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Abstract

We continue the investigation of the spectral graph isomorphism problem (SGI). We mainly focus on
new developments that result from looking at the problem from the perspective of a decision problem.
To begin, we show general properties of the spectrally isomorphic relation. Also, we show general
combinatorial conditions that guarantee or prevent graphs from being spectrally isomorphic with respect
to particular functions. In addition, we show certain graphs to be spectrally isomorphic with specific
bounds. Furthermore, we show lower bounds on the functions for which two graphs may be spectrally
isomorphic. Lastly, we inspect the computational complexity of SGI.

1 Definitions

Let G = (V,Eg) and H = (V, Ey) be graphs with the same vertex set. We say that G and H are a-spectrally
isomorphic, if there exists a permutation 7 : V. — V so that G and w(H) have the same components,

equivalently, the null space of the Laplacians are the same, and Vo € RV \ N(Lg), é < % < a, where

7(H) is the graph (7(V), Eg). Equivalently, we define 7(H) = (V,{(7~(u), 71 (v))|(u,v) € Ex}), which
merely takes an edge, (u,v), of H and puts the same edge in the permuted graph where the endpoints, u and v,
of the edge are now the vertices that we identify with u and v under the permutation. This characterization
will be more useful in this paper as it immediately shows that H and 7(H) are isomorphic with isomorphism
L.

Generally, we view « as some function of n = |V|. We say that G and H are spectrally isomorphic if there is
some « so that G and H are a-spectrally isomorphic. Sometimes, we think of the spectral graph isomorphism
problem as the optimization problem that seeks the smallest « so that G and H are a-spectrally isomorphic.
Equivalently, it seeks min;ecgymv) (G, m(H)), where x(G,H) = max{max, ;;fi‘;,maxm jiﬁgf} is the
relative condition number of G and H. However, more often in this paper, we will treat the spectral graph
isomorphism problem as a variation of a decision problem. Specifically, given some «, are G and H «-

spectrally isomorphic?

2 Spectral Isomorphism

2.1 The Spectral Isomorphism Relation

To begin this section, we introduce the notation G =% H to mean that G and H are a-spectrally isomorphic.
Also, we write G =, H if G and H are spectrally isomorphic, equivalently, there is some « so that G =& H.
More generally, if F is a set of functions then we say that G and H are F-spectrally isomorphic if G gf H



for some f € F and denote this by G =2p H. We will commonly use the subscripts C, L, P to denote the
set of constant, logarithmic, and polynomial functions respectively. Furthermore, we say that G =¢ H is
optimal if « is a solution to SGI for G and H. Note that we always have that G E?(G’H) H and the relative
condition number between two graphs with the same components is always at most a polynomial in n and
soG=, H <— G=pH.

Also, we say that a graph G and a graph H with the same vertices have the same component structure,
if there exists a bijection g from the components of G to the components of H such that for any component,
K, of G we have |Vk| = |V k)|. In other words, G and H have the same number of components having the
same number of vertices.

Lemma 2.1. G =, H <= G and H have the same component structure
Proof.

o [—= ] We have G 2, H <= G and n(H) have the the same components for some permutation
m <= G and 7(H) have the same component structure = G and H have the same component
structure since permuting the vertices of H cannot change the order of each component, just the names
of each component’s vertices.

e [ < ] Suppose g proves that G and H have the same component structure. Let K be a component
of G and consider g(K). We define a permutation 7 that arbitrarily maps the vertices of g(K) to the
vertices of K. This is always possibly since the number of vertices of K and ¢g(K) are the same by
definition. We notice that G and n(H) now have the same components, so as previously mentioned
G =, n(H). Hence, G 2, H by simply composing the two permutations.

o~

s Is an equivalence relation.

Now, we prove a few simple lemmas in order to establish that

Lemma 2.2. For any permutation 7, if Il is the permutation matriz representing 7 defined by I(u,v) =
[171(u) = v], then (Uz)(a) = x(n~1(a)) and two graphs G, H are isomorphic with isomorphism  if and
only if TAGIIT = Ap.

Proof. By [4] O

Lemma 2.3. For any graph G and any permutation, m, 11T LgIl = L @) where 11 is the permutation matriz
representing m as in Lemma 2.2.

Proof. As mentioned in the definitions section, we have that G is isomorphic to (G) with isomorphism 7.

Now, if II is defined as in Lemma 2.2 with respect to 7, then II7 is the permutation matrix representing
7L Specifically, we have I (u,v) = Il(v,u) = [r71(v) = u] = [7(u) = v] = [(7~}) "1 (u) = v]. Hence, by
Lemma 2.2, we know that (II7)Ag(IIT)T = N7 AgIl = Arc). Also, we have that 7 DIl = Dr@. In
particular, since 77! is an isomorphism from G to 7(G), we have that Yu € V,dg(u) = dr)(7~*(u)) and
so Yu € V,dg(m(u)) = dre)(u). Consequently, Vu € V, Drq)(u,u) = dra)(u) = da(m(u)). In addition,



Yu eV,

(T DI (u, u) Z Z 07 (u, y) De (y, w)I(w, u) Matrix Multiplication
weV yeV
= Z Z = y|Da(y, w) [~ (w) = u] Definition of I, IT"
weV yeV
= Z = w]Dg(w, w) [~ (w) = u] D is diagonal
weV

= DG(”(“)?”(“’)) = dG(W(u)) = Dﬂ(G)(u>U)

Hence, since both matrices are diagonal and have the same diagonals, we know that II” DIl = Dy (). Thus,
by definition of the laplacian, we have II7 LIl = 11T (Dg — Ag)Il = N7 DIl — TTT AgIl = Dy — Ar) =
LT{'(G) .

Theorem 2.4. =_ is an equivalence relation. Moreover, =g is an equivalence relation for any set o
S b

functions, F, that forms a group under multiplication.
Proof.

1. Reflexive. The identity permutation satisfies that G and id(G) = G are 1-spectrally isomorphic, so
reflexivity holds. Also, since 1 is the multiplicative identity, which is contained in any set of functions
that form a group under multiplication, we see that = is reflexive.

2. Symmetric. Suppose G =¢ H, then there is some permutation 7 so that G and w(H)’s Laplacions
have the same null space and Vx € RV \ N(Lg), 1 < -% “Lga

v a = zTL r(H)T —

Then we have Yz € RV \ N(Lg),

x;c;jijx = ITT'IZLIJ?Hx By Lemma 2.3
= xTS;EizEZHx Since I~! =7
= (Hféigiilz;%lx) Since (AB)T = BT AT
= (H(xl_)li)[;rl/:?ﬁg;gj) Since I” represents 7!
= W By letting y = Ilx

Also, we have © ¢ N(Lg) <= x ¢ N(Lym)) < o ¢ NII"Lyll) < Ilz ¢ N(Ly) < y =
Iz ¢ N(Lg) and so the above equality holds Vy ¢ N(Lpy). Now, by taking the original inequalities



and flipping them, we see that Yy € RV \ N(Lg), é < TL%IE(ZW < «. In addition, we have
x € N(Lyg) < Lgz=0 By definition of Null Space
— 7L gr =20 Since II7 is invertible
— I"Lyllll"z =0 Since 11" = 117"
— L,z =0 By Lemma 2.3
— "2z € N(L,m)) By definition of Null Space
«— Iz € N(Lg) Since N(Lg) = N(Lx(mr))
— LellTz=0 By definition of Null Space
«— ML 2 =0 Since II is invertible
< Lr-1gz=0 By Lemma 2.3
= € N(Lz—1q) By definition of Null Space

Hence, H and L,-1(g) have the same null space. Thus,H =¢ G, so symmetry holds. Since the bound
is the same and « € F implies o € F', we see that = is also symmetric.

. Transitive. Suppose G =¢ H and H NB K, then there exist permutations 71,7 so that N(Lg) =
N(Ly, (mry) and N(Lp) = N(L,Q(K)) and Vo € RV\N(Lg), 2 < L2 < qandVz € RV\N(Ly),

Vo = xTL L(H)T —
1 < :v LH:I: <
[3 -— T L"2(K)LE 6

Then Vz € RV \ N(Ly),

T T, 17 L1, 0t
:f 2 f 1T1 21 1:; Since IT; * = TI7
T Lﬂ'g(K)x z H1H1 LTI'2(K)H1H1 x

= iTHle(H)HlT; By Lemma 2.3
T HlLﬂle(K)Hlx

~ (M{2)" Ly, (I 2)

B (H?l‘)Tme(K)(H?m)
Y L, ()Y

= = By letting y = Iz
yTLﬂ'lTFQ(K)y !

