ EG, H = G− S having the same components
as G. Also, suppose J = K ∪ E ∪ P is a set of V (S)-internally disjoint and edge disjoint subgraphs of H,
where K contains subgraphs of the form Kℓ − T for ∅ ̸= T ⊆ S, ℓ ≥ 3, E contains subgraphs excluding those
in K containing u and v for some (u, v) ∈ S and satisfying 2EL(x) for x(V (S)∩VL) fixed is minimized when
each non fixed vertex has equal x value, and P is a set of u−v paths in H for (u, v) ∈ S such that no internal
node of the path is in V (S). Furthermore, suppose that ∀(u, v) ∈ S∃L ∈ J, u, v ∈ VL. Then, G ∼=α

s H for

α = 1 + max
(u,v)∈S

1∑
L∈K

u,v∈VL

|VL|−|VL∩V (S)|
|VL∩V (S)| +

∑
L∈E

u,v∈VL

dS
L(u)dS

L(v)∑
w∈VL∩V (S) d

S
L(w)

+
∑

L∈P
u,v∈VL

1
|EL|

Furthermore, κ(G,H) = α if J = C(H) and there exists some maximizing (u, v) ∈ S such that for every
w ∈ V (S) \ {u, v} in the same component of H as u and v, w can only reach v [resp. u] in H through u [resp.
v] or through a vertex of V (S) in a subgraph of C containing both u and v. Also, if w itself is in a subgraph
of C containing both u and v, then w must not have any edge to a vertex of V (S) that has a path to v [resp.
u] either through edges between vertices of V (S) or that is in a subgraph of C with vertices of V (S) that can
only reach u [resp. v] through v [resp. u] or through a vertex of V (S) in a subgraph of C containing both u
and v. Moreover, if S is maximal and each edge of S achieves the max defined in α then κ(G,H) = α.

Proof. Consider the identity permutation. The edge disjointness criteria ensures that ∪L∈JL ⊆ H, so we

can apply Lemma 3.6 to get κ(G,H) ≤ 1 + max x∈RV (S)

∃(u,v)∈S
x(u)̸=x(v)

∑
(u,v)∈S(x(u)−x(v))2∑

L∈J min
x∈RVL\V (S) 2EL(x) . Hence, we show a lower

bound on the denominator to get an upper bound on the second expression.

=
∑
L∈K

min
x∈RVL\V (S)

2EL(x) +
∑
L∈E

min
x∈RVL\V (S)

2EL(x) +
∑
L∈P

min
x∈RVL\V (S)

2EL(x)

=
∑
L∈K

|VL| − |VL ∩ V (S)|
|VL ∩ V (S)|

∑
{u,v}⊆V (S)∩VL

(x(u)− x(v))2 +
∑
L∈E

∑
{u,v}⊆V (S)∩VL

dSL(u)d
S
L(v)(x(u)− x(v))2∑

w∈VL∩V (S) d
S
L(w)

+
∑
L∈P

u,v∈VL∩V (S)

1

|EL|
(x(u)− x(v))2

=
∑

(u,v)∈S

(
∑
L∈K

u,v∈V (S)

|VL| − |VL ∩ V (S)|
|VL ∩ V (S)|

(x(u)− x(v))2 +
∑
L∈E

u,v∈V (S)

dSL(u)d
S
L(v)(x(u)− x(v))2∑

w∈VL∩V (S) d
S
L(w)

+
∑
L∈P

u,v∈VL

1

|EL|
(x(u)− x(v))2)

+
∑

(u,v)/∈S
u,v∈V (S)

a(u, v)(x(u)− x(v))2

≥
∑

(u,v)∈S

(
∑
L∈K

u,v∈V (S)

|VL| − |VL ∩ V (S)|
|VL ∩ V (S)|

+
∑
L∈E

u,v∈V (S)

dSL(u)d
S
L(v)∑

w∈VL∩V (S) d
S
L(w)

+
∑
L∈P

u,v∈VL

1

|EL|
)(x(u)− x(v))2

≥ min
(u,v)∈S

(
∑
L∈K

u,v∈V (S)

|VL| − |VL ∩ V (S)|
|VL ∩ V (S)|

+
∑
L∈E

u,v∈V (S)

dSL(u)d
S
L(v)∑

w∈VL∩V (S) d
S
L(w)

+
∑
L∈P

u,v∈VL

1

|EL|
)

∑
(u,v)∈S

(x(u)− x(v))2

Where the first equality comes from the fact that J = K ∪ E ∪ P . Then, the second equality comes from
applying the optimization lemmas to the special types of graphs. Next, the third equality results from
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swapping the inner and outer sums and rearranging the terms based on the edges. By the assumption that
every edge of S appears in at least one subgraph in J, we know that there is a positive term in the first sum
for each edge of S. Now, the first inequality comes from removing the terms associated with edges not in S
but are between vertices incident to S. Lastly, the second inequality comes from lower bounding each entry
of the outer sum with the minimum term in the sum and then pulling the term out. Now, we can plug this
expression back into the denominator of the max to get:

1 + max
x∈RV (S)

∃(u,v)∈S
x(u) ̸=x(v)

∑
(u,v)∈S(x(u)− x(v))2∑
L∈J min

x∈RVL\V (S)
2EL(x)

≤ 1 + max
x∈RV (S)

∃(u,v)∈S
x(u)̸=x(v)

∑
(u,v)∈S(x(u)− x(v))2

min(u,v)∈S(
∑

L∈K
u,v∈VL

|VL|−|VL∩V (S)|
|VL∩V (S)| +

∑
L∈E

u,v∈VL

dS
L(u)dS

L(v)∑
w∈VL∩V (S) d

S
L(w)

+
∑

L∈P
u,v∈VL

1
|EL| )

∑
(u,v)∈S(x(u)− x(v))2

= 1 +
1

min(u,v)∈S(
∑

L∈K
u,v∈VL

|VL|−|VL∩V (S)|
|VL∩V (S)| +

∑
L∈E

u,v∈VL

dS
L(u)dS

L(v)∑
w∈VL∩V (S) d

S
L(w)

+
∑

L∈P
u,v∈VL

1
|EL| )

= 1 + max
(u,v)∈S

1∑
L∈K

u,v∈VL

|VL|−|VL∩V (S)|
|VL∩V (S)| +

∑
L∈E

u,v∈VL

dS
L(u)dS

L(v)∑
w∈VL∩V (S) d

S
L(w)

+
∑

L∈P
u,v∈VL

1
|EL|

Thus, we have that ∀x /∈ N(LG)

xTLGx

xTLHx
≤ max

x/∈N(LG)

xTLGx

xTLHx
≤ 1 + max

x∈RV (S)

∃(u,v)∈S
x(u)̸=x(v)

∑
(u,v)∈S(x(u)− x(v))2∑

L∈J minx∈RVL\V (S) 2EL(x)
≤ α

Hence, G ∼=α
s H.

Now, we argue that under the conditions of the furthermore, we can construct a vector x so that xTLGx
xTLHx

=
α.

• First, we arbitrarily choose x(u) ̸= x(v) and set x(w) = 0 for any w not in the component of H
containing u and v.

• Next, we set x(w) = x(u) for any w in G−{u} that does not contain any vertex of V (S), and similarly
do the same for v.

• Now, we eliminate all the edges between vertices of V (S) that are not edges of S by setting x(w) = x(u)
if w is reachable from u using only edges between vertices of V (S) that are present in H. We similarly
do this for v. For any other such edge (w, h) we set x(w) = x(h). Note, by the furthermore condition,
there is never a path from u to v using only edges between vertices of V (S) and so we can safely remove
the edges this way without ever running into the problem of needing to set x(u) = x(v).

• Next, we eliminate all edges that aren’t in a subgraph of C containing both u and v by setting
x(w) = x(u) for such w that can only reach v through u or some vertex of V (S) that is in a subgraph
of C containing both u and v and set the value of that vertex to x(u) as well. We similarly do this
for v. Lastly, for any vertex that can only reach u and v by passing through some vertex, w, of V (S)
that is in a subgraph of C containing u and v where w cannot reach u or v using only edges between
vertices of V (S) and w is not adjacent to some subgraph of C, other than those containing u and v,
that can reach u or v, then we set the vertex’s value to 0 arbitrarily and set x(w) = 0. Note that the
furthermore condition ensures it is safe to do zero out edges this way since the only possible conflict
would arise if some w in a subgraph of C with both u and v had a path to both u and v using edges
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of V(S), which cannot happen by assumption, or if it was contained in a component of C with vertices
having paths to u and a component of C with vertices having paths to v. However, the furthermore
condition explicitly guarantees that w may only be apart of components that can only reach v by going
through u first or some other vertex in a subgraph with both u and v, and similarly if we interchange
u and v.

• Now, the current vector constructed zeros out everything that is not a subgraph of C containing both u
and v, and we can just set the remaining entries of the vector as described in the optimization lemmas
to coincide with the minimizers of the energies of each of these subgraphs.

Thus, α can be achieved and so it is the maximum of xTLGx
xTLHx

, which is the relative condition number in this
case. On the other hand, for the moreover, we have that if S is maximal then Lemma 3.7 and the fact that
there are no edges of form (u, v) /∈ S yet u, v ∈ V (S) gives each inequality in the first sequence of results is
an equality except for the last. However, since edge edge of S by assumption achieves the max, it must be
each edge also achieves the same min and so the last inequality is also an equality and the claim holds.

We can restrict this result to get some more interesting though looser upper bounds.

Corollary 4.1.1. Let G be a graph, S ⊂ EG, and suppose H = G−S has the same components as G. Also,
suppose P is a set of vertex disjoint paths in H where each path connects the endpoints of of an edge that is
in S. Then, G ∼=α

s H, where
α = 1 +max

L∈P
|EL|

Proof. This follows immediately from Theorem 4.1 with J = P since for each edge there is exactly one path
and we know that 1

1
|EL|

= |EL|.

Corollary 4.1.2. Let G be a graph, (u, v) ∈ EG, and H = G − (u, v) having the same components as G.
Also, let K be the set of all L ∈ C(H) such that L = Kℓ − (u, v) for some ℓ, E be the set of all L ∈ C(H)
excluding those in K such that 2EL(x) for x(u), x(v) fixed is minimized when each non u,v vertex has equal
x value, and P be the set of all other elements of C(H). Then, G ∼=α

s H for

α = 1 +
1∑

L∈K
|VL|−2

2 +
∑

L∈E
dL(u)dL(v)
dL(u)+dL(v) +

∑
L∈P

1
dL(u,v)

Furthermore, if every element of P is a u-v path, then κ(G,H) = α.

Proof. This is a simple application of Theorem 4.1 by letting J be C(H) where we replace any subgraph in
C(H) that is not of the first two forms with the u-v path that it must contain since each subgraph in C(H) is
a connected subgraph containing both u and v. If each element of C(H) is already of one of the three forms
then we let J be C(H) unaltered and so can apply the furthermore condition of the theorem since S has only
one edge so satisfies the condition giving that the relative condition number is α.

Corollary 4.1.3. If G and H = G − S for S ⊆ EG have the same components and there exists a non-

empty set, K, of subgraphs of H having form Kℓ − S for some ℓ > |V (S)|, then G ∼=
1+

|V (S)|
maxL∈K |VL|−|V (S)|

s H.

Moreover, if some maximum clique in G contains S, then G ∼=
|V (S)|

ω(G)−|V (S)|
s H.

Proof. We apply Theorem 4.1 to J = K. Then, we upper bound the resulting al by noting that the sum in
the denominator of the fractional part of α is lower bounded by any single element of the sum. In particular,
the largest element. Then simplifying the expression gives the result. The moreover then easily follows by
definition of the clique number.
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Corollary 4.1.4. If G and H = G − (u, v) for (u, v) ∈ EG have the same components, P is a maximum
set of vertex disjoint u-v paths in H, and K is a set of {u, v}-internally disjoint subgraphs of H of form
Kℓ − (u, v), ℓ ≥ 3, then

1. G ∼=1+dH(u,v)
s H

2. G ∼=n
s H

3. G ∼=
1+

maxL∈P |EL|
λH (u,v)

s H

4. G ∼=
1+ 2

|K|(minL∈K |VL|−2)

s H

Proof. Each result holds by merely applying Theorem 4.1 to a specific set of subgraphs of H and then upper
bounding the α given by the theorem if necessary.

1. This follows from Theorem 4.1 by letting J to be the singleton set containing the shortest u-v path in
H.

2. This follows from 1. since the shortest u-v path can be at most n− 1 and there exists a u-v path since
G and H have the same components.

3. By definition, there are λH(u, v) many paths in P. Now, we have that the denominator of the fractional
part of the α that is given by Theorem 4.1 when we let J = P is lower bounded by λH(u, v)minL∈P

1
|EL| =

λH(u,v)
maxL∈P |EL| . Hence, the claim holds.

4. By definition, there are |K| many subgraphs in K. Now, we have that the denominator of the fractional

part of the α that is given by Theorem 4.1 when we let J = K is lower bounded by |K|minL∈K
|VL|−2

2 =
|K|(minL∈K |VL|−2)

2 . Hence, the claim holds.

We can also always show to graphs are spectrally isomorphic by iteratively removing or adding edges and
applying transitivity of the relation.

Lemma 4.2 (Swapping Lemma). Let G and H be graphs differing by k edges. Then, if we choose any
ordering of edge additions and deletions, (e1, e2, ..., ek), so that G = G0, Gk = H, and for each i either
Gi = Gi−1 − ei or Gi = Gi−1 + ei and Gi−1

∼=α
s Gi, then G ∼=α

s H where

α =

k∏
i=1

αi

Proof by induction on k.