Since (AB)T = BT AT

Also, we have © ¢ N(Ly) <= Ifz ¢ NII{Lyll) <= Uz ¢ N(Ly, ) < y =1z ¢
N(Ly, () and so the above equality holds Yy ¢ N(Lx, (m)). However, since N(Lg) = N(Ly, (m)), we
have the equality holds Vy ¢ N(Lg).

Thus, we know that Vy € RV \ N(Lg), % < L(H)yy < B.

B = YT Ly ry(K)?
Vv ZTng z Lwl(H)Z _ zTng : : :
Hence, Vz € RV \ N(Lg), Tz X T © TR Now, by multiplying all the inequal-

ities together we see that Vo € RV \ N(Lg),

i < 2T Lax

af = xT Ly k)

IN

of

Now, we argue that N(Lg) = N(Lx, x,(x)), by showing that N(Ly, z)) = N(Lx, ry(k))-



€ N(Lx(m)) < Lrymyr=0 By definition of Null Space
— MT'Lylz =0 By Lemma 2.3
<~ Lylliz=0 Since HlT is invertible
< IIjoz € N(Lpy) By definition of Null Space
= Iz € N(Lq,k)) Since N(Ly) = N(Ly,(k))
— Lr,x)lhiz=0 By definition of Null Space
= H?LM(K)Hlx =0 Since IT” is invertible
< Linmr=0 By Lemma 2.3
= € N(Lx ry(K)) By definition of Null Space

Hence, by transitivity of equality we have N(Lg) = N(Ly, r,(x)). Thus, G ~28 K so transitivity
holds. Now, if «, 8 € F, then since F is closed under multiplication, being that it is a group under
multiplication, we see that G =2 H, so = is transitive.

O

We will frequently use the stronger facts exhibited by the proof that symmetry of the relation actually
preserves the function and transitivity merely multiplies the two functions. In fact, we can show a further
strengthening.

Corollary 2.4.1. G =¢ H is optimal <= H =¢ G is optimal.

Proof. We show the implication, the converse is identical. We proceed by contradiction. Suppose that
G =% H is optimal, yet H =% G for some 3 < a. Then, we have by symmetry of 2, that G =% H, which
contradicts the minimality of «. O

However, cannot derive a similar strengthening for transitivity of this form being that it does not hold
in general (almost never, in fact).

2.2 Complexity Theoretic Perspective

We define the spectral isomorphism class of a function a(n), where n is the number of vertices of graphs
we are considering, as SI(a) = {(G, H)|G =% H}. Also, for a set of functions, F, we define the F-spectral
isomorphism class, FSI, as the union over all functions f € F of SI(f). Equivalently, this is the set of all
pairs of graphs that are F-spectrally isomorphic. In particular, we will use the same letters as in Section
2.1 to denote the more common classes of functions. Specifically, we consider CSI = SI(O(1)), LSI =
SI(O(logn)), and PST = SI(n®M). Also, notice that PST = U,SI(a) encapsulates all graphs that are
spectrally isomorphic since G =2, H <= G =p H. Naturally, we are more interested in the constant
spectral isomorphism class, as these graphs have more in common.

Another important set we will consider is the a-edge difference class, ED(«), where ED(«) = {(G, H)|
G and H have the same component structure and EGAFEy = a(n)}. Also, for any set of functions F, we
define FED = UyepED(f). In addition, if (G, H) € FED, then we say that G and H differ by F-many
edges. Also, for any graph G, we let FED(G) be the set of all graphs with the same components as G that
differ in F-many edges from G. Similarly, for each class, C, defined, we define Cs to be the restriction of C'
over pairs of graphs with the same components. Note that any two graphs with n vertices can differ by at



most (g) edges and so PED is exactly the set of all pairs of graphs of n vertices with the same component
structure. Thus, PED = PSI. We explore further relationships between theses classes later on.

3 Optimization Lemmas

In this section, we establish several optimization results that will be later useful in deriving functions for
which two graphs may be spectrally isomorphic.

Definition 3.1. Let G be a graph, S C Eg, and T C Vg. Then, V(S) = {u|(u,v) € S} is the set of all
vertices of G incident to S. Also, we say some set of subgraphs of G, K, is T-internally disjoint if each
subgraph has only vertices of T in common, i.e. VH,J € K, Vg NV; CT.

Definition 3.2. Let G be a graph, S C Eg, and H = G — S. Then, we define C(H) to be the set of all
subgraphs of H formed by taking a component, K, of G —V(S) that has edges to both u and v in H for some
(u,v) € S and adding to it each vertex of V(S) with edges to K in H along with those edges. Also, we let
CS(H) =UgecK.

The idea behind defining C(H) is it abstracts away much of the parts of H that do not really affect ;”; fgi
in the case when H is a subgraph of G.

Definition 3.3. We say that a set of edges, S, is mazimal if it is transitive when viewing it as a relation.

3.1 Results for general graphs

Our first result allows us to consider arbitrary subgraphs of a graph G by expanding the vectors we are
considering to match the vertices of G.

Lemma 3.4. Let G be a graph and H C G, then G = H

Proof. By [2], we already know that the claim holds when Vg = V. If Vg # Vi, then we can simply
consider the graph H’ that that has the same edges as H, but vertex set being the same as G. Then, this
expanded graph has the same laplacian quadratic form as H, being that no new edges were introduced, and
has the same vertex set as G and so G = H. O

Our next result gives a simple upper bound of the condition number between a graph and a subgraph,
H, of it that can be strengthened under certain conditions when we consider C(H).

Lemma 3.5. Let G be a graph, S C Eqg, and H = G — S having the same components as G. If J is a set
of connected subgraphs of H satisfying ¥(u,v) € SIK € Ju,v € Vx and H = Ugc K C H, then

2
r(u) —x(v
1< kK(G,H) <1+ max Lmes(@) @)
zeRVH' ZKEJ 285 ()
I(u,v)eS

Furthermore, if J = C(H) and some mazimizing vector satisfies 3, )¢ suvev(s)(®(u) — z(v))? =0 and for
each component of G — S having edges to only vertices of V(S) that have no edge in S we have x(u) = z(v)
for each u,v in V(S) with edges to this component in G, then second inequality is an equality. Moreover, if
S is maximal, then the equality holds.



Proof. f S = @, then G = H and (G, H) = 1. Consequently since the expression on the right is 1 + a non-
negative number, we have that (G, H) is at most this expression. On the other hand, suppose S # @. We
note that since G and H have the same components, N(Lg) = N(Lg). Now, Va ¢ N(Lg), with z(u) # z(v)
for some (u,v) € S,

2TLor  Lwyene @) —2(y))?
STLHE Y erms (W) — w(y))?
S umeny @W) = 3)? + X, s (@) — 2(v)?
- 3 (wre g (@(w) — w(y))?
> (umyes (#(w) — 2(v))?
> wae sy @W) = 2(1))?
> e (@ (1) — 2(v))?
> (omre By (W) — 2(1)?
> (uwyes (@) — 2(v))?
ZKeJ Z(w,y)GEK(x(w) z(y))?
> (umyes (#(w) — 2(v))?
ZKGJQEK( )

Since x(u) # x(v), we have by definition of J that there is some K € J satisfying u,v € Vi and K is
connected implying it must contain a u-v path. Now, this u-v path must have at least one non-zero edge
since its endpoints are not the same. Hence, the denominator of the last expression is not 0, so is defined.
In addition, only the values of vertices in H’ are used in the last expression, and hence the last expression
need only consider z € RVa’ .