• Basis: If k = 0, then G = H and α =
∏0

i=1 αi = 1 and we know that G ∼=1
s G = H

• Inductive Step: If k > 0, as above fix an ordering of the edges to be added to G and deleted from
G and suppose inductively that G ∼=β

s Gk−1 for β =
∏k−1

i=1 αi. Then, we know by assumption on the
ordering that Gk−1

∼=αk
s Gk = H. Hence, the Induction Hypothesis and transitivity of ∼=s gives that

G ∼=γ
s H where γ = βαk = (

∏k−1
i=1 αi)αk = α.
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Lemma 4.3. Let G and H be graphs with the same components and that differ by k edges. Then, if we choose
any ordering of edge additions and deletions, (e1, e2, ..., ek), so that G = G0, Gk = H, and for each i either
Gi = Gi−1 − ei or Gi = Gi−1 + ei and Gi−1 has the same components as Gi, then for each i Gi−1

∼=αi
s Gi

where αi is the term given in Corollary 4.1.2 and G ∼=α
s H where

α =

k∏
i=1

αi

Proof. There are two cases to consider. If Gi = Gi−1−ei, then since Gi−1 and Gi have the same components
by assumption, we have by Theorem 4.1 that Gi

∼=αi
s Gi−1 where αi is the bound given by the same theorem.

Hence, by symmetry of ∼=s, we know that Gi−1
∼=αi

s Gi. Alternatively, if Gi = Gi−1+ei, then Gi−1 = Gi−ei,
so again the assumption allows us to apply Theorem 4.1 to get that Gi−1

∼=αi
s Gi with αi. Now, we can

simply apply the swapping lemma to conclude that G ∼=α
s H.

Proposition 4.4. Let G and H be graphs with the same components and that differ by k edges. Then, there
exists an ordering of edge additions and deletions, (e1, e2, ..., ek), so that G = G0, Gk = H, and for each i
either Gi = Gi−1 − ei or Gi = Gi−1 + ei and Gi−1 has the same components as Gi.

Proof. Since G and H have the same components, we can partition the edge additions and deletions to
additions and deletions on each component since any edge added between two components would need to be
removed anyway. Hence, we can just consider connected graphs G and H. For G and H connected, we can
always just perform all of the edge additions first, which cannot change the component since adding edges
to a connected graph cannot form new components. Then, we can just perform all of the edge deletions. We
know no edge deletion can disconnect the graph since if it did then the remaining edge deletions could not
somehow reconnect the graph in order to get H which is connected. Thus, arbitrarily choosing an ordering
of additions and then an ordering of subtractions and concatenating the two orderings together gives an
ordering of edge additions and deletions that satisfies the claim. Now, for disconnected graphs, we just
construct the sequences for each component and arbitrarily concatenate them together.

Proposition 4.5. If G and H have the same component structure and G has k components, then G ∼=α
s H

for α = max{ λn(G)
λk+1(H) ,

λn(H)
λk+1(G)}. Furthermore, if H ⊆ G, then the claim holds for α = λn(G)

λk+1(H)

Proof. Let π be the permutation constructed in the proof of Lemma 2.1 satisfying that G and π(H) have
the same components. Then,

max
x

xTLGx

xTLπ(H)x
= max

x

xTLGx

xTLπ(H)x
×

1
xT x
1

xT x

= max
x

xTLGx
xT x

xTLπ(H)

xT x

≤
maxx

xTLGx
xT x

minx
xTLπ(H)x

xT x

=
λn(G)

λk+1(H)
≤ max{ λn(G)

λk+1(H)
,
λn(H)

λk+1(G)
}

Where the last equality holds since permuting a matrix does not change the eigenvalues, i.e λk+1(π(H)) =
λk+1(H). Also, we have

min
x

xTLGx

xTLπ(H)x
= min

x

xTLGx

xTLπ(H)x
×

1
xT x
1

xT x

= min
x

xTLGx
xT x

xTLπ(H)

xT x

≥
minx

xTLGx
xT x

maxx
xTLπ(H)x

xT x

=
λk+1(G)

λn(H)
≥ min{λk+1(G)

λn(H)
,
λk+1(H)

λn(G)
}

Finally, we have min{λk+1(G)
λn(H) , λk+1(H)

λn(G) } = 1

max{ λn(G)
λk+1(H)

,
λn(H)

λk+1(G)
}
. Hence, since the bounds hold for the ex-

tremes, they hold for all x not in the null space of the laplacian of G. Now, if H ⊆ G, then we already

know xTLGx
xTLHx

≥ 1 for all x not in the null space of the laplacian of G, and so we only need the upper bound
λn(G)

λk+1(H) .
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Lemma 4.6. Suppose G = G1 +G2 + ...+Gk and H = H1 +H2 + ...+Hk are graphs with k components,
and G ∼=α

s H. If ∃π showing that G ∼=α
s H so that for each i Vπ(Hj) = VGi and π(Hj) = f(Hi) for some

permutation f, then ∀i, Gi
∼=α

s Hi.