Property of the Laplacian

By definition of H

=1+ Since z ¢ N(Lg) = N(Ly)

<1+ By Lemma, 3.3 since H' C H

By Definition of H’

=1+ By definition of Energy

Now, for the case when x(u) = z(v) for every (u,v) € S, we have that £ fG"L = 1, which we know is

not the maximum since this would imply G is isomorphic to H which is 1mp0551b1e since S # @. Hence, if
z(u) = z(v) or every (u,v) € S, we know that the vector cannot be a maximizer for the original expression.
Thus, for any vector that could maximize i;fg’; we have that the last expression derived is defined and is
larger, so the max over the last expression is larger. In other words,

2T Tr, w z(u) — z(v))?
#(G, H) = max{l, max Tti} — max xT G 14 max 2 (uwyes (@) —z(v))
2¢N(Le) xT Lygx 2¢N(Lg) xT Lgx I(ER‘)/HZS' Yokey 28k (x)
A(u,v)€E
z(u)#z(v)

In fact, the inequality can be made into an equality when J = C(H) and the conditions on a maximizing
vector hold. Specifically, suppose that € RYestn with 2(u) # x(v) for some (u,v) € S maximizes the
second expression and satisfies the given conditions. We show how to construct a vector y from x that gives

the same value in nycy In particular, we show how to set the values of y so that the denominator becomes

exactly 27 Loge and since the two expressions have the same numerators this will complete the proof.

e First, we know that any vertex in a different component than a component containing some u € V()
does not affect the second expression, so we remove them from the original expression by setting
y(w) = 0 for each such vertex, w.

e Also, if w is a vertex in a component of G — S having edges to only one vertex ¢t € V(5), then we set
y(w) = x(t). This zeros out all the edges of that section of the component containing t.

e Similarly, if w is a vertex in some component of G — S that has edges to vertices of V(S) that do not
have corresponding edges in S, then we set y(w) = x(t) where t is one such vertex of V(S) with edges



to the component. By assumption, each of these vertices have the same x value, and so this component
is zeroed out.

e The remaining vertices not assigned a value are exactly the vertices belonging to C'S(H) and we set
y(w) = xz(w) for any w € CS(H).

Consequently, the only remaining edges that differ between the two expressions are the edges between vertices
of V() that are not in S. However, by assumption x satisfies >_, )¢y vev(s)(®(u) — 2(v))% =0, so these
yTLG'y =1 + Z(u,v)es(z(u)fx(v))rz
yT Ly > kec 26k (2)
the second expression is achieved by the first. Hence, equality holds.

edges are all zeroed out. Hence, we have that , s0 the maximum value of

Now, for the moreover, we note that if S is a maximal set of edges, then any maximizing vector satisfies
2 ()¢ Suvev(s) (@) — z(v))? = 0 since the sum is over the empty set. Also, if S is maximal then there are
no components of G — S having edges to vertices of V(S) that have no edges in S, so that claim is vacuously
true. Hence, we may apply the furthermore to achieve equality. O

Our next lemma is merely a restating of a result from calculus that allows us to split a max into two
maxes that partitions the vectors into vectors of smaller dimension. In particular, it states that when we fix
a certain set of vertices and maximize an expression over the remaining vertices, then maximize the resulting
expression, we end up with the maximum over all the vertices assuming the maximum of the non-fixed vertex
set is finite.

Lemma 3.6. Suppose G is a graph and S C Eg. If mingcpvivis) X5 pes(@(s) — z(t))? > 0 Yz € RV
with z(u) # z(v) for some (u,v) € S, then

Yses(@(s) —z()? s es(@(s) —a(t)?

max = max

RY s z(s) — x(t))2 2eRV (S ; _ 2
H(wue,v)es Z( 7t)EEG( ( ) ( )) H(Eul,%v)es Ie}g\l/l\r\l/(s) Z (1'(3) x(t))
z(u)#z(v) z(u)#z(v) (sit)€Ec

a

e T Hence, we have that when

Proof. First note, that for any non-negative function f, max, % =
each u € V(S) is held constant,

 Sunesles) =s0P _ Spes(sls) o))
2€RV\VE D0 e, (€(s) — 2(1))? min Z (z(s) — 2(t))?

LERV\V(S)
re (s,)€EG

Thus, we just need to show that the first expression in this equality is equal to our original expression. But,
from Calculus, we know that if the max restricted over certain variables exists, then we can maximize the
entire expression by maximizing over the other variables of the partially maximized function. Hence, since
the min always exists, and so the partial max always exists we have that the claim holds. O

Lemma 3.7. Let G be a graph, S C Eg, and H = G — S having the same components as G. If J is a
V(S)-internally disjoint set of connected subgraphs of H satisfying ¥(u,v) € SIK € Ju,v € Vx and H' =
UkesK C H and VK € JVz € RVSWVK with z(u) # x(v) for some (u,v) € S,min_ pvi\vs) 28k (x) > 0,

e 5 uyes (#(u) — #(0)?
z(u) — z(v
1< H(G, H) <14+ m@}({g) Z (u,v)€S ' e ( )
- min x
H(Gul,zv)es KeJ r€RVK\V(S) K
w(u)#a(v)
Furthermore, if J = C' and some mazimizing vector satisfies 3, ,)¢su vev(s)(@(w) — z(v))? = 0 and for
each component of G — S having edges to only vertices of V(S) that have no edge in S we have x(u) = x(v)
for each u,v in V(S) with edges to this component in G, then the second inequality is an equality. Moreover,
if S is maximal, then the equality holds.




Proof. This is an application of Lemma 3.5 and then Lemma 3.6 to H' and S. We note that the min can be
pulled into the first sum being that the variables over which the inner sums are defined are different when
the vertices incident to S are held fixed being that the subgraphs are all V(.S)-internally disjoint. O

3.2 Results for specific graphs

We introduce the notation [n] = {0,...,n} and [n]* = {1,...,n}.

Lemma 3.8. Suppose u = po, p1,...,p¢ = v is a path of length £. IfVi € [{ — 1]7,x(p;) = W

then Vi € [0 — 1]*, a(p;) = 2P tel),

?

Proof by Induction on i.

z(pe—2)+z(pe) _ (U=i)z(pi_1)+z(v)

e Basis: if i = ¢ — 1, then we have x(p;) = z(pe—1) = 5 v

e Inductive Step: Let ¢ > 0 and suppose Vi < j < ¢ —1,2(p;) = W%. We have

z(pi—1) + 2(pit1)

z(pi) = 5 By assumption
(=(+1)z(Pit1y—1)Fz(v)
T(Pi—1) + —
= i) 26 (ERNES By the Induction Hypothesis
(0 —i)x(pi_1) + (0 — i+ Da(p;) + z(v)
B 2(0— 1)
—it1 W—i)—(E—it1) , . l—i1
l— 7 i) = - i) = i
_ (=i)x(pi1) + z(v)
206 — 1)
L (E=d)z(pim1) +2(v)
= x(p;) = 711

O

Lemma 3.9. Suppose u = pg,p1,...,p¢e = v is a path of length (. IfVi € [{ — 1], z(p;) = w7
then Vi € [€], z(p;) = w_

Proof by induction on i.

e Basis: if i = 0, then z(p;) = z(po) = z(u) = (Z—Z)z(zz)—Oz(v) = (Z_i)z(z)_m(”)

e Inductive Step: Let 0 < ¢ < ¢ and suppose V0 < j < i,z(p;) = w

— if i = ¢, then z(p;) = z(v) = (e_e)x(z)"‘h(“) = (é_i)w(z)"‘m(“)




— if 1 < £, then

(0= D)x(pi—1) + z(v)
2(pi) = e By Lemma 3.8
¢ — ) ==D)z()+(i=1)z(v)
_ (£—1) £ +2(v) By the Induction Hypothesis

(—i+1
(f*i)(Zfi+1)z(u)+€((eﬂ')(i71)+z)x(v)
B —it1
(=) =i+ Va(u) + i — i+ Da(v) o o
- =i+ 1) (C=i)(i—1)+L=i(t—i+1)
(0 — )z (u) + iz(v)

1

O

Lemma 3.10. Suppose u = po,p1,...,p¢e = v s a path of length €. Then, if we fix x(u),z(v), we have

—x(v 2
minmeRV\{u,v} 251:’{ (:L‘) = M

Proof. We know that the minimizer of the energy when z(u), z(v) are fixed is given by the function that is
harmonic for the corresponding spring network where the fix set is F' = {u,v}. Hence, the solution gives
each vertices’ value to be the degree weighted average of its neighbors. Since we are considering a path,
we have Vi € [( — 1]7,z(p;) = %. Thus, by Lemma 3.9, we know that Vi € {0,...,(}, z(p;) =
(l—i)x(u)+iz(v)  Thus

YA Y

L 1 . . . .
Z((x(pi—l) _ x(pz))2 _ Z((é — (Z — 1))‘7:(12) + (Z — 1)‘:6(’0) _ (6 — )x(Z) + zx(v) )2
14 . . . .
:Z((éferlf€+z)x(€u)+(zfl—z)x(v))2
14
z(u) —x(v)
;( )
1 2
- 5 X (aw) = 2(0)
_ ¢ 2 _ (w(u) — 2(v))?
= )~ (v)) .