Proof by Contrapositive. Suppose there is some i such that Gi ̸∼=α
s Hi. Then, we have by definition that

∀π′∃x /∈ N(LGi
) such that either

xTLGi
x

xTLπ′(Hi)
x
> α or

xTLGi
x

xTLπ′(Hi)
x
< 1

α . Also, let π be any permutation of H.

If Vπ(Hj) ̸= VGi
or π(Hj) ̸= f(Hi) for some permutation f, we are done. Otherwise, suppose Vπ(Hj) = VGi

and π(Hj) = f(Hi) for some permutation f. Consider the vector x that is the same x as previously defined

over the vertices of Gi but is 0 in each other entry. Then, xTLGx
xTLπ(H)x

=
xTLGi

x

xTLπ(Hj)
x
=

xTLGi
x

xTLf(Hi)
x
. However, this

means that xTLGx
xTLπ(H)x

> α or xTLGx
xTLπ(H)x

< 1
α for this x which is not in the null space of LG since its not in the

null space of LGi
. Thus, this π does not show that G ∼=α

s H.

Lemma 4.7. Suppose G = G1 + G2 + ... + Gk and H = H1 + H2 + ... + Hk are graphs with the same
components, and G ∼=α

s H. If ∀i ̸= j, |VGi | = |VGj | =⇒ Gi
∼= Gj or Hi

∼= Hj, then ∀i, Gi
∼=α

s Hi.

Proof. Let π be some permutation that shows that G ∼=α
s H. Consider some arbitrary i. If Vπ(Hi) = VHi

,
then we know π merely permutes the component Hi amongst itself, so Lemma 4.6 applied with f = π gives
that Gi

∼=α
s Hi. Alternatively, suppose Vπ(Hi) ̸= VHi

. Since π shows G ∼=α
s H it must ensure G and π(H)

have the same components. Hence, since G and H have the same components by assumption, we know that
H and π(H) have the same components. In particular, it must be that Vπ(Hj) = VHi for some j such that
Hi has the same number of vertices as Hj . Now, by assumption, either Hi

∼= Hj or Gi
∼= Gj .

• if Hj
∼= Hi by bijection f, then we have that Hj = f(Hi). Hence, π(Hj) = π(f(Hi)) = π ◦f(Hi). Thus,

by Lemma 4.7, Gi
∼=α

s Hi.

• if Gi
∼= Gj by bijection f, then we have that Gi = f(Gj). Now, by a similar argument to Lemma

4.7 using subvectors, it can be shown that Gi
∼=α

s π(Hj) via the identity permutation. Hence, Gi =
f(Gj) ∼=α

s f ◦ π(Hi) via the identity permutation. Consequently, Gi
∼=α

s Hi via the permutation f ◦ π.

Lemma 4.8. If G = G1 +G2 + ...+Gk and H = H1 +H2 + ...+Hk are graphs with k components, and for
each i, Gi

∼=αi
s Hi, then G ∼=maxi αi

s H. Furthermore, if G and H have the same components, αi is optimal
for Gi and Hi for each i, and ∀i ̸= j, |VGi | = |VGj | =⇒ Gi

∼= Gj or Hi
∼= Hj, then maxiαi is optimal for

G and H.

Proof. If for each i, Gi
∼=αi

s Hi, then ∃πi∀x /∈ N(LGi
), 1

αi
≤ xTLGi

x

xTLπi(Hi)
x

≤ αi. Also, we have N(LG) =

∩iN(LGi), where we think of each vector in N(LGi) as a vector in RV where the subvector that is defined
over the vertices of Gi must be an element of N(LGi

), since a vector is in the Null space of G if and only
if it makes each component zero. In addition, define π = π1π2...πk be the composition of the permutations
for each component. Note, we have G and π(H) have the same components since for each i, Gi and π(Hi)
must have the same components. Now, we have ∀x /∈ N(LG),

xTLGx

xTLπ(H)x
=

xTL∑k
i=1 Gi

x

xTL∑k
i=1 π(Hi)

x
=

∑k
i=1 x

TLGix∑k
i=1 x

TLπ(Hi)x
≤

∑k
i=1 αix

TLπi(Hi)x∑k
i=1 x

TLπ(Hi)x
≤ max

i
αi

∑k
i=1 x

TLπ(Hi)x∑k
i=1 x

TLπ(Hi)x
= max

i
αi

Also, we have,

xTLGx

xTLπ(H)x
=

xTL∑k
i=1 Gi

x

xTL∑k
i=1 π(Hi)

x
=

∑k
i=1 x

TLGi
x∑k

i=1 x
TLπ(Hi)x

≥
∑k

i=1
1
αi
xTLπi(Hi)x∑k

i=1 x
TLπ(Hi)x

≥ min
i

1

αi

∑k
i=1 x

TLπ(Hi)x∑k
i=1 x

TLπ(Hi)x
=

1

maxi αi
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Thus, G ∼=maxi αi
s H.

Now, to show the furthermore, note that if G ∼=β
s H for some smaller β, then Gi

∼=β
s Hi for any i under

the assumptions by Lemma 4.8. In particular, for the i giving the maximum αi. However, by assumption,
αi is optimal for Gi and Hi, a contradiction. Hence, the function derived is optimal for G and H under these
conditions.

Note that we can apply any result from this section to graphs with the same structure by first applying
the permutation that always exists that forces the two graphs to have the same components and applying
the result to these graphs. The composition of the two permutations then translates the result to the original
graphs.

4.2 Results for Specific Graphs

Note the edge-less graph is only spectrally isomorphic to permutations of itself (which are all the same) and
vacuously so.

Proposition 4.9. Kn
∼=

n
n−|V (S)|
s Kn − S for any set of edges, S. Furthermore, if S is maximal, then it’s

optimal.

Proof. Let S ⊆ EKn . We have that for any permutation, π, that π(Kn − S) = π(Kn)− π(S) = Kn − π(S)
since every possible edge is present in Kn, so permuting it will not change the edges. Hence, applying
Theorem 4.1 to Kn and Kn−π(S) with J = C(Kn−π(S)) = Kn−π(S)−{(u, v) /∈ π(S)|u, v ∈ V (π(S))} we
have κ(Kn,Kn − π(S)) ≤ n

n−|V (S)| noting that |V (S)| = |V (π(S))|. Also, if S is maximal we have that π(S)

is maximal. Consequently, C(Kn − π(S)) = Kn − π(S) so each edge has the same max achieved. Hence,
the moreover of Theorem 4.1 gives equality for the relative condition number. Since this equality holds over
any permutation we have that minπ κ(Kn, π(H)) = n

n−|V (S)| , but this means by definition that n
n−|V (S)| is

optimal.

Proposition 4.10. For n a power of 3, n
3C3

∼=3
s

n
3P3 is optimal

Proof. Notice that C3 = K3 and P3 = K3 − (u, v) where u and v are the endpoints of the path. Hence, by
Proposition 4.9, C3

∼=3
s P3 and 3 is optimal. Hence, since each component of n

3C3 is the same and n
3C3,

n
3P3

have the same components, we can apply Lemma 4.8 to see that n
3C3

∼=3
s

n
3P3 is optimal.

Next, we wish to explore what happens when we delete many edges incident to one vertex. Consequently,
We introduce the notation Su(f) to be an arbitrary set of f(n) edges incident to the vertex u in G. In other
words, Su(f) = {(u, v) ∈ E} and |Su(f)| = f(n).

Proposition 4.11. Kn
∼=3

s Kn − Su(⌊n
2 ⌋ − 1)

Proof. Note that since we deleted ⌊n
2 ⌋−1 edges from Kn and the degree of u is n-1, there remains ⌈n

2 ⌉ edges
incident to u in the resulting graph. Consider the set of disjoint length 2 paths in Kn that start with u and
end with an endpoint of an edge in Su(⌊n

2 ⌋) that exists since the degree of u is n-1 and so there are ⌈n
2 ⌉

edges remaining after deletion of the others.

Proposition 4.12. Kn
∼=2

s K⌊n
2 ⌋,⌈n

2 ⌉.

Proof. We know that λn(Kn) = n, λ2(Kn
2 ,n2

) = n
2 , and Kn

2 ,n2
⊆ Kn. Hence, by Lemma 4.8, we know that

Kn
∼=2

s Kn
2 ,n2

.
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Proposition 4.13. Kn
∼=n

s Sn.

Proof. We know that λn(Kn) = n, λ2(Sn) = 1, and Sn ⊆ Kn. Hence, by lemma 4.8 we know Kn
∼=n

s Sn.

Conjecture: Cn
∼=4

s Pn

Proof. (Idea) First, label the vertices of Pn from right to left 1 to n, and similarly label the vertices of Cn

by taking Pn and adding edge (1, n). Now, consider the permutation:

π(i) =

{
i+1
2 if i is odd

(n+ 1)− i
2 if i is even

This permutation ensures that ∀(u, v) ∈ ECn , dπ(Pn)(u, v) ≤ 2, since for each edge of Cn of form (i, i + 1)
where i < n

2 we have in π(Pn) the path i− > (n+ 1)− i− > i+ 1 and for each edge (i, i− 1) for i ≥ n
2 we

have in π(Pn) the path i− > n− i+ 2− > i− 1. Hence, by Lemma 4.4 of [1], the claim holds.

5 Lower Bounds

5.1 Results for General Graphs

We define the min cut of a disconnected graph as the minimum of each component’s min cut. We will present
necessary conditions for two graphs to be α-spectrally isomorphic.