Lemma 3.11. Let S be a set and f,x be functions defined on the elements of S. Then,

1 2 _ 1
PSIO)E STrw > fzw) - Y fo)a)? = S @

ues veS\{u} veS\{u}

Y f)f()(z() - x(v)?

{u,0}CS

Proof. We first note that both expressions are multivariate polynomials over x(S) where each variable has
exponent at most 2. Hence, we prove the claim by showing for each variable x(u), the coefficient of x(u) and
x(u)? are the same in both expressions. We start by categorizing the coefficients of the first expression.

e for z(u)?, there are two cases to consider:

10



— When we consider the section of the outer sum defined over element u, we see the only way of
forming x(u)? is with the (X ves\{uy f(v)z(u))? term that appears when expanding the square.
This = (3, e\ u) f(v))2z(u)? giving rise to total coefficient mf(u)(zves\{u} f(v)?in
this case.

— Now, suppose we consider the section of the outer sum defined over some element v # u. In this
case, the only way to get x(u)? is with the (—f(u)z(u))? term that appears when expanding the
square. This gives rise to total coefficient m f()f(u)? in this case.

ue

Hence, if we some over each coefficient that arises from each element over which the sum is defined,
we get the total coefficient of x(u)? in the first expression is m(ﬂu)(Zues\{u} f)? +
u€S

2y _ T es\fuy F0) _ FW X es\guy F(V) _
%U)eg\{u} f(l;)(f)(u) ) = (Zu; F(u))2 (Zves\{u} fw) + f(u) = (Eu; ()2 Dues f(w) =
%) 2wes\{u} SV
2ues f(u) ’

e for z(u) there are three cases to consider:

— When we consider the section of the outer sum defined over element u we see the only way of
forming x(u) is by multiplying the term }_ ¢\ 1,y f(v)2(u) with a term of form — f(v)xz(v) for
some v # u in S that appears when expanding the square. Hence, the total coefficient’s numerator
in this case is —2f(u)(X_, e\ fu} f (V) (X, es\fuy [ (v)z(v)). Note, it will be convenient to use the
distributive law to get = =2f(u) 3=, c g\ fuy (V) X pesfuy f(0)z(W)
= —2f () (X es\(ur (V) Xwes\fuoy f(@2(W) + e ) f(v)?z(v)) by pulling v out of the
inner sum and then out of the outer sum.

— Now, consider the section of the outer sum defined over some element v # u and consider only the
negative coeflicients that may arise. In particular, any such term must result from multiplying
the term — f(u)x(u) with the term ¢\ ) f(w)z(v) that appears when expanding the square.
Thus, the total numerator of the coefficient in this case is —=2f(v)f(u) X-, e s\ (o} f(w)2 (V).

— Now we consider the positive coefficients for such v. These coefficients are all formed by mul-
tiplying the term —f(u)z(u) with a term of the form — f(w)x(w) for some w € S\ {u,v} that
appears when expanding the square. Hence, the total numerator of the coefficient in this case is

21 (0)F(0) X e funy F@)a(w).

Thus, if we sum over all of the numerators for each element of the outer sum, we get the total numerator
coefficient is

—2f(u)( D f) D fwaw)+ D f@)Px) —2f(w) D> fl) Y flw)z(v)

vES\{u} weS\{u,v} veS\{u} veS\{u} weS\{v}
+2f() Y, fo) D flwa(w)
veS\{u} wGS\{u,v}
==2f(w)( Y f@?x@)+ Y f@) D fwr()
vGS\{u} veS\{u} weS\{v}
==2f(u) Y f@r@@+ D fw)
UES\{U} weS\{v}
==2f() O fw)( D> f)a(v)
weS veS\{u}
Hence, the total coefficient is —2H (W ves f(w))(Zuesz\{u} J0ew) 220 Zoes J)20)
(P wes f(w)) wes f(w)

11



Now, we have that

o 2
s f( IRCICCORED)
flu (u) = 2(v))?
2 ZuES f 1;9 UGSZ\{u}
flu (w)? +2(v)* = 22(w)a(v))
2 ZUGS f ;UESZ\{u}
22 f Z Yo ff@z? Y Y f)f@ze)P -2) Y fu)f(v)e(u)z(v)
ues u€S ves\{u} u€S vesS\{u} ueS vesS\{u}
22 f $230 3 s’ ~23 3 ffe)(w)
u€s u€S veS\{u} u€S veS\{u}
D) f Z Yo ff@ae@)? =3 > fw)f)z(u)z(v)
ues uESvES\{u} u€S vesS\{u}
_ > ues f(“)(ZUGS\{u} fv)z(u)? -2 Z{u,v}gs fu)f(v)z(u)z(v)
>oues f(u)
From this alternate representation, it is easily seen that for any u € S, the coefficient of x(u)? is exactly the
one derived previously and similarly for z(u). Hence, the two expressions are equal. O

L—|V (S
(x) = |v|<s(>\)‘ 2 quwicv(s) (@(u)—

Lemma 3.12. Let S C Ek,. Ifx(V(S)) are fized, then min ¢ pv\v(s) 2Ek,—s
2(0))? + 32 (wygs (@(u) = z(v))?

u,vEV(S)

Proof. Again, the minimizer is exactly the function that is harmonic for the spring network where the fixed
set F' = S. Hence, we have that each vertices’ value is the degree weighted average of its neighbors. That
is, Vw € V\ V(S),z(w) = 7 > yev\{w} T(y). Now, for any two vertices, w and y, not in V'(S), consider

z(w) — z(y):
ZsEV\{w} z(s) — Zte\/\{y} x(t)

() — 2(0) = -
_ a(y) -~ afw)
l—1
— (afw) — o)) + "I g

12



Hence, we have:

r(w) = 5— Z x(s)
seV\{w}
=Y st Y aw)
seV\{w}uV(S) ueV(S)
= VO )+ (Y aw)
ueV(S)
V(s 1
— ) = P 3 et
B ZueV(S)x(U)
== )

Hence, if we plug in this minimizer into the sum we will get the minimum value.

Yo @ —a)’= Y Y @) -zw)P+ Y Yo @) —z@)?+ Y (a(w) - 2(v)?

(s,t)€Eq uwEV(S) weV (S) weV\V(S) yeV\V(S)U{w} (u,v) ¢S

w, eV (S)
Yo U=V (@) —ew)?+ Y (2(u) - z(v)?

ueV (S) (u,0)¢S
u, eV (S)
=Y (= [V(S)) o) — 228y Y ((u) —a(v)?
V(S)]
ueV(9) (u,0)¢S
u,weV(S)
e LD N (LCIEET RIS SO DI O,
ueV(S) veV(S)\{u} u(z,ev‘)/gég)
_LVS) g ) )
= (@(u) —z()?+ > (2(w) —2(v))
VS)] {u,v}CV(S) u(zev‘)/e?(g)

Where the last equality comes from applying Lemma 3.11 with f = 1, § = V(S), and x being the same

X. O
Lemma 3.13. If G is a connected graph, S C Ez, z(V(S)) are fizred, and d°(u) = d(u) — |{(u,v) € Eg|v €
V(S)}H, then if 26q(x) is minimized when Yw,y € V \ V(S),z(w) = x(y), we have
E{ 1CV(S) d® (u)d® (v)(z(u) —
. 2 _ u, vy 2
zelgl/l\r‘lf(s> 5(;’(33) ZuEV(S) ds(u) + (u%S )
u,veV(S)
Proof.
> (a(s)—2(t)* = Yo @w-z@)P+ D (@) —a®)+ Y (w(w) —2(v)
(s,t)€Ea (u,w)eEq (s,t)€Eq (u,v)¢S
ueV(S),wgV(S) s,t¢V (S) u,veV(S)
= > & —z(w)?+ Y (w(u) —2(v))
ueV(S) (u,0)¢S
u, eV (S)

13



Now, we will find the optimal value of z(w) for each w not in V(S) in terms of the vertices of V(S).

0 .
Oz (w) Z d® (u)(z(u) — z(w))*> =0

ueV (S)

= Y du)(z(w) —z(w) =0

ueV (S)
= Z dS (u)z(w) = Z d® (uw)a(u)
u€eV(S) ueV(S)
Euev(s) d® (u)m(u)
ZUEV(S) ds(u)

Hence, plugging in the minizimizer yields the minimum value. First, consider just the first sum.

d® (v)z(v
Z d% (u)(a(u) — zx(w))* = Z d® (u)(x(u) — Z”GV(S) (v)z(v)

S
ueV(S) u€V(S) ZuEV(S) d(u)

T V<51>ds<u>>2 2 P 3, P 3, da)?

ueV(S) veV (S)\{u} veV(S)\{u}

= z(w) =

)2

1
S NE d®(u)d® (v)(z(u) — z(v))?
Zuevis) @) {U,U}XC:V(S) () =)

Where the last equality follows from Lemma 3.11 with f = d, S = V(S), and x being the same x. Hence,
by adding back the sum on the right the claim holds. O

Corollary 3.13.1. If S = {(u,v)}, then the minimum from Lemma 3.13 is > & (x(u) — z(v))?.

Proof. We know that d(u),d(v) > 1 since G is connected, so there is some u — v path in G. Now, there are
three cases to consider:

o If d(u),d(v) > 2, then d(u)d(v) > d(u) + d(v). Thus, 440 > 1 >

1
d(w)+d(v) = 2

e If without loss of generality d(u) = 1 and d(v) > 1, then dd(ﬁ:;l:léq()g) = 112)()1;)' ﬁ =1
since its an increasing function over the positive integers, so the minimum value results from plugging

in the minimum value of the domain. Hence, li(dv()v) > %

Now, minge 7+

4 Upper Bounds

In this section we present several functions for which graphs G and H are spectrally isomorphic that are
defined with respect to various combinatorial properties of G and H.

14



4.1 Results for general graphs

We begin with our main result that describes a function dependent on the subgraphs present in the graph
H.

Theorem 4.1 (Subtracting Lemma). Let G be a graph, S C Eq, H = G — S having the same components
as G. Also, suppose J = K UFE UP is a set of V(S)-internally disjoint and edge disjoint subgraphs of H,
where K contains subgraphs of the form Ky —T for @ #T C 5,0 > 3, FE contains subgraphs excluding those
in K containing u and v for some (u,v) € S and satisfying 26 (x) for x(V(S)NVy) fized is minimized when
each non fixed vertex has equal z value, and P is a set of u—v paths in H for (u,v) € S such that no internal
node of the path is in V(S). Furthermore, suppose that V(u,v) € SIL € Jyu,v € Vi,. Then, G =% H for

1
a =1+ max

S S
(uw)€S We | =lVEeaV(S)] S ACLA G 1
LeK LeFE S LeP
Zu,vGVL Venv(s)| Eu,vevL EwevLmv(s) d7 (w) Zu,vGVL |EL|

Furthermore, k(G,H) = « if J = C(H) and there exists some mazimizing (u,v) € S such that for every
w € V(S)\ {u,v} in the same component of H as u and v, w can only reach v [resp. u] in H through u [resp.
v/ or through a vertez of V(S) in a subgraph of C containing both u and v. Also, if w itself is in a subgraph
of C containing both u and v, then w must not have any edge to a vertex of V(S) that has a path to v [resp.
u] either through edges between vertices of V/(S) or that is in a subgraph of C with vertices of V(S) that can
only reach u [resp. v] through v [resp. u/ or through a vertex of V(S) in a subgraph of C containing both u
and v. Moreover, if S is mazimal and each edge of S achieves the maz defined in o then k(G, H) = .

Proof. Consider the identity permutation. The edge disjointness criteria ensures that UpcyL C H, so we
vis Z(u 'L/)ES(I(U) z(v))
H(GHRU)(G;' ZLeJ mlnreRVL\V(S) 2& ()"

) z(u)#x(v) )
bound on the denominator to get an upper bound on the second expression.

:erRI‘r}LU\ﬂWSJQgL Z min  26p(z)+ Y min 26(x)

LekK ;ceRVL\V(S) Ler Z2ERVL\V(S)

can apply Lemma 3.6 to get (G, H) < 1 + max Hence, we show a lower

-3 RS T et st + 3 Hecrg 5 0)al) — 5(0))
VLNV (S)]

S
{u,w}CV(S)NVy, LEE ZwGVLﬁV(S) dz (w)

Y ﬁmu) — 2(v))?

LeP
u,veVLNV(S)

_ oy sy MEWoVel ey s BWEOEW —s@P s L

(u,w)eS LEK Ve AV (S)] LEE ZweVLﬁV(S)dg(w) Lep |EL|
u,veV(S) w,vEV(S) u,veEVL
+ > a(wv)(z(u) - 2(v))?
(u,v)¢S
u,vEV(S)

SU SU
> Y (Y 'VL'WLXLV“V S WY S e — ()

S
(uw)eS LEK LEE ZwEVLﬁV(S) dy (w) Iep
u,veV(S) u,veV(S) u,veV

. VL=V N V d7 (u)d} (v) 1 2
> min ( + ) (z(u) — z(v))
S 2 TAVEl T 2 Senmed@ T 2 T 2
u,veV(S) u, eV (S) u,veEVL,

Where the first equality comes from the fact that J = K U E U P. Then, the second equality comes from
applying the optimization lemmas to the special types of graphs. Next, the third equality results from
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swapping the inner and outer sums and rearranging the terms based on the edges. By the assumption that
every edge of S appears in at least one subgraph in J, we know that there is a positive term in the first sum
for each edge of S. Now, the first inequality comes from removing the terms associated with edges not in S
but are between vertices incident to S. Lastly, the second inequality comes from lower bounding each entry
of the outer sum with the minimum term in the sum and then pulling the term out. Now, we can plug this
expression back into the denominator of the max to get:

Z(u,’u)es(x(u) - x(v))Q

14+ max
- (5) i 28
SR e e qtites 21 7)
z(u)#z(v)
e % fuanes (@) — o(0))?
= 2eRVE) min s> Lek [VL|=|VLNV(9)]| +3 LeE df (u)di (v) +3 Lep 1 ' (z(u) — z(v))?
H((u),;)e(s) (uw)€ ’LL,UGGVL Venv(s)| u,UGEVL Z“’GVLF‘V(S) df(w) u UGGVL 1L (wv)€S
1
=1+ ; VL=V V(S)] d7 (u)dz (v) 1
mln(u,v)ES(Zuﬁ)Eef‘gL VLV (S)] + Zuﬁ)EE%L z:“'JEVLFW(5> di(w) + Zuﬁ/}EEIXD/L ‘EL‘)
1
=1+ max
(u,v)ES VL |—|VLNV (S)] d? (u)dZ (v) 1
Zuﬁ)eg‘{& Veavis)l - ZU,I’ZJEG%‘/L Z“’E‘fLﬁV(g) df(w) + ZuﬁJeegL 1
Thus, we have that Vo ¢ N(Lg)
x"Lax T Lo > (uwyes(@(w) — z(v))?
“Tr . S max e <14+ max - <
2TLyx — 2¢N@Le) 21 Lyx w(eRV)(S; > pey Ming e pvives) 281 (x)
F(u,v)€E
z(u)#z(v)

Hence, G = H.

zTLga:
2T Lyx

Now, we argue that under the conditions of the furthermore, we can construct a vector x so that

e First, we arbitrarily choose z(u) # z(v) and set z(w) = 0 for any w not in the component of H
containing u and v.

e Next, we set z(w) = x(u) for any w in G — {u} that does not contain any vertex of V(.S), and similarly
do the same for v.

e Now, we eliminate all the edges between vertices of V' (.S) that are not edges of S by setting z:(w) = z(u)
if w is reachable from u using only edges between vertices of V(S) that are present in H. We similarly
do this for v. For any other such edge (w, h) we set z(w) = x(h). Note, by the furthermore condition,
there is never a path from u to v using only edges between vertices of V'(.S) and so we can safely remove
the edges this way without ever running into the problem of needing to set z(u) = z(v).

e Next, we eliminate all edges that aren’t in a subgraph of C containing both u and v by setting
x(w) = x(u) for such w that can only reach v through u or some vertex of V(.S) that is in a subgraph
of C containing both u and v and set the value of that vertex to x(u) as well. We similarly do this
for v. Lastly, for any vertex that can only reach u and v by passing through some vertex, w, of V()
that is in a subgraph of C containing u and v where w cannot reach u or v using only edges between
vertices of V'(S) and w is not adjacent to some subgraph of C, other than those containing u and v,
that can reach u or v, then we set the vertex’s value to 0 arbitrarily and set z(w) = 0. Note that the
furthermore condition ensures it is safe to do zero out edges this way since the only possible conflict
would arise if some w in a subgraph of C with both u and v had a path to both u and v using edges

16



of V(S), which cannot happen by assumption, or if it was contained in a component of C with vertices
having paths to u and a component of C with vertices having paths to v. However, the furthermore
condition explicitly guarantees that w may only be apart of components that can only reach v by going
through u first or some other vertex in a subgraph with both u and v, and similarly if we interchange
u and v.

e Now, the current vector constructed zeros out everything that is not a subgraph of C containing both u
and v, and we can just set the remaining entries of the vector as described in the optimization lemmas
to coincide with the minimizers of the energies of each of these subgraphs.