Theorem 5.1. If G ∼=α
s H, then α ≥ max{MaxCut(G)

MaxCut(H) ,
MinCut(G)
MinCut(H) ,

MaxCut(H)
MaxCut(G) ,

MinCut(H)
MinCut(G) }

Proof. Suppose S ⊂ VG induces the max cut of G. Consider the characteristic vector xS that is 1 for each
vertex of S and 0 otherwise. Then, by definition of xTLGx, we have that xT

SLGxS = |EG[S, S]|. Similarly,

xT
SLπ(H)xS = |Eπ(H)[S, S]| = |EH [π(S), π(S)]|. Hence, since α must be larger than xTLGx

xTLπ(H)x
for all x not in

the null space of LG, it must also be at least
xT
SLGxS

xT
SLπ(H)xS

= |EG[S,S]|
|EH [π(S),π(S)]|

≥ MaxCut(G)
MaxCut(H) . Similarly, let T ⊂ VH

induce the minimum cut in H and consider the characteristic vector xπ−1(T ). Then,
xT
π−1(T )

LGxπ−1(T )

xT
π−1(T )

Lπ(H)xπ−1(T )

=

|EG[π−1(T ),π−1(T )]|
|EH [π(π−1(T )),π(π−1(T ))]|

= |EG[π−1(T ),π−1(T )]|
|EH [T,T ]| ≥ MinCut(G)

MinCut(H) . Now, since G ∼=α
s H ⇐⇒ H ∼=α

s G, we can

apply these two results to H and G to get α is at least each of these quantities and so its at least the max
of them all.

Theorem 5.2. If G ∼=α
s H, then α ≥ max{∆(G)

∆(H) ,
δ(G)
δ(H) ,

∆(H)
∆(G) ,

δ(H)
δ(G) }.

Proof. Consider the vector δu that is one at u and 0 otherwise, where u is some vertex of G with maximum
degree. Then, we have that δTuLGδu =

∑
(v,w)∈E(G) (δu(v)− δu(w))

2 =
∑

(u,v)∈E(G) (δu(u)− δu(v))
2 =∑

(u,v)∈E(G) 1 = dG(u). Similarly, δTuLπ(H)δu = dH(π(u)). Hence, since α must be at least the ratio of the
Rayleigh quotients for any vector that is not in the null space of the two Laplacians and since we have found

a particular vector that gives the ratio of Rayleigh quotients a value of dG(u)
dH(π(u)) , it must be the case that

α ≥ dG(u)
dH(π(u)) =

∆(G)
d(πH(u)) ≥

∆(G)
∆(H) . Similarly, if we consider δu where π(u) has minimum degree in H, then we

have α ≥ dG(u)
dH(π(u)) = dG(u)

δ(H) ≥ δ(G)
δ(H) . Hence, α is at least the largest of the two quantities. Now, we know by

symmetry of ∼=s that G
∼=α

s H ⇐⇒ H ∼=α
s G. Hence, we can repeat the proof with H,G to get the claim.
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Now we show that under relatively mild conditions, the above claim strengthens even further.

Lemma 5.3. If G ∼=α
s H and there is some permutation, π, of H demonstrating this fact satisfying that

there exists a vertex u of maximum degree in G and π(u) has minimum degree in H, then α ≥ ∆(G)
δ(H) .

Alternatively, if there is some S that induces a maximum cut of G with π(S) being a minimum cut in H,

then α ≥ MaxCut(G)
MinCut(H) .

Proof. Since we know such a u exists, plugging δu into the ratio of Rayleigh quotients gives a value of ∆(G)
δ(H) by

the proof of the Theorem 5.2, so α must be at least this quantity. Similarly, if we consider the characteristic
vector for S, we see the second claim holds.

Corollary 5.3.1. If G or H is regular, then α ≥ ∆(G)
δ(H) . Also, if G is d-regular and H is k-regular, then

α ≥ d
k .

Proof. If H is d-regular, every vertex has degree d, which is the minimum degree of H. In particular, given
any vertex u of maximum degree in G, we have that for any permutation, π, applied to H that π(u) has
minimum degree. Thus, by Lemma 5.3 we are done. On the other hand, if G is d-regular, then every vertex
of G has maximum degree. Thus, if u is any vertex of minimum degree in H, π−1(u) satisfies the conditions
of the Lemma and again we are done. Now, if both are regular as described above, then we know by the
Theorem that α ≥ d

k .

Lemma 5.4. If G ∼=α
s H and G has k components, then α ≥ max{λk+1(G)

λn(H) , λk+1(H)
λn(G) }

Proof.

α ≥ max
x

xTLGx

xTLπ(H)x
≥ min

x

xTLGx

xTLπ(H)x
= min

x

xTLGx

xTLπ(H)x
×

1
xT x
1

xT x

= min
x

xTLGx
xT x

xTLπ(H)

xT x

≥
minx

xTLGx
xT x

maxx
xTLπ(H)x

xT x

=
λk+1(G)

λn(H)

Now, repeating the argument and applying symmetry of ∼=α
s completes the proof.