Thus, o can be achieved and so it is the maximum of %7 which is the relative condition number in this
case. On the other hand, for the moreover, we have that if S is maximal then Lemma 3.7 and the fact that
there are no edges of form (u,v) ¢ S yet u,v € V(S) gives each inequality in the first sequence of results is
an equality except for the last. However, since edge edge of S by assumption achieves the max, it must be

each edge also achieves the same min and so the last inequality is also an equality and the claim holds. [J

We can restrict this result to get some more interesting though looser upper bounds.

Corollary 4.1.1. Let G be a graph, S C Eg, and suppose H = G — S has the same components as G. Also,
suppose P is a set of vertex disjoint paths in H where each path connects the endpoints of of an edge that is
in S. Then, G =¢ H, where
a=1+max|EL|
LeP

Proof. This follows immediately from Theorem 4.1 with J = P since for each edge there is exactly one path
and we know that —— = |Ep|. O

1BL]

Corollary 4.1.2. Let G be a graph, (u,v) € Eg, and H = G — (u,v) having the same components as G.
Also, let K be the set of all L € C(H) such that L = K¢ — (u,v) for some £, E be the set of all L € C(H)
excluding those in K such that 2Er(x) for x(u),z(v) fized is minimized when each non u,v verter has equal
x value, and P be the set of all other elements of C(H). Then, G =% H for

1
+
Vi |—2 dr, (u)dr (v 1
YLek | Lgl +2rer 4515(2)155(3*) + 2 LeP Tam)

a=1

Furthermore, if every element of P is a u-v path, then x(G,H) = «.

Proof. This is a simple application of Theorem 4.1 by letting J be C(H) where we replace any subgraph in
C(H) that is not of the first two forms with the u-v path that it must contain since each subgraph in C(H) is
a connected subgraph containing both u and v. If each element of C(H) is already of one of the three forms
then we let J be C(H) unaltered and so can apply the furthermore condition of the theorem since S has only
one edge so satisfies the condition giving that the relative condition number is a. O

Corollary 4.1.3. If G and H = G — S for S C Eg have the same components and there exists a non-
|

1+ vis)
empty set, K, of subgraphs of H having form K, — S for some £ > |V(S)|, then G ==, “=rex VLImVET f

IV (s)]
Moreover, if some mazimum clique in G contains S, then G =<~V [

Proof. We apply Theorem 4.1 to J = K. Then, we upper bound the resulting al by noting that the sum in
the denominator of the fractional part of a is lower bounded by any single element of the sum. In particular,
the largest element. Then simplifying the expression gives the result. The moreover then easily follows by
definition of the clique number. O
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Corollary 4.1.4. If G and H = G — (u,v) for (u,v) € Eg have the same components, P is a mazimum
set of vertex disjoint u-v paths in H, and K is a set of {u,v}-internally disjoint subgraphs of H of form
Ky — (u,v),£ >3, then

1. G xlrdatun) g

2. G="H

max E
1+ Lep|EL]

3' G 5 A g (u,v) H
S

IR

2
Y R e g VL2 I

4. G

Il

Proof. Each result holds by merely applying Theorem 4.1 to a specific set of subgraphs of H and then upper
bounding the a given by the theorem if necessary.

1. This follows from Theorem 4.1 by letting J to be the singleton set containing the shortest u-v path in
H.

2. This follows from 1. since the shortest u-v path can be at most n — 1 and there exists a u-v path since
G and H have the same components.

3. By definition, there are Ay (u,v) many paths in P. Now, we have that the denominator of the fractional
part of the « that is given by Theorem 4.1 when we let J = P is lower bounded by Ay (u, v) mingcp ﬁ =

() - Hence the claim holds.
maxrep IEL |
4. By definition, there are | K| many subgraphs in K. Now, we have that the denominator of the fractional
part of the « that is given by Theorem 4.1 when we let J = K is lower bounded by | K| minycx W =
|K|(minpLex|VL|=2)
2

. Hence, the claim holds.
O

We can also always show to graphs are spectrally isomorphic by iteratively removing or adding edges and
applying transitivity of the relation.

Lemma 4.2 (Swapping Lemma). Let G and H be graphs differing by k edges. Then, if we choose any
ordering of edge additions and deletions, (e1,ea,...,ex), so that G = Go, Gy, = H, and for each i either
Gi=Gi_1—e;or G, =Gi_1+e; and Gi_1 =% G, then G =¢ H where

k
o = H (67
i=1
Proof by induction on k.

e Basis: If k=0, then G =H and a = H?:1 a; = 1 and we know that G =! G = H

e Inductive Step: If k£ > 0, as above fix an ordering of the edges to be added to G and deleted from
G and suppose inductively that G %ff Gp_q for g = Hi:ll «;. Then, we know by assumption on the
ordering that Gr_1 =% G, = H. Hence, the Induction Hypothesis and transitivity of =, gives that

G =) H where v = Bay, = (Hi:ll a;)ag = a.
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O

Lemma 4.3. Let G and H be graphs with the same components and that differ by k edges. Then, if we choose
any ordering of edge additions and deletions, (e1, e, ...,ex), so that G = Gy, Gy, = H, and for each i either
G, =Gi—1 —e; or G; = G;_1 + e; and Gi_1 has the same components as G;, then for each i G;—1 =5 G,
where oy is the term given in Corollary 4.1.2 and G =% H where

k
o = Hai
i=1

Proof. There are two cases to consider. If G; = G;_1 —e;, then since G;_1 and G; have the same components
by assumption, we have by Theorem 4.1 that G; = G,;,_; where «; is the bound given by the same theorem.
Hence, by symmetry of =, we know that G;_1 =* G;. Alternatively, if G; = G;_1+¢;, then G;_1 = G; —e;,
so again the assumption allows us to apply Theorem 4.1 to get that G;—; =% G; with ;. Now, we can
simply apply the swapping lemma to conclude that G =¢ H. O

Proposition 4.4. Let G and H be graphs with the same components and that differ by k edges. Then, there
exists an ordering of edge additions and deletions, (e1, e, ...,ex), so that G = Gy, Gy, = H, and for each i
either G; = G;_1 —e; or G; = G;_1 + e; and G;_1 has the same components as G;.

Proof. Since G and H have the same components, we can partition the edge additions and deletions to
additions and deletions on each component since any edge added between two components would need to be
removed anyway. Hence, we can just consider connected graphs G and H. For G and H connected, we can
always just perform all of the edge additions first, which cannot change the component since adding edges
to a connected graph cannot form new components. Then, we can just perform all of the edge deletions. We
know no edge deletion can disconnect the graph since if it did then the remaining edge deletions could not
somehow reconnect the graph in order to get H which is connected. Thus, arbitrarily choosing an ordering
of additions and then an ordering of subtractions and concatenating the two orderings together gives an
ordering of edge additions and deletions that satisfies the claim. Now, for disconnected graphs, we just
construct the sequences for each component and arbitrarily concatenate them together. O

Proposition 4.5. If G and H have the same component structure and G has k components, then G =3 H

for a = max{ A;\ZE?I)J)’ )\”\c+(1H) }. Furthermore, if H C G, then the claim holds for a = /\2:58‘)1)

Proof. Let m be the permutation constructed in the proof of Lemma 2.1 satisfying that G and w(H) have
the same components. Then,

T T 1 2l Lgx 2 Lz
max M = max Mx 75— max i < maXs T = An(G) < max{ An(G) An(H)
w2l Ler = 2Tl A ‘ LTILTE;E;*H) ~ min, LTi‘;(foﬂ Mot (H) — Aot 1(H)' At (G)

Where the last equality holds since permuting a matrix does not change the eigenvalues, i.e Agy1(w(H)) =
Ae+1(H). Also, we have

1 L : L
min 7xTLGx = min 7$TLG$ xZTe — min % > e wﬂ?z = )\k+1(G) > min{ 1(G> )\kH(H)}
x xTLTr(H)SC x xTL,r(H):c ﬁ z % - max, %7(;’)90 /\n(H) (H) 7 n(G)

Finally, we have min{ A;*EI({C;), AHI(H)} = An(c} - Hence, since the bounds hold for the ex-
k41 (H)” Ak+1(G)}

tremes, they hold for all x not in the null space of the laplacian of G. Now, if H C G, then we already

max{ 5

know ;”; fi; > 1 for all x not in the null space of the laplacian of G, and so we only need the upper bound
An (G) 0
Aky1(H) "
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Lemma 4.6. Suppose G =G1+ Gy + ...+ G and H = Hy + Hy + ... + Hy are graphs with k components,
and G =¢ H. If 3r showing that G =¢ H so that for each i Vy(u,) = Vo, and w(H;) = f(H;) for some
permutation f, then Vi, G; =5 H;.