5.2 Results for Specific Graphs

Now, using the previous facts we can show that certain graphs are not constant-spectrally isomorphic.

Proposition 5.5. The following lower bounds hold for the common graphs:

1. Kn
∼=α

s Sn =⇒ α ≥ n− 1

2. Kn
∼=α

s Cn =⇒ α ≥ n−1
2

3. Sn
∼=α

s Cn =⇒ α ≥ n−1
2

4. Sn
∼=α

s Pn =⇒ α ≥ n−1
2

Proof.

1. By Corollary 5.3.1 we have since Kn is regular that α ≥ n−1
1 = n− 1.

2. Again, by Corollary 5.3.1 we have that α ≥ n−1
2 .

3. Here, we just apply Theorem 5.2 to see that α ≥ n−1
2 .
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4. Lastly, by Theorem 5.2 we see that α ≥ n−1
2 .

Notice the last two graphs actually exhibit an interesting general result.

Proposition 5.6. Two trees need not be constant-spectrally isomorphic.

Proof. The star and path are both trees, yet by the previous Proposition we know they are not constant-
spectrally isomorphic.

Proposition 5.7. if n is even, Kn
∼=α

s Pn =⇒ α ≥ n2

2

Proof. Consider any permutation, π, of Pn. Consider the cut in π(Pn) that contains the left half of the path.
Then, just as in the proof of Theorem 5.1, we have α is lower bounded by the size of the cut in Kn, which

is n2

2 since for each of the n
2 vertices in the cut, there are exactly that many edges to that vertex that cross

the cut, divided by the size of the cut in π(Pn), which is 1.

Proposition 5.8. Kn
∼=2

s K⌊n
2 ⌋,⌈n

2 ⌉ is optimal if n is odd.

Proof. Proposition 4.12 gives that the relation holds. Also, when n is odd, we have that the minimum degree
of K⌊n

2 ⌋,⌈n
2 ⌉ is exactly ⌊n

2 ⌋ =
n−1
2 . Hence, by Theorem 5.2 we know that any β for which these two graphs

are spectrally isomorphic must be at least n−1
n−1
2

= 2. Hence, 2 is optimal.

Proposition 5.9. Kn
∼=n

s Sn and n is nearly optimal, and may be optimal.

Proof. The relation holds by Proposition 4.13. Also, Proposition 5.5 gives that the smallest α that could
possibly work is n− 1. Hence, n is nearly optimal, and may in fact be the best possible.

We can also determine conditions for which a permutation may show that Cn
∼=α

s Pn.

Proposition 5.10. Suppose Cn
∼=α

s Pn and π is some permutation that shows this to be true. Then,
∀(u, v) ∈ ECn , dH(π(u), π(v)) ≤ α.

Proof. We show the contrapositive. Suppose ∃(u, v) ∈ EG with dπ(H)(u, v) > α. Let u = p0, p1, ..., pdπ(H)(u,v) =
v be this path in π(H). Then, consider the vector x that satisfies x(pi) = i for each i ∈ [dπ(H)(u, v)] and
x(w) = 0 for all other vertices. Then, we have that

xTLGx

xTLπ(H)x
=

(0− dπ(H)(u, v))
2∑dπ(H)(u,v)

i=1 12
=

dπ(H)(u, v)
2

dπ(H)(u, v)
= dπ(H)(u, v) > α
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6 Complexity Theoretic Results

6.1 Spectral Complexity

Proposition 6.1. CSI ⊆ LSI ⊂ PSI

Proof. The containments immediately follow by definition. The last containment is strict since by Proposition
5.7 there exists a pair of graphs so that the graphs are in PSI but not in LSI.

Proposition 6.2. ∀α < n− 1, n ≤ β < n2

2 , SI(α) ⊆ SI(n) ⊂ SI(β) ⊂ PSI

Proof. Proposition 5.9 gives that (Kn, Sn) ∈ SI(n) \ SI(α) for any α < n− 1. Also, Proposition 5.7 gives a

pair of graphs that are in PSI but not in SI(β) for any β < n2

2 .

Proposition 6.3. CED ̸= CSI

Proof. We know by Proposition 4.12 that there exists two graphs that are constant-spectrally isomorphic,
yet differ by more than a constant number of edges.

6.2 General Complexity

Let GD(α) = {(G,H)|Gα− dominatesH}.

Proposition 6.4. SI(α) ⊆ GD(α)

Proof. G ∼=α
s H =⇒ G α-dominates H.

Proposition 6.5. Graph− Isomorphism = SI(1)

Proof. We know that G is isomorphic to H if and only if G ∼=1
s H. Consequently, the equality holds.
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