Proof by Contrapositive. Suppose there is some ¢ such that G; 25 H;. Then, we have by definition that
T
Va'3xz ¢ N(Lg,) such that either — Loz

acTL"/(Hi)rc
If Va(u,) # Vo, or m(Hj) # f(H;) for some permutation f, we are done. Otherwise, suppose V() = Vg,
and 7(H;) = f(H;) for some permutation f. Consider the vector x that is the same x as previously defined

T
> aor LGt < é Also, let m be any permutation of H.

rcTLW/(Hi)ac

. . . T 2T Lg. « 2T Lg. x .
over the vertices of G; but is 0 in each other entry. Then, —&-Le2  — 7T ~¢% — 7 2%  However, this
x L,\.(H)w x Lﬂ.(Hj)w x Lf(Hi)w
T T . . . . . . .
means that —2-L62_ > o or —&-Ls¥ < L for this x which is not in the null space of L¢ since its not in the
' Lymy® ' Lrgy® [eY
null space of Lg,. Thus, this m does not show that G =¢ H. O

Lemma 4.7. Suppose G = G1 + Gy + ... + G, and H = Hy + Hy + ... + Hy are graphs with the same
components, and G =¢ H. IfVi # j,|Vg,| = |Vg,| = Gi =G or H; = Hj, then Vi,G; =3 H;.

Proof. Let m be some permutation that shows that G =7 H. Consider some arbitrary i. If Vi (g,) = Vu,,
then we know 7 merely permutes the component H; amongst itself, so Lemma 4.6 applied with f = 7 gives
that G; =¢ H;. Alternatively, suppose V(g,) # Va,. Since 7 shows G =¢ H it must ensure G and 7(H)
have the same components. Hence, since G and H have the same components by assumption, we know that
H and 7(H) have the same components. In particular, it must be that Vi H;) = Vnu, for some j such that
H; has the same number of vertices as ;. Now, by assumption, either H; = H; or G; = Gj.

e if H; = H; by bijection f, then we have that H; = f(H;). Hence, n(H;) = n(f(H;)) = mo f(H;). Thus,
by Lemma 4.7, G; = H;.

e if G; = G; by bijection f, then we have that G; = f(G;). Now, by a similar argument to Lemma
4.7 using subvectors, it can be shown that G; =¢ 7(H;) via the identity permutation. Hence, G; =
f(G;) =2 fom(H;) via the identity permutation. Consequently, G; = H; via the permutation f o .

O

Lemma 4.8. If G =G1+ G+ ...+ G and H = Hy + Hy + ... + Hy, are graphs with k components, and for
each i, G; =% H;, then G =7 % H._ Furthermore, if G and H have the same components, «; is optimal
for Gi and H; for each i, and Vi # j,|Va,| = |Vg,| = G; = G; or H; = Hj, then max;c; is optimal for
G and H.

T
Proof. 1f for each i, G; =% H;, then 3nVx ¢ N(Lg,), ~ < Lot <, Also, we have N(Lg) =

i = @l lape =
N:N(Lg,), where we think of each vector in N(Lg,) as a vector in RV where the subvector that is defined
over the vertices of G; must be an element of N(Lg,), since a vector is in the Null space of G if and only
if it makes each component zero. In addition, define m = m7m5...m; be the composition of the permutations
for each component. Note, we have G and 7(H) have the same components since for each i, G; and 7(H;)
must have the same components. Now, we have Vz ¢ N(Lg),

xTLGx xTLZ§:1 G’ Zf:l mTLGi"T Zf:l O‘ixTLﬂ'z‘(Hi)m Zf:l xTLﬂ(Hi)x
T = — = = < = < max o = = haxo
@ La(myx LEL w(H)T i T LT >ic1 T Ly ! >ic1 T Lmy !
Also, we have,
k
R et — xTLZi;l G:v — Zf:l e’ Lg,x > 2z Oé%xTL“i(Hi)x > min L Zf:l xTL”(Hi)x = 1
eTLanye  @TLyw cary® Y 2Ty Yo aTLeyr 1 QS @ Ly WA
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Thus, G &mai o ],

Now, to show the furthermore, note that if G %/f H for some smaller 3, then G; ’Ef H; for any i under
the assumptions by Lemma 4.8. In particular, for the i giving the maximum «;. However, by assumption,
«; is optimal for G; and H;, a contradiction. Hence, the function derived is optimal for G and H under these
conditions. O

Note that we can apply any result from this section to graphs with the same structure by first applying
the permutation that always exists that forces the two graphs to have the same components and applying
the result to these graphs. The composition of the two permutations then translates the result to the original
graphs.

4.2 Results for Specific Graphs

Note the edge-less graph is only spectrally isomorphic to permutations of itself (which are all the same) and
vacuously so.

Proposition 4.9. K, %s’“'v(s)' K, — S for any set of edges, S. Furthermore, if S is mazximal, then it’s
optimal.

Proof. Let S C Ek, . We have that for any permutation, =, that 7(K, — S) = n(K,,) — 7n(S) = K, — 7(S)
since every possible edge is present in K, so permuting it will not change the edges. Hence, applying
Theorem 4.1 to K,, and K,, — 7 (S) with J = C(K,, — 7 (S)) = K, —7(S) — {(u,v) ¢ 7(S)|u,v € V(n(S))} we
have #(Ky, Ky —m(S)) < =iy noting that [V (S)] = |V(n(S))]. Also, if S is maximal we have that 7(5)
is maximal. Consequently, C(K, — 7(S)) = K,, — m(S) so each edge has the same max achieved. Hence,
the moreover of Theorem 4.1 gives equality for the relative condition number. Since this equality holds over
any permutation we have that min, «(K,,7(H)) = 7=Tvsy» but this means by definition that ——zy is
optimal.

Proposition 4.10. For n a power of 3, 5Cs =3 5 P3 is optimal

Proof. Notice that C5 = K3 and P;3 = K35 — (u,v) where u and v are the endpoints of the path. Hence, by
Proposition 4.9, C %z’ P3 and 3 is optimal. Hence, since each component of 5 (7 is the same and 5Cs, 5 P3
have the same components, we can apply Lemma 4.8 to see that £Cj3 = 5 P53 is optimal. O

Next, we wish to explore what happens when we delete many edges incident to one vertex. Consequently,
We introduce the notation S, (f) to be an arbitrary set of f(n) edges incident to the vertex u in G. In other
words, Su(f) = {(u,v) € E} and [Su(f)[ = f(n).

Proposition 4.11. K, =3 K,, — Su(l5] —1)

Proof. Note that since we deleted |5 | — 1 edges from K,, and the degree of u is n-1, there remains [ % | edges

incident to u in the resulting graph. Consider the set of disjoint length 2 paths in K, that start with u and

end with an endpoint of an edge in S,(|%]) that exists since the degree of u is n-1 and so there are [%]

edges remaining after deletion of the others. O

Proposition 4.12. K, =2 K|z rz.

Proof. We know that A, (K,) =n, A2(Kn ») =%, and K» » C K,,. Hence, by Lemma 4.8, we know that
K, 2 Koo, O
s 272
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Proposition 4.13. K,, =7 S,.
Proof. We know that A\, (K,) = n, A\2(S,) =1, and S,, C K,,. Hence, by lemma 4.8 we know K, =7 S,. O
Conjecture: C, %ﬁ P,

Proof. (Idea) First, label the vertices of P, from right to left 1 to n, and similarly label the vertices of C,,
by taking P, and adding edge (1,n). Now, consider the permutation:

(0 i if i is odd
m(i) = ,
(n+1) -3 if ¢ is even

This permutation ensures that V(u,v) € Eg, ,dr(p,)(u,v) < 2, since for each edge of C,, of form (i, —I— 1)

where i < § we have in 7(P,) the path i— > (n+1) —i— > i+ 1 and for each edge (i,i — 1) for i > § we
have in w(P,) the path i— >n — i+ 2— > i — 1. Hence, by Lemma 4.4 of [1], the claim holds. O

5 Lower Bounds

5.1 Results for General Graphs

We define the min cut of a disconnected graph as the minimum of each component’s min cut. We will present
necessary conditions for two graphs to be a-spectrally isomorphic.

~o MazCut(G) MinCut(G) MaxCut(H) MinCut(H)
Theorem 5.1. If G =¢ H, then o > max{ {roertsy s Srimcut() MasCat(G) MinCui(G) )

Proof. Suppose S C Vg induces the max cut of G. Consider the characteristic vector xg that is 1 for each

vertex of S and 0 otherwise. Then, by definition of 27 Lgx, we have that 2L Lgrs = |Eg[S,S]|. Similarly,
wTLc;x

L Lmas = |Exm))S, S]] = |En[r(S),7(S)]|. Hence, since a must be larger than T for all x not in
. } zL Loz _ |Ec[S,S]| MazCut(G)
the null space of L, it must also be at least ng:,,(GH)fcs = Bl ‘(; $ 25y 2 MazCut(H)- Similarly, let T C Vg

T
fﬂ.—l(T)LGf-,rfl(T)
T

induce the minimum cut in H and consider the characteristic vector x,-1(ry. Then,

z Loy —1(7) o

w=1(T)
|[Ecln {(T)a 1(D)])|  _ |Ec[r" (1) 7~ (T)]| - MinCut(G) o =
Bl () T B [T 2 MnCut(i) - Now, since G =¢ H <= H =% @, we can
apply these two results to H and G to get « is at least each of these quantities and so its at least the max
of them all. O

Theorem 5.2. If G = H, then a > max{ﬁ((g),%g)) %, ‘;(—g;}.

Proof. Consider the vector d,, that is one at u and 0 otherwise, where u is some vertex of G with maximum
degree. Then, we have that §! Lgd, = > wwerc) (Ouv) — Su(w))? = > (uwyen(c) (u(u) — 5u(v))? =
Y (upyen@) ! = da(u). Similarly, 6L L)y = dp(m(u)). Hence, since ov must be at least the ratio of the
Rayleigh quotients for any vector that is not in the null space of the two Laplacians and since we have found
a particular vector that gives the ratio of Rayleigh quotients a value of #((12))’ it must be the case that

a> dj(ér(z)) d(ﬂl(qc(;i)) > ﬁ(( 7y Similarly, if we consider 6, where 7(u) has minimum degree in H, then we

have o > dH(TEEﬁZ)) = 5(1(;)) > % Hence « is at least the largest of the two quantities. Now, we know by
symmetry of =, that G = H +— =% (G. Hence, we can repeat the proof with H,G to get the claim. [
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Now we show that under relatively mild conditions, the above claim strengthens even further.

Lemma 5.3. If G =2 H and there is some permutation, m, of H demonstrating this fact satisfying that

there exists a vertex u of mazimum degree in G and w(u) has minimum degree in H, then a > %.

Alternatively, if there is some S that induces a mazimum cut of G with 7(S) being a minimum cut in H,

MaxCut(G)

Proof. Since we know such a u exists, plugging ¢, into the ratio of Rayleigh quotients gives a value of ?((I%) by

the proof of the Theorem 5.2, so o must be at least this quantity. Similarly, if we consider the characteristic
vector for S, we see the second claim holds. O

Corollary 5.3.1. If G or H is regular, then o > %. Also, if G is d-regular and H is k-regular, then

d

Proof. If H is d-regular, every vertex has degree d, which is the minimum degree of H. In particular, given
any vertex u of maximum degree in G, we have that for any permutation, 7, applied to H that 7(u) has
minimum degree. Thus, by Lemma 5.3 we are done. On the other hand, if G is d-regular, then every vertex
of G has maximum degree. Thus, if u is any vertex of minimum degree in H, 7~ !(u) satisfies the conditions
of the Lemma and again we are done. Now, if both are regular as described above, then we know by the

Theorem that o > %. O
Lemma 5.4. If G =% H and G has k components, then o > max{ >‘§+(1£IC):), )";\szg)ﬂ}

Proof.

TL . TL
o > max v Loz min 2" Low = minM 73 — min T L it e M(G)
= T = T T i T = T
z X Lﬂ(H).Z‘ T T Lﬂ(H)x T T LW(H)a: Ta z T ILF;H) max, z i;(ZHW /\n(H)

Now, repeating the argument and applying symmetry of =% completes the proof. O

5.2 Results for Specific Graphs

Now, using the previous facts we can show that certain graphs are not constant-spectrally isomorphic.

Proposition 5.5. The following lower bounds hold for the common graphs:

1. K, =S5, = a>n-1
2. K, 20 C, = a>271
8. 5, 20Cp = a>"7t

4. Sp 2P, = a>1t
Proof.

1. By Corollary 5.3.1 we have since K, is regular that a > an =n-—1.
2. Again, by Corollary 5.3.1 we have that o > ”7_1

: -1
3. Here, we just apply Theorem 5.2 to see that a > “5=.
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4. Lastly, by Theorem 5.2 we see that o > ”51.

Notice the last two graphs actually exhibit an interesting general result.

Proposition 5.6. Two trees need not be constant-spectrally isomorphic.

Proof. The star and path are both trees, yet by the previous Proposition we know they are not constant-
spectrally isomorphic. O

2

Proposition 5.7. if n is even, K, =5 P, = a > &

Proof. Consider any permutation, 7, of P,. Consider the cut in 7 (P, ) that contains the left half of the path.

Then, just as in the proof of Theorem 5.1, we have « is lower bounded by the size of the cut in K,,, which
2

is %5 since for each of the 5 vertices in the cut, there are exactly that many edges to that vertex that cross

the cut, divided by the size of the cut in 7(F,), which is 1. O

Proposition 5.8. K, =? K| n rny is optimal if n is odd.

Proof. Proposition 4.12 gives that the relation holds. Also, when n is odd, we have that the minimum degree
of K|njny is exactly 5] = ”T_l Hence, by Theorem 5.2 we know that any § for which these two graphs

n—1
n—1
2

are spectrally isomorphic must be at least

= 2. Hence, 2 is optimal. O

Proposition 5.9. K, =7 S, and n is nearly optimal, and may be optimal.

Proof. The relation holds by Proposition 4.13. Also, Proposition 5.5 gives that the smallest o that could
possibly work is n — 1. Hence, n is nearly optimal, and may in fact be the best possible. O

We can also determine conditions for which a permutation may show that C,, =¢ P,.

Proposition 5.10. Suppose C, =¢ P, and w is some permutation that shows this to be true. Then,
Y(u,v) € Eg,, da(n(u),7(v)) < a.

n’

Proof. We show the contrapositive. Suppose 3(u,v) € Eg with drg)(u,v) > a. Let u = po,p1, oo Pel g1y (uy0) =
v be this path in 7(H). Then, consider the vector x that satisfies x(p;) = i for each i € [dr(g)(u,v)] and
x(w) = 0 for all other vertices. Then, we have that

T 0—d 2 d 2
X LG.’E _ ( W(H)(u?v)) _ W(H)(uﬂv) _ dﬂ'(H) (U,’U) S o
2T Ly Srin (0] 2 dr () (u,0)

i=1
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6 Complexity Theoretic Results

6.1 Spectral Complexity

Proposition 6.1. CSI C LSI ¢ PSIT

Proof. The containments immediately follow by definition. The last containment is strict since by Proposition
5.7 there exists a pair of graphs so that the graphs are in PSI but not in LSI. O
Proposition 6.2. Yo <n—1,n < g < "72, SI(a) C SI(n) C SI(B) C PSI

any o < n — 1. Also, Proposition 5.7 gives a

Proof. Proposition 5.9 gives that (K,,,S,) € SI(n)\ SI(«a) fo
< O

r
. . . n2
pair of graphs that are in PSI but not in SI(3) for any 5 < %-.

Proposition 6.3. CED # CSI

Proof. We know by Proposition 4.12 that there exists two graphs that are constant-spectrally isomorphic,
yet differ by more than a constant number of edges. O

6.2 General Complexity

Let GD(«) = {(G, H)|Ga — dominatesH }.
Proposition 6.4. SI(a) C GD(«a)

Proof. G = H = G a-dominates H. O

Proposition 6.5. Graph — Isomorphism = SI(1)

Proof. We know that G is isomorphic to H if and only if G =! H. Consequently, the equality holds. O
